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Int-amplified Endomorphisms on Normal Projective Surfaces

Yohsuke Matsuzawa* and Shou Yoshikawa

Abstract. We investigate int-amplified endomorphisms on normal projective surfaces.

We prove that the output of the equivariant MMP is either a Q-abelian surface, a

(equivariant) quasi-étale quotient of a smooth projective surface, a Mori dream space,

or a projective cone of an elliptic curve.

1. Introduction

In this paper, we work over an algebraically closed field k of characteristic zero. A self-

morphism f : X → X on a projective variety X is called int-amplified if there exists

an ample Cartier divisor H on X such that f∗H − H is ample. Int-amplified endomor-

phisms are compatible with minimal model program (MMP), as shown in [11, 12]. Also,

existence of such endomorphisms imposes strong constraint to the singularities of the

varieties. Therefore, it seems possible to classify all int-amplified endomorphisms or vari-

eties admitting an int-amplified endomorphism. In this paper, we investigate int-amplified

endomorphisms on normal projective surfaces.

To state our main theorem, we fix the terminology.

Definition 1.1. (1) A morphism h : Y → X between varieties is called quasi-étale if h

is étale at every codimension one point on Y .

(2) A variety X is called Q-abelian if there exists a finite surjective quasi-étale morphism

A→ X from an abelian variety A.

The linear equivalence and Q-linear equivalence of divisors on normal projective vari-

eties are denoted by ∼ and ∼Q respectively. The Iitaka dimension of a Q-Cartier divisor

D on a normal projective variety is denoted by κ(D).

The following is the main theorem of this paper.
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Theorem 1.2. Let X be a normal projective surface over k. Let f : X → X be an int-

amplified endomorphism. Then X is Q-Gorenstein log canonical (lc) and we have the

following sequence of morphisms:

X = X1 → · · · → Xr → C

where

• Xi → Xi+1 is the divisorial contraction of a KXi-negative extremal ray for i =

1, . . . , r − 1;

• Xr → C is a Fano contraction of a KXr -negative extremal ray if KX is not pseudo-

effective;

• we ignore “→ C” if KX is pseudo-effective;

• there exists a positive integer n such that fn induces endomorphisms on Xi and C

(in such case, we call the sequence fn-equivariant MMP).

Moreover, one of the following holds:

(1) KX1 ∼Q 0. In this case, r = 1 and X is a Q-abelian variety;

(2) C is an elliptic curve, r = 1 and X1 is smooth;

(3) C ' P1, κ(−KXr) = 0. In this case, X is klt, r = 1, there exists a quasi-étale

finite surjection h : Y → X of degree 2 from a smooth projective surface Y , which is

a minimal ruled surface over an elliptic curve, and an endomorphism fY : Y → Y

such that

Y
fY //

h
��

Y

h
��

X
fn
// X

is commutative;

(4) C ' P1, κ(−KXr) = 1. In this case, X is klt, r = 1, there exists a quasi-étale finite

surjection h : Y → X from a smooth projective surface Y , which is a minimal ruled

surface over an elliptic curve, and an endomorphism fY : Y → Y such that

Y
fY //

h
��

Y

h
��

X
fn
// X

is commutative;
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(5) C ' P1, κ(−KXr) = 2. In this case, X is klt and a Mori dream space.

(6) C is a point, the Picard number of Xr is one and −KXr is ample. In this case, X

is a projective cone of an elliptic curve or a Mori dream space.

Remark 1.3. The structure of X in Theorem 1.2(1) and (6) are already known (cf. [3, 11,

14]). The essential result of this paper is the construction of quasi-étale covers in the cases

(3) and (4).

Remark 1.4. We refer [8, Definiton 1.10] for the definition of Mori dream spaces.

Remark 1.5. All the cases (1)–(6) in Theorem 1.2 actually happen. There are trivial

examples for (1), (2), (5), (6):

(1) X is an abelian surface and f is the multiplication by n map for some n > 1.

(2) X is the product of P1 and an elliptic curve and f is the product of non-isomorphic

surjective endomorphisms on each factor.

(5) X = P1 × P1 and f is the product of non-isomorphic surjective endomorphisms on

each factor.

(6) X = P2 and f is a non-isomorphic surjective endomorphism.

For more examples, see for instance [6, 13]. We give examples for (3), (4) in Section 7.

Remark 1.6. Notation as in Theorem 1.2. Let g : X → X be any surjective endomorphism.

Then, by [12, Theorem 4.6], gm induces endomorphisms on Xr and C for some m > 0.

Moreover, in case (3), the induced endomorphism gr on Xr lifts to an endomorphism on

Y . Indeed, by the proof of Lemma 4.2, the curve “C” in Lemma 4.2 and Proposition 4.3 is

totally invariant under gr. Therefore, by Proposition 4.3, gr lifts to the quasi-étale cover.

2. Notation and terminology

Throughout this paper, the ground field k is an algebraically closed field of characteristic

zero. A variety is an irreducible reduced separated scheme of finite type over k. A

subvariety means an irreducible reduced closed subscheme. Divisor on a normal projective

variety means Weil divisor.

For a self-morphism f : X → X of a variety X, a subset S ⊂ X is called totally

invariant under f if f−1(S) = S as sets.

• The pseudo-effective cone of a projective variety X is denoted by Eff(X).

• The ramification divisor of a finite surjective morphism f : X → Y between normal

projective varieties is denoted by Rf .
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• Let D, E be two Q-Weil divisors on a normal projective variety. We write D ≥ E if

the divisor D − E is effective.

3. Preliminaries

3.1.

Let X be a normal variety, and let µ : X ′ → X be a proper birational morphism from a

normal variety X ′. If ∆ ⊂ X is a Q-divisor, we denote by µ−1
∗ (∆) its strict transform.

A log pair is a tuple (X,∆) where X is a normal variety and ∆ =
∑

i di∆i is a Q-divisor

on X with di ≤ 1 for all i. We say that the pair (X,∆) is log canonical (lc) (resp. purely

log terminal (plt), resp. Kawamata log terminal (klt)) if KX + ∆ is Q-Cartier and for

every proper birational morphism µ : X ′ → X from a normal variety X ′ we can write

KX′ + µ−1
∗ (∆) = µ∗(KX + ∆) +

∑
j

a(Ej , X,∆)Ej ,

where the divisor Ej are µ-exceptional and a(Ej , X,∆) ≥ −1 (resp. a(Ej , X,∆) > −1,

resp. a(Ej , X,∆) > −1 and di < 1 for all i) for all j. If the pair (X,∆) is lc, we say that

a subvariety Z ⊂ X is an lc center if there exists a morphism µ : X ′ → X as above and a

µ-exceptional divisor E such that Z = µ(E) and a(E,X,∆) = −1.

A variety X is called lc, (resp. klt) if so is the pair (X, 0). A variety X is called Q-

Gorenstein if the canonical divisor KX is Q-Cartier and Q-factorial if every Weil divisor

on X is Q-Cartier. If a variety is lc, then it is Q-Gorenstein by definition. A surface

is Q-factorial if it has rational singularities and it has rational singularities if it is klt

(see [10, Theorem 5.22] and [1, Theorem 4.6]).

3.2.

We gather several facts on endomorphisms that we use later. The first two lemmas are

about the relationship between endomorphisms and singularities.

Lemma 3.1. (see [17, Proposition 7.7], cf. [4, Lemma 2.10, Theorem 1.4]) Let X be a

normal projective surface and f : X → X a surjective endomorphism with deg f > 1.

Let C ⊂ X be a reduced effective divisor such that f−1(C) = C. Then (X,C) is an lc

Q-Gorenstein pair and any lc center of (X,C) is not contained in SuppRf and totally

invariant if we replace f by a suitable power fn

By setting C = 0, we get the following.

Lemma 3.2. Let X be normal projective surface and f : X → X a surjective endomor-

phism with deg f > 1. Then X is Q-Gorenstein lc and any lc center of X is not contained

in SuppRf and totally invariant if we replace f by a suitable power fn.
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We recall basic properties and fundamental theorems on int-amplified endomorphisms.

Lemma 3.3. (1) Let X be a normal projective variety, f : X → X a surjective mor-

phism, and n > 0 a positive integer. Then f is int-amplified if and only if so is

fn.

(2) Let π : X → Y be a surjective morphism between normal projective varieties. Let

f : X → X, g : Y → Y be surjective endomorphisms such that π ◦ f = g ◦ π. If f is

int-amplified, then so is g.

(3) Let π : X 99K Y be a dominant rational map between normal projective varieties of

same dimension. Let f : X → X, g : Y → Y be surjective endomorphisms such that

π ◦ f = g ◦ π. Then f is int-amplified if and only if so is g.

(4) f is int-amplified if and only if all the eigenvalues of f∗ : N1(X) → N1(X) have

modulus greater than one. Here N1(X) is the group of Cartier divisors on X modulo

numerical equivalence.

Proof. See [11, Theorem 1.1 and Lemmas 3.3, 3,5, 3.6].

Lemma 3.4. [11, Theorem 1.5] Let X be a normal Q-Gorenstein projective variety and

f : X → X an int-amplified endomorphism. Then −KX is numerically equivalent to an

effective Q-Cartier divisor.

Proposition 3.5. [11, Theorem 5.2] Let X be a normal Q-Gorenstein projective variety

and f : X → X an int-amplified endomorphism. If KX is pseudo-effective, then KX ∼Q 0.

If, moreover, X is klt, then X is a Q-abelian variety, there exists a quasi-étale finite

morphism A → X from an abelian variety A and some power fn of f lifts to a self-

morphism of A.

The following easy lemma makes MMP equivariant under certain endomorphisms.

Lemma 3.6. Let X be an lc projective variety and f : X → X a surjective endomorphism.

Let R ⊂ NE(X) be a KX-negative extremal ray and π : X → Y the contraction of R.

Suppose f∗R = R. Then there exists a surjective endomorphism Y → Y such that

X
f
//

π
��

X

π
��

Y // Y.

Proof. This is true because the contraction is determined by the ray.

We will use the following lemma to prove kltness.
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Lemma 3.7. Consider the following commutative diagram

X
f
//

π
��

X

π
��

C g
// C

where X is a normal projective surface, C is a smooth projective curve, f is an int-

amplified endomorphism, g is an endomorphism and π is a surjective morphism with

connected fibers. Then X is klt.

Proof. By Lemma 3.2, X is Q-Gorenstein lc and we may assume an lc center P of X is

totally invariant under f . Then π(P ) is totally invariant and the fibre F of P is also totally

invariant. In particular, since Fred ≤ Rf , we have P ∈ Supp(Rf ), but this contradicts to

Lemma 3.2.

4. Int-amplified endomorphisms on two dimensional Mori fiber spaces

Proposition 4.1. Consider the following commutative diagram

X
f
//

π
��

X

π
��

C g
// C

where X is a Q-Gorenstein lc projective surface, f is an int-amplified endomorphism, π

is a KX-negative extremal ray contraction to a smooth projective curve C and g is an

endomorphism. Then

(1) C is isomorphic to P1 or an elliptic curve;

(2) If C is an elliptic curve, then f does not have non-empty totally invariant finite set

and X is smooth;

(3) If C ' P1 and −KX is not big, then f does not have non-empty totally invariant

finite set.

Proof. (1) Since f is int-amplified, so is g and that means deg g > 1. This implies C is

isomorphic to P1 or an elliptic curve.

(2) Suppose C is an elliptic curve. Then g is an étale non-isomorphic morphism, and

therefore g and its iterates have no totally invariant points. Thus f also does not have

non-empty totally invariant finite set. By Lemma 3.7, X is klt and Q-factorial.
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If π has a singular fiber, it is not generically reduced. Indeed, if a fiber F of π is

generically reduced, it is integral. (It is irreducible because π is a Mori fiber space over a

curve and X is Q-factorial. Every fiber of π is Cohen-Macaulay and thus it is reduced if

generically reduced.) Since π is flat and general fibers are P1, the arithmetic genus of F

is zero and this implies F ' P1. This is a contradiction.

Assume π has a singular fiber F = π∗P . Since g is étale, (gn)∗P is a reduced divisor

but every coefficient of π∗(gn)∗P = (fn)∗F is greater than one for any n. This implies

there are infinitely many singular fibers of π, but this is absurd. Thus all fibers of π are

regular and therefore X is smooth.

(3) Note that by Lemma 3.7, X is klt and Q-factorial. Assume f admits a totally

invariant finite set. Replacing f by its iterate, we may assume f has a totally invariant

point. Since −KX is not big and the Picard number of X is two, −KX generates an

extremal ray of the pseudo-effective cone Eff(X). Another ray is generated by the fiber

class F . Since F is preserved under f∗, −KX is also preserved and we write f∗(−KX) ≡
q(−KX) where q is an integer greater than one (cf. Lemma 3.3(4)). Then Rf ≡ KX −
f∗KX ≡ (q−1)(−KX), i.e., Rf generates the extremal ray different than the one generated

by F . Now the reduced fiber containing the totally invariant point is contained in the

support of Rf . This is a contradiction.

Lemma 4.2. Consider the following commutative diagram

X
f
//

π
��

X

π
��

P1
g
// P1

where X is a klt projective surface, f is an int-amplified endomorphism, π is a KX-negative

extremal ray contraction and g is an endomorphism. Let Rf be the ramification divisor of

f . If κ(−KX) = 0, then f∗(−KX) ∼Q q(−KX) for some integer q > 1, (Rf )red =: C is a

smooth irreducible curve and the following holds:

• C ∼Q −KX ;

• f−1(C) = C as sets;

• Rf = (q − 1)C as Weil divisors.

Proof. Note that X is Q-factorial since it is a klt surface. Moreover, Pic(X)Q ' N1(X)Q

since X is rational. Let Eff(X) = NE(X) = R≥0F + R≥0v where F is the fiber class.

Note that we have

f∗F = deg gF, f∗v = qv
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for some q ∈ R>1. By Lemma 3.4, we can write −KX = aF + bv in N1(X)R for some

a, b ≥ 0. Since π is a KX -negative contraction, we have 0 < (−KX · F ) = b(v · F ). This

implies b > 0 and (v ·F ) > 0. Therefore, a = 0. Indeed, if a > 0, −KX is contained in the

interior of Eff(X) and it means −KX is big, which contradicts to our assumption. Thus

−KX generates an extremal ray, q is an integer, and f∗(−KX) ∼Q q(−KX).

Now, since Rf ∼ KX − f∗KX ∼Q (q − 1)(−KX), κ(Rf ) = 0 and Rf generate the

extremal ray of Eff(X). This implies Rf is irreducible. Set C = (Rf )red. Since f∗Rf ∼Q

qRf and κ(Rf ) = 0, f−1(Rf ) = Rf (in other words, f−1(C) = C) as sets. Thus, by the

definition of the ramification divisor, Rf = (q − 1)C. From this, we get −KX ∼Q C.

Now we apply Lemma 3.1. Since f does not ramify along fibers, there is no totally

invariant finite set. Thus, by Lemma 3.1, (X,C) has no lc center. Then (X,C) is plt, in

particular, C is normal (cf. [10, Proposition 5.51]).

Proposition 4.3. Consider the following commutative diagram

X
f
//

π
��

X

π
��

P1
g
// P1

where X is a klt projective surface, f is an int-amplified endomorphism, π is a KX-negative

extremal ray contraction and g is an endomorphism. Let Rf be the ramification divisor of

f . If κ(−KX) = 0, then (Rf )red =: C is an elliptic curve. Moreover, let X ′ = X ×P1 C

and X̃ be the normalization of X ′red. Then

• X̃ is smooth;

• the projection π̃ : X̃ → C is a Fano contraction of a K
X̃

negative extremal ray (i.e.,

X̃ is a minimal ruled surface over C);

• the finite morphism h : X̃ → X is quasi-étale of degree 2;

• f induces an int-amplified endomorphism on X̃:

X̃ //

π̃
  

h

((
X ′

��

// X

π
��

C // P1.

Proof. We use the notation in Lemma 4.2. The restriction of f on C has degree larger

than one, so C is isomorphic to P1 or an elliptic curve. Note that π|C : C → P1 is a double

cover. To see this, let F be a general fiber of π. Then by Lemma 4.2 and the adjunction
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formula, we have (F · C) = −(F ·KX) = (F 2)− (2pa(F )− 2) = 2. Here pa(F ) = 0 since

the generic fiber of π is the projective line.

Step 1. We assume C ' P1 and deduce contradiction. Form the following commutative

diagram:

X̃ //

π̃
  

h

((
X ′

��

// X

π
��

C
π|C
// P1

where X ′ = X ×C P1 and X̃ is the normalization of (X ′)red. Since f induces an endomor-

phism of C, it induces an endomorphism f̃ on X̃ which is int-amplified. By Lemma 3.7,

X̃ is klt. By Lemma 3.4, −K
X̃

is Q-linearly effective (note that X̃ is rational since general

fibers of π̃ is rational). Let Rh be the ramification divisor of h. Then, by pushing the

ramification formula by h, we get

(deg h)(−KX) ∼ h∗(−KX̃
) + h∗Rh.

Since κ(−KX) = 0 and −KX ∼Q C, we get SuppRh ⊂ h−1(C). Note that h is not

ramified along horizontal divisors (i.e., divisors whose image by π̃ is equal to C) since h is

the base change of generically étale morphism π|C over an open subset of P1. Thus Rh = 0

and h is quasi-étale. Then we get R
f̃

= h∗Rf where R
f̃

is the ramification divisor of f̃ . In

particular, f̃ does not ramify along curves contracted by π̃. This implies f̃ does not have

totally invariant finite set. Indeed, if there is a totally invariant finite set S ⊂ X̃, then

π̃(S) is totally invariant under f |C . Since f |C is not an isomorphism, f |C is branched

over π̃(S) and thus f̃ is ramified along fibers over π̃(S), which we just show does not

happen. Moreover, any curve which is contracted by π̃ is K
X̃

-negative since K
X̃
∼ h∗KX

and h is finite. If the contraction of one of such curves is a divisorial contraction, then the

contraction is equivariant with respect to some iterate of f̃ by [12, Theorem 4.6]. Then

the contracted curve must be totally invariant under (some iterate of) f̃ and the image

of it by π̃ is a totally invariant point of some iterate of f |C . This is absurd because R
f̃

is

horizontal. Therefore, π̃ is a Fano contraction (Note K
X̃
∼ h∗KX is not nef over C). Since

h∗(−KX̃
) ∼ deg h(−KX) and κ(−KX) = 0, κ(−K

X̃
) = 0. Now, we can apply Lemma 4.2

to X̃ and f̃ , and it says R
f̃

is irreducible. But SuppRh = h−1(C) is not irreducible since

π|C : C → P1 has degree two. This is a contradiction.

Step 2. Now we assume C is an elliptic curve. Form the following commutative diagram

as in Step 1:
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X̃ //

π̃
  

h

((
X ′

��

// X

π
��

C
π|C
// P1.

Since π|C is a double cover, h has degree 2. As in Step 1, f induces an int-amplified

endomorphism f̃ on X̃ and X̃ is Q-Gorenstein lc. Consider the following equations:

Rh + h∗Rf = R
f̃

+ f̃∗Rh,(4.1)

h∗Rf = (q − 1)h∗C,(4.2)

f̃∗h∗C = h∗f∗C = qh∗C.(4.3)

By construction, h∗C has two components and each coefficient is 1. By (4.3), f̃ is ramified

along each component of h∗C with ramification index q. Thus we have R
f̃
−(q−1)h∗C ≥ 0.

By (4.2), R
f̃
−h∗Rf ≥ 0. By (4.1), Rh− f̃∗Rh ≥ 0, and this implies Rh is totally invariant

under f̃ as a set. Since h is not ramified along horizontal curves by construction, every

component of Rh is contracted by π̃. If Rh 6= 0, f |C has a non-empty totally invariant

set. This is absurd because f |C is étale and not isomorphic. Therefore, we get Rh = 0,

i.e., h is quasi-étale. Moreover, if there is a K
X̃

-negative extremal divisorial contraction,

it is equivariant with respect to some iterate of f̃ by [12, Theorem 4.6]. This implies there

is a totally invariant point of some iterate of f |C , but this is absurd. Thus π̃ is a Fano

contraction. By Proposition 4.1(2), X̃ is smooth.

Proposition 4.4. Consider the following commutative diagram

X
f
//

π
��

X

π
��

P1
g
// P1

where X is a klt projective surface with κ(−KX) = 1, f is an int-amplified endomorphism,

π is a KX-negative extremal ray contraction and g is an endomorphism. Then there exists

a positive integer n and an elliptic curve E on X such that fn(E) = E satisfying the

following properties. Let X ′ = X ×P1 E and X̃ be the normalization of X ′red. Then

• X̃ is smooth;

• the projection π̃ : X̃ → E is a Fano contraction of a K
X̃

negative extremal ray (i.e.,

X̃ is a minimal ruled surface over E);



Int-amplified Endomorphisms on Normal Projective Surfaces 691

• the finite morphism h : X̃ → X is quasi-étale;

• fn induces an int-amplified endomorphism on X̃:

X̃ //

π̃
  

h

((
X ′

��

// X

π
��

E
π|E
// P1.

Proof. Since −KX is not big, −KX generates the extremal ray of Eff(X) other than the

one generated by the fiber class of π (cf. the proof of Lemma 4.2). Therefore, we can

show (−KX)2 ≥ 0. Since the other extremal ray is KX -negative, we get (−KX)2 = 0

(otherwise, −KX is ample, but κ(−KX) = 1). Moreover, −KX is semi-ample because it is

Q-linearly equivalent to at least two irreducible effective divisors and has self-intersection

0. Let µ : X → P1 be the morphism defined by −mKX for sufficiently divisible m. Since

f preserves the ray R≥0(−KX), it induces a non-invertible endomorphism g′ : P1 → P1

such that

X
f
//

µ
��

X

µ
��

P1

g′
// P1

is commutative.

Since g′ is non-isomorphic, it has infinitely many periodic points (cf. [5]). General

fibers of µ are elliptic curves because (KX)2 = 0. Thus, if we replace f by a suitable

power, we may assume there exists a point P ∈ P1 such that g′(P ) = P and µ−1(P ) =: E

is an elliptic curve.

Consider the following diagram:

X̃ //

π̃
  

h

((
X ′

��

// X

π
��

E
π|E
// P1

where X ′ = X ×P1 E and X̃ is the normalization of (X ′)red. Since E is preserved by f ,

it induces an int-amplified endomorphism f̃ on X̃. Therefore, X̃ is Q-Gorenstein klt by

Lemma 3.7.

First, we prove h is quasi-étale. Let Rh be the ramification divisor and fix a canonical

divisor K
X̃

of X̃ so that −h∗KX = −K
X̃

+ Rh. By Lemma 3.4, there exists an effective
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Q-Cartier divisor D on X̃ such that D ≡ −K
X̃

. Then we get −(deg h)KX ≡ h∗Rh+h∗D.

For any fiber E′ of µ, we have 0 = (−(deg h)KX · E′) = (h∗Rh · E′) + (h∗D · E′). Since

E′ is nef and h∗Rh, h∗D are effective, we get (h∗Rh · E′) = 0. Therefore, h∗Rh has no

irreducible component that is contained in a fiber of π. Since h is finite, Rh also has no

irreducible component that is contained in a fiber of π̃. By the construction of h, Rh has

no π̃-horizontal component, and hence we get Rh = 0.

By the same argument as in the last part of the proof of Proposition 4.3, π̃ is a Fano

contraction and X̃ is smooth.

5. Int-amplified endomorphisms on surfaces with big anti-canonical divisor

Lemma 5.1. (cf. [3, Theorem 5.5]) Let X be a normal Q-factorial rational projective

surface with −KX is big. Then X is a Mori dream space.

Proof. Take the minimal resolution ν : Y → X. Then, by negativity lemma, we have

−KY = −ν∗KX+E where E is a ν-exceptional effective divisor. In particular, −KY is also

big. Since Y is rational, Y is a Mori dream space by [16, Theorem 1]. By [15, Theorem 1.1],

X is also a Mori dream space.

Lemma 5.2. Let X be a normal projective surface. Let f : X → X be an int-amplified

endomorphism. Suppose we have the following f -equivariant MMP:

X = X1 → · · · → Xr

where Xi → Xi+1 is the divisorial contraction of a KXi-negative extremal ray for i =

1, . . . , r − 1. If −KXr is big and Xr is Q-factorial, then −KX is also big.

Proof. Let ν : X → Xr be the composite of the divisorial contractions, then the all ex-

ceptional divisors E1, . . . , Er−1 of ν are totally invariant and Ei ≤ Rf for all i since f is

int-amplified (cf. [11, Lemma 3.11]). Write −KX ∼Q ν
∗(−KXr)+E where E =

∑r−1
i=1 aiEi.

By the ramification formula, we get (fn)∗(−KX) ∼ −KX+(fn−1)∗Rf +· · ·+Rf for n > 0.

Since Ei are components of Rf and totally invariant under f , E + (fn−1)∗Rf + · · ·+ Rf

is effective for large n. Therefore, the divisor

(fn)∗(−KX) ∼Q ν
∗(−KXr) + E + (fn−1)∗Rf + · · ·+Rf

is big and hence so is −KX .

Proposition 5.3. (cf. [3, Theorem 5.1]) Let X be a normal projective surface. Let f : X →
X be an int-amplified endomorphism. Suppose we can run f -equivariant MMP:

X = X1 → · · · → Xr → C

where
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• Xi → Xi+1 is the divisorial contraction of a KXi-negative extremal ray for i =

1, . . . , r − 1;

• Xr → C is the Fano contraction of a KXr -negative extremal ray;

• C is a projective line or a point.

Suppose −KXr is big. If C is a projective line, then X is a Mori dream space. If C is a

point, then X is a Mori dream space or a projective cone of an elliptic curve.

Proof. If C is a projective line, then X is klt by Lemma 3.7. In particular X is Q-factorial,

and X is a Mori dream space by Lemmas 5.1 and 5.2.

If C is a point, then X is a projective cone of an elliptic curve or rational surface

with rational singularities by the last part in the proof of [3, Theorem 5.1]. If X has

rational singularities, then X is Q-factorial by [1, Theorem 4.6] and a Mori dream space

by Lemmas 5.1 and 5.2.

6. Proof of the main theorem

Proof of Theorem 1.2. Let f : X → X be an int-amplified endomorphism of normal pro-

jective surface. By Lemma 3.2, X is Q-Gorenstein lc. By [9, Theorem 2.3.6], we can run

a MMP for X. By [12, Theorem 4.6] and Lemma 3.6, if we replace f by a suitable power,

every KX -negative extremal ray contraction is f -equivariant and the induced morphism

on the target is also int-amplified (Lemma 3.3). Therefore, we can repeat this process and

get

X = X1 → · · · → Xr → C

where

• pi : Xi → Xi+1 is the divisorial contraction of a KXi-negative extremal ray for i =

1, . . . , r − 1;

• KXr is nef and ignore “→ C” for this case, or Xr → C is the Fano contraction of a

KXr -negative extremal ray.

By replacing f by its iterate, we assume f induces int-amplified endomorphisms fi on Xi.

(1) When KX is pseudo-effective, then by Lemma 3.4, KX ≡ 0. By [7, Theorem 1.2],

KX ∼Q 0 and in particular, r = 1. By [14, Theorem A], X is a Q-abelian variety.

(2) When KX is not pseudo-effective, then the out put of MMP must be a Fano

contraction (cf. [2, Corollary 1.1.7]). Note that pi(Exc(pi)) is a non-empty finite set

totally invariant under fi+1.
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(a) If C is an elliptic curve, by Proposition 4.1(2), fr admits no totally invariant finite

set. Therefore, r = 1 and by Proposition 4.1(2) again, X = X1 is smooth.

(b) If C ' P1 and κ(−KXr) = 0, then r = 1 by Lemma 4.1(3) and X is klt by

Lemma 3.7. By Proposition 4.3, we get a desired quasi-étale cover as in the statement.

(c) If C ' P1 and κ(−KXr) = 1, then r = 1 by Lemma 4.1(3) and X = X1 is klt by

Lemma 3.7. By Proposition 4.4, we get a desired quasi-étale cover as in the statement.

(d) If C ' P1 and κ(−KXr) = 2, then X is klt by Lemma 3.7 and hence X is a Mori

dream space by Proposition 5.3.

(e) If C is a point, then Xr has Picard number one and −KXr is ample. By Proposi-

tion 5.3, X is a Mori dream space or a projective cone of an elliptic curve.

7. Examples

Proposition 7.1. The cases (3) and (4) in Theorem 1.2 occur.

Let E be an elliptic curve. We write [m] : E → E the multiplication by m map for

every integer m. Take an invertible OE-module L with degL = 0. Consider the projective

bundle p : Y = P(OE ⊕ L)→ E.

Lemma 7.2. (1) For any isomorphism ϕ : [−1]∗L → L−1, we have

[−1]∗([−1]∗L)

[−1]∗ϕ
��

// ([−1] ◦ [−1])∗L // L

[−1]∗(L−1) // ([−1]∗L)−1

ϕ∨
// (L−1)−1

OO

commutative, where unlabeled arrows are canonical isomorphisms.

(2) Let n > 1 an integer. For every isomorphism ϕ : [−1]∗L → L−1, there exists an

isomorphism ψ : [n]∗L → Ln such that the following diagram is commutative:

[−1]∗([n]∗L)
[−1]∗ψ

//

��

[−1]∗(Ln) // ([−1]∗L)n
ϕ⊗n

// (L−1)n

��

[n]∗([−1]∗L)
[n]∗ϕ

// [n]∗(L−1) // ([n]∗L)−1

ψ∨
// (Ln)−1

where unlabeled arrows are canonical isomorphisms.

Proof. We may assume L = OE(x− 0) where 0 ∈ E is the identity and x ∈ E is a closed

point. Take any non-zero rational functions f , g on E so that

[−1]∗(x− 0) = −(x− 0) + div f,

[n]∗(x− 0) = n(x− 0) + div g.
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(1) We can reduce to prove that ([−1]∗f)/f = 1. This function is constant by definition.

Take a two torsion point z ∈ E \ {0, x, y}, where y ∈ E is the inverse element of x. Then

(([−1]∗f)/f)(z) = f(z)/f(z) = 1.

(2) We can reduce to find g such that

[n]∗f

fng[−1]∗g
= 1.

The left hand side is a constant, say a, by the definition of f and g. Replace g by
√
ag.

Then f and
√
ag satisfy the desired formula.

Let n > 1 be an integer. Fix two isomorphisms ϕ : [−1]∗L → L−1, ψ : [n]∗L → Ln as

in Lemma 7.2(2).

Consider the following diagram:

Y

F

**

p
%%

α
// P(OE ⊕ Ln)

��

Ψ // P(OE ⊕ [n]∗L)

[n]∗p
vv

β
// Y

p

��

E
[n]

// E

where [n]∗p is the base change of p by [n], β is the projection, Ψ is the isomorphism

over E induced by ψ, and α is the morphism over E defined by the canonical inclusion

OE ⊕ Ln → Symn(OE ⊕ L). Define F : Y → Y to be the composite F = β ◦Ψ ◦ α. Note

that F is an int-amplified endomorphism.

Similarly, consider the following diagram:

Y

σ

**

p
%%

ι
// P(OE ⊕ L−1)

��

Φ // P(OE ⊕ [−1]∗L)

[−1]∗p
uu

γ
// Y

p

��

E
[−1]

// E

where [−1]∗p is the base change of p by [−1], γ is the projection, Φ is the isomorphism

over E induced by ϕ, and ι is the isomorphism over E induced by OE ⊕ L ' L ⊕ OE '
(OE⊕L−1)⊗L. Define σ : Y → Y to be the composite σ = γ◦Φ◦ι. Then, by Lemma 7.2(1),

we get σ ◦ σ = id. By Lemma 7.2(2), we get F ◦ σ = σ ◦ F . (By taking base changes,

reduce to equations of morphisms between projective bundles over a common base and

use Lemma 7.2.)
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Let X := Y/〈σ〉 be the quotient of Y by the involution σ. Then X is a projective klt

surface and we get the following commutative diagram:

Y
h //

p

��

X

π
��

E // E/〈[−1]〉 ' P1

where the horizontal arrows are quotient morphisms and π is the induced morphism by

p. Note that h is quasi-étale since the set of fixed points of σ is finite. Since F ◦ σ =

σ ◦ F , F descends to an int-amplified endomorphism f : X → X. Also, [n] : E → E

induces an endomorphism g : P1 → P1 and the above diagram is equivariant under these

endomorphisms.

We have h∗KX ∼ KY because h is quasi-étale. Therefore, π is a KX -negative extremal

ray contraction and κ(−KX) = κ(−KY ). Moreover, κ(−KY ) = 0 if L is non-torsion in

Pic0(E) and κ(−KY ) = 1 if L is torsion. The morphism f : X → X is an example of the

case Theorem 1.2(3) or (4) depending on whether L is non-torsion or not.
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[1] L. Bădescu, Algebraic Surfaces, Universitext, Springer-Verlag, New York, 2001.

[2] C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models

for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.

[3] A. Broustet and Y. Gongyo, Remarks on log Calabi-Yau structure of varieties admit-

ting polarized endomorphisms, Taiwanese J. Math. 21 (2017), no. 3, 569–582.
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