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Geometric Analysis of the Vibration of Rubber Wiper Blade

Tsai-Jung Chen and Ying-Ji Hong*

Abstract. The purpose of this paper is to work out the theoretical aspects of the vi-

bration problem of rubber wiper blade on convex windshield. Over the past 20 years,

some 2-dimensional spring-mass models were presented in engineering science to simu-

late the vibration of rubber wiper blade on windshield. In this paper, we will consider

the elasticity perspective on this 3-dimensional vibration problem. Our theoretical

analysis suggests that there should exist two classes of vibration frequencies corre-

sponding to “∗-exact deformations (Class I)” and “∗-closed deformations (Class II)”.

We prove mathematical theorems on the characterization of deformations of Class I.

We also explain how elementary deformations of Class II can be constructed. We then

deduce two mathematical formulas, for the vibration problem of rubber wiper blade

on convex windshield, from our theoretical analysis. Our theoretical predictions are

in almost perfect agreement with experimental data. One of the crucial steps of our

analysis is a decomposition theorem motivated by the de Rham Cohomology and the

Hodge Theory.

1. Introduction

The purpose of this paper is to work out the theoretical aspects of the vibration problem

of rubber wiper blade on convex windshield. This problem has been actively studied in

engineering science for more than 20 years. See [3–6,18–20,28,29,31–33,37]. Generally, the

vibration frequencies of rubber wiper blade on convex windshield are very complicated.

Figure 1.1 shows a FFT (Fast Fourier Transform) diagram for the vibration frequencies

of rubber wiper on convex windshield before reversal. On this FFT diagram, frequencies

below 25,600Hz can be trusted.

We try to understand the vibration frequencies of rubber wiper blade on convex wind-

shield from the theoretical/mathematical physics point of view. Our theoretical analysis

(Section 3) suggests that there should exist two classes of vibration frequencies corre-

sponding to “∗-exact deformations (Class I)” and “∗-closed deformations (Class II)”.
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Figure 1.1: Vibration frequencies of rubber wiper blade on convex windshield.

Let ρ kg/m3 denote the density of the rubber wiper. Let l m denote the length of the

rubber wiper. Then most of the vibration frequencies of Class I should locate around

(1.1)

√
λ+ 2µ

ρ
· n

2l
Hz (Class I)

where n is a positive integer. Some of the vibration frequencies of Class II should appear

around

(1.2)

√
µ

ρ
· n

2l
Hz (Class II).

However, the vibration frequencies of Class II are loosely distributed, general low vibration-

frequencies of Class II may appear. Here λ and µ are the “Lame coefficients”. Lame

coefficients are material constants of the rubber wiper. These material constants are

related to the “Young modulus E” and the “Poisson ratio σ” as follows:

(1.3) λ =
σ · E

(1 + σ) · (1− 2σ)
and µ =

E

2 · (1 + σ)
.

Experimental data has amazingly supported our theoretical predictions. In Figure 1.1,

peaks of the specific vibration frequencies predicted by our mathematical formulas are

indicated. In Figure 1.1, the strange vibration frequency around 510Hz, higher than the

predicted frequency 480Hz, is caused by machine noise. For the details of comparison of

experimental data with our mathematical formulas, see [10].
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Somewhat surprisingly, one of the crucial steps of our analysis is a “decomposition the-

orem” (see Theorem 3.3) motivated by the de Rham Cohomology and the Hodge Theory.

We will explain the physical aspects of this vibration problem in Section 2. Section 3 is

devoted to the mathematical analysis of this vibration problem. To reduce the “wind resis-

tance” on the windshield of a moving vehicle, the shape of windshield is generally strictly

convex [7]. This strict convexity of windshield leads to the boundary condition (3.9) for

our mathematical formulation. Then in Section 4, we will explain how our analysis leads

to our physical predictions on the vibration frequencies of rubber wiper blade on con-

vex windshield. The mathematical analysis presented in this article is motivated by the

authors previous work on differential geometry and theoretical physics [22–26].

2. Physical aspects of the vibration problem

When a rubber wiper blade moves on the convex windshield of an automobile, there are

4 different forces acting on it: pressure on the wiper adapter, support force from the

windshield, drag force from the wiper arm, and the frictional force acting on the rubber

wiper blade. Figure 2.1 shows a 2-dimensional force diagram for the rubber wiper blade.

Figure 2.1: 2D Force Diagram. Figure 2.2: Slightly Deformed Region.

To keep rubber wiper blade working normally, the bending (deformation) of rubber

wiper blade should not be severe to avoid wiper jumping or malfunctioning. Thus a

suitable distance between the wiper adapter and the convex windshield must be retained.

The wiper arm is always moving above the windshield with the pressure on the rubber

wiper being applied by a spring under the wiper arm.
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2.1. Hyperelasticity and viscoelasticity

The rubber wiper blade is made of elastic material rubber. Here we explain the physical

properties of rubber wiper briefly. Rubber is a polymer material consisting of very large

molecules (macromolecules). These macromolecules are linked together by the Van der

Waals force (see [21, 38, 39]). When rubber is deformed slightly, it behaves like a “hyper-

elastic” body [30]. Here “hyper-elastic” means that if we remove the force acting on a

rubber, this rubber will return to its original shape and the “stored energy” in rubber will

be released. Usually we consider the “stored energy” in rubber as a “potential function

for deformation”. See Appendix A of [16].

When rubber is deformed seriously, part of the linking between macromolecules will be

broken. In this case, this rubber will not be able to return to its original structure. This

phenomenon is called “viscoelasticity”. In this case, the “conservation law of mechanical

energy” fails because some energy of deformation is transformed into heat. Usually it is

very difficult to predict precisely the dynamics of a seriously deformed rubber.

2.2. Saint-Venant’s principle

Now we discuss the dynamics of rubber wiper blade. When a rubber wiper blade moves on

the windshield of an automobile, some region Ω of the rubber wiper blade is only slightly

deformed. See Figures 2.1 and 2.2. This phenomenon is usually considered as the effect of

“Saint-Venant’s principle”. The Boussinesq version of “Saint-Venant’s principle” can be

expressed as follows.

“An equilibrated system of external forces applied to an elastic body, all of

the points of application lying within a given sphere, produces deformations of

negligible magnitude at distances from the sphere which are sufficiently large

compared to its radius.”

A mathematical formulation of this physical principle has been proved by Ernst [15].

Let D denote the corresponding 2-dimensional domain so that Ω is diffeomorphic to

[0, l]×D. See Figures 2.1 and 2.2. On this slightly deformed region Ω, the “hyperelasticity”

of rubber may be assumed to be true [30]. Thus it is reasonable to predict the vibration

of rubber wiper blade through mathematical analysis of the dynamics of this slightly

deformed region Ω.

2.3. General physical principles on vibration

General physical principles suggest that the dominant vibration frequencies of an elastic

body are related to the “standing waves” on this elastic body [34]. This principle is
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generally adopted in the development of Quantum Physics [9]. Physicists considered

“eigenstates” in Quantum Physics. The idea of “eigenstates” becomes the cornerstone of

the Molecular Orbital Theory in Quantum Chemistry [21].

Therefore we will try to find the possible “eigenstates” in our analysis of the vibration

of rubber wiper blade on convex windshield.

3. Mathematical aspects of the vibration problem

We will start with brief discussions on 3-dimensional elasticity mechanics with emphasis

on Hyper-elasticity. Basic references for the elasticity mechanics are [8, 16].

Elasticity theory is based on the framework of continuum mechanics introduced by

Cauchy. The key idea of elasticity theory is to relate “the infinitesimal variation of stress

tensor” with “the infinitesimal deformation” of an elastic body.

Let T (B) and T ∗(B) respectively denote the tangent bundle and the cotangent bundle

of an elastic body B. The Cauchy stress tensor S on an elastic body B is a section of

T (B)⊗ T ∗(B)

on B. For a given unit tangent vector v ∈ Tp(B), we define

v+ = {u ∈ Tp(B) : 〈u,v〉 = 0}

to be the 2-dimensional subspace of Tp(B) perpendicular to v. S(v) indicates the pressure

force acting on v+. We usually call “the component of S(v) along the v-direction”

〈S(v),v〉
‖v‖2

· v

“the normal stress component of S(v)”. We call “the component of S(v) perpendicular

to the v-direction”

−〈S(v),v〉
‖v‖2

· v + S(v)

“the shear stress component of S(v)”.

3.1. Differential geometry of elasticity mechanics

In the following discussions, we will assume that Bt is a smooth family of 3-dimensional

manifolds with boundary ∂Bt in R3 depending on the time variable t. T (Bt) and T ∗(Bt)

will respectively denote the tangent bundle and the cotangent bundle of Bt. S is the

T (Bt)⊗ T ∗(Bt)-valued Cauchy stress tensor on Bt. It should be noted that, according to

the “conservation law of angular momentum”, the Cauchy stress tensor S is symmetric
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when we identify T ∗(Bt) with T (Bt) using the Euclidean metric on R3. See Appendix A

of [16].

In the following computation, e1, e2, e3 usually constitute an orthonormal framing

field on R3. Since gravity is not important for the vibration of rubber wiper system, we

will disregard the influence of gravity on the vibration of rubber wiper blade in this article.

According to the Hamilton principle, the motion of an elastic body must satisfy the

variation formula

−δ
∫ tf

ti

Ut · dt+ δ

∫ tf

ti

Tt · dt+

∫ tf

ti

(δW )t · dt = 0

for any admissible smooth path of virtual deformation. Here Ut is the potential corresponds

to “the stored energy of elasticity” in the elastic body Bt at time t. See Appendix A of [16].

Tt is the kinetic energy of Bt. (δW )t corresponds to “the virtual work” done by the

traction force τt, along the boundary ∂Bt of Bt, on the virtual deformation (δx)t at time t.

We assume, for simplicity, that the density function ρt of Bt does not depend substantially

on t so that
∂ρt
∂t
≈ 0.

It can be shown, using the Stokes Theorem and integration by parts, that the above

variation formula is equivalent to

0 = −δ
∫ tf

ti

Ut · dt+ δ

∫ tf

ti

Tt · dt+

∫ tf

ti

(δW )t · dt

=

∫ tf

ti

(∮
∂Bt

〈−S(nt) + τt, (δx)t〉
)
· dt

+

∫ tf

ti

(∫
Bt

〈
−ρt ·

∂

∂t

∂u

∂t
+

3∑
k=1

(∇ekS)(ek), (δx)t

〉)
· dt

(3.1)

in which (δx)t is the admissible smooth path of virtual deformation depending on t. Here

nt is the outer normal vector field on the boundary ∂Bt of Bt. In (3.1), u is the vector-

valued position function of Bt. ∇ekS is the covariant derivative of the Cauchy stress

tensor S along the vector field ek. Thus the vector-valued Cauchy dynamic equation for

the elastic body Bt is

(3.2) − ρ · ∂
2u

∂t2
+

3∑
k=1

(∇ekS)(ek) = 0 on Bt

with

(3.3) S(nt) = τt (traction force given at time t) on ∂Bt.
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When a hyper-elastic body stays at an equilibrium state with traction acting on its

boundary, we have the following system of (usually elliptic) partial differential equations

3∑
k=1

(∇ekS)(ek) = 0 on Bt = B0

with

S(nt) = τ0 on ∂Bt = ∂B0

independent of t.

Since the manifold Bt usually changes with t, it should be noted that the system (3.2)

is not defined on a fixed region of R3. This is the fundamental reason why the system (3.2)

is nonlinear in nature.

Now we explain how to transform the vector-valued Cauchy dynamic equation (3.2)

into a vector-valued dynamic equation defined on the fixed region B0.

Let φt denote the diffeomorphism from B0 to Bt defined by the solution of the Cauchy

dynamic equation (3.2). Let ψt denote the corresponding inverse diffeomorphism from Bt

to B0. We may define a family of stress tensors St on B0, depending on t, by setting

St = ψt∗ ◦ S ◦ φt∗.

Here φt∗ and ψt∗ are respectively the differential maps associated with the diffeomorphisms

φt and ψt. St is usually called the “second Piola-Kirchhoff stress tensor” associated with

the Cauchy stress tensor S on Bt = φt(B0). See Appendix A of [16].

Note that

S = φt∗ ◦St ◦ ψt∗.

We may parameterize Bt = φt(B0) by the points on B0. By doing so, we obtain the “first

Piola-Kirchhoff stress tensor”

Sφt

associated with the Cauchy stress tensor S on Bt = φt(B0).

We may express (3.2) as a system of equations defined on the fixed region B0 of R3 as

follows. Let

F =
3∑

k=1

(∇ekS)(ek) =
3∑

k=1

[
∇ek(φt∗ ◦St ◦ ψt∗)

]
(ek)

denote the force field on Bt associated with the Cauchy stress tensor S. Then we may

express (3.2) as

(3.4) − ρ · ∂
2φt

∂t2
+ Fφt = 0 on B0
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in which Fφt is the vector field on Bt = φt(B0) parameterized by the points on B0. It can

be observed readily that the system (3.4) is naturally nonlinear. Note that the boundary

condition (3.3) can be expressed as

(3.5) St ◦ ψt∗(nt) = ψt∗(τt) on ∂B0.

3.2. Linearization of the nonlinear Cauchy dynamic equation

To tackle the vibration problem of rubber wiper blade on convex windshield, we will

consider the linearization of the nonlinear Cauchy dynamic equation on a slightly deformed

region Ω of the rubber wiper blade. See Figures 2.1 and 2.2.

Usually Ω is diffeomorphic to [0, l] × D. Note that Ω is exactly [0, l] × D when the

rubber wiper blade is at a static equilibrium state. According to the general principles

of perturbation theory, it is reasonable to consider the following simplified problem: the

linearization of the nonlinear Cauchy dynamic equation on Ω = [0, l] × D. We assume

that the rubber material is homogeneous so that the following “Isotropy” condition (see

Appendix D of [16]) is satisfied:

〈(δS)(ej), ek〉 = λ ·
(
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

)
· δjk + 2µ · εjk

= λ · (divv) · δjk + 2µ · εjk
(3.6)

with

(3.7) εjk =
1

2

(
∂vk
∂xj

+
∂vj
∂xk

)
.

Here (δS) is “the infinitesimal variation of Cauchy stress tensor” corresponding to “the

infinitesimal deformation” v(t,x) =
(
v1(t,x), v2(t,x), v3(t,x)

)
on the hyper-elastic body

B0. Here x = (x1, x2, x3) ∈ B0.

The linearization of (3.4) at a static equilibrium state can be expressed as the vector-

valued Lame equation:

ρ · ∂
2v

∂t2
= (λ+ µ) · ∇

(
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

)
+ µ ·

(
∂2v

∂x2
1

+
∂2v

∂x2
2

+
∂2v

∂x2
3

)
in which ρ is the (constant) density of the hyper-elastic body B0. Linearization of the

boundary condition (3.5) can be expressed as

(δS)(n0) = (δτ).

Here the coefficients λ and µ are Lame coefficients. See (1.3).
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3.3. Lame equation with specific physical boundary conditions

We assume, for simplicity, that D is a 2-dimensional manifold with boundary on R2. Let

BΩ = {(x1, x2, x3) ∈ Ω : 0 ≤ x1 ≤ l and (x2, x3) ∈ ∂D}.

Then the boundary ∂Ω of Ω = [0, l]×D can be decomposed as follows:

∂Ω = D0 ∪BΩ ∪Dl

in which D0 = {0}×D and Dl = {l}×D. Note that Ω = [0, l]×D is not a 3-dimensional

manifold with boundary because ∂Ω contains the one-dimensional corner

CornerΩ = (BΩ ∩D0) ∪ (BΩ ∩Dl).

When a rubber wiper blade moves on windshield, there is no stress or traction force

acting along the outer normal vector field on D0 ∪ Dl. This physical condition can be

expressed as the boundary condition

(3.8) 〈(δS)(n0),n0〉 = 0 on D0 ∪Dl

at time t.

We assume that the rubber wiper blade moves on windshield at nearly a constant

speed. To reduce the “wind resistance” on the windshield of a moving vehicle, the shape of

windshield is generally strictly convex [7]. Thus we may assume that there is no frictional

force acting on the ends D0∪Dl of Ω = [0, l]×D. We may express this physical condition

as the boundary condition

(3.9) divv = 0 on D0 ∪Dl

at time t. See Section 4 for the explanation of (3.9).

In the following analysis, we will discuss the solutions of the Lame equation

∂2v

∂t2
=
λ+ µ

ρ
· ∇
[
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

]
+
µ

ρ

[
∂2v

∂x2
1

+
∂2v

∂x2
2

+
∂2v

∂x2
3

]
=

(λ+ µ)

ρ
· ∇(divv) +

µ

ρ
·∆v

(3.10)

on Ω = [0, l]×D, depending on t, satisfying the boundary conditions (3.8) and (3.9). Here

we adopt the notation

∆ ≡
(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
frequently used in PDE. Thus the operator −∆ is positive-definite.
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Proposition 3.1. Let I be an open interval for the time variable t. We have the following

results.

(A) Assume that w̃(t,x) is a C∞ function defined on I ×Ω satisfying the wave equation

∂2w̃

∂t2
− λ+ 2µ

ρ
·∆w̃ = 0.

Then the deformation ∇w̃(t,x) satisfies the Lame equation (3.10):

∂2(∇w̃)

∂t2
=
λ+ µ

ρ
· ∇(div∇w̃) +

µ

ρ
·∆(∇w̃).

(B) Assume that u(t,x) is a C∞ vector-valued function defined on I × Ω satisfying

divu = 0

and the wave equation
∂2u

∂t2
− µ

ρ
·∆u = 0.

Then the deformation u(t,x) satisfies the Lame equation (3.10):

∂2u

∂t2
=
λ+ µ

ρ
· ∇(divu) +

µ

ρ
·∆u.

Proof. This proposition can be checked readily using the equality ∆ = div ◦∇.

We will show that a decomposition theorem (see Theorem 3.3) for the solutions v(t,x)

of the Lame equation (3.10) is possible. This means that we may express v(t,x) as the

sum of ∇w̃(t,x) and u(t,x) mentioned in Proposition 3.1. We start with the following

preliminary result.

Lemma 3.2. Let I be an open interval for the time variable t. Assume that v(t,x) is a C∞

vector-valued function defined on I×Ω = I× [0, l]×D satisfying the Lame equation (3.10).

Then there exists a unique function w ∈ C∞(I,W 1,2
0 (Ω)) satisfying

(3.11) ∆w = divv =
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3
.

Here W 1,2
0 (Ω) is the closure of C1

0 (Ω) in the Hilbert space W 1,2(Ω) consisting of weakly

differentiable functions f satisfying ‖f‖L2(Ω) + ‖∇f‖L2(Ω) < +∞.

Proof. The unique existence of the function w ∈ C∞(I,W 1,2
0 (Ω)) satisfying (3.10) follows

from the general theory of elliptic partial differential equations. See Chapters 7 and 8

of [17].



Geometric Analysis of the Vibration of Rubber Wiper Blade 501

Remark 3.1. According to the general theory of elliptic PDE, Chapter 8 of [17], the

function w of (3.11) can be extended smoothly across the 2-dimensional portion of ∂Ω for

each t ∈ I. However, the regularity of w around the corner

CornerΩ = (BΩ ∩D0) ∪ (BΩ ∩Dl)

of ∂Ω might be worse than usually expected. See [12]. Fortunately, this regularity problem

is not very important for the applications of our theory.

Theorem 3.3 (Decomposition Theorem). Let I be an open interval for the time variable t.

Assume that v(t,x) is a C∞ vector-valued function defined on I × Ω satisfying the Lame

equation (3.10). Then there exists a function w̃(t,x) ∈ C∞(I,W 1,2
0 (Ω)) satisfying

(3.12) ∆w̃ = divv

and the wave equation

(3.13)
∂2w̃

∂t2
− λ+ 2µ

ρ
·∆w̃ = 0

such that v(t,x) can be expressed as

v(t,x) = u(t,x) +∇w̃(t,x)

in which u(t,x) is a vector-valued function on I × Ω satisfying

(3.14) divu = 0

and the wave equation

(3.15)
∂2u

∂t2
− µ

ρ
·∆u = 0.

When the boundary condition (3.9)

divv = 0 on I × (D0 ∪Dl)

is satisfied, we may require that w̃(t,x) satisfies the boundary condition

(3.16) w̃ = 0 on I × (D0 ∪Dl).

Proof. Let w ∈ C∞(I,W 1,2
0 (Ω)) denote the function, stated in Proposition 3.1, satisfying

(3.11)

∆w = divv =
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3
.
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Let θ = divv so that ∆w = divv = θ. By taking the divergence of both sides of the

Lame equation (3.10), we obtain

∂2(divv)

∂t2
= div ◦∂

2v

∂t2
=

(λ+ µ)

ρ
· div ◦∇(divv) +

µ

ρ
· (div ◦∆v)

and so
∂2θ

∂t2
=

(λ+ µ)

ρ
· div ◦∇θ +

µ

ρ
· (∆ ◦ divv) =

(λ+ µ)

ρ
·∆θ +

µ

ρ
·∆θ.

This means that θ = divv satisfies the wave equation

∂2θ

∂t2
=

(λ+ 2µ)

ρ
·∆θ.

Since ∆w = divv = θ, it follows that

∆

(
∂2w

∂t2
− λ+ 2µ

ρ
·∆w

)
=
∂2∆w

∂t2
− λ+ 2µ

ρ
·∆ ◦∆w =

∂2θ

∂t2
− λ+ 2µ

ρ
·∆θ = 0

and so the function

(3.17) h ≡ ∂2w

∂t2
− λ+ 2µ

ρ
·∆w =

∂2w

∂t2
− λ+ 2µ

ρ
· (divv)

is a C∞ family of space-harmonic functions depending on time t ∈ I.

Now we define a C∞ family H(t,x) of space-harmonic functions depending on time

t ∈ I as follows:

(3.18) H(t,x) ≡
∫ t

0

(∫ s

0
h(r,x) · dr

)
· ds.

Since h is a C∞ family of space-harmonic functions depending on time t ∈ I, it is clear

that

(3.19) ∆H = 0 and
∂2H(t,x)

∂t2
= h(t,x).

We define w̃(t,x) = w(t,x)−H(t,x). Then we obtain (3.12):

∆w̃ = ∆w −∆H = (divv)− 0 = divv.

It can be inferred from (3.19) and (3.17) that

∂2H

∂t2
− λ+ 2µ

ρ
·∆H = h− 0 = h ≡ ∂2w

∂t2
− λ+ 2µ

ρ
·∆w.

It can be inferred readily from this equality that (3.13)

∂2w̃

∂t2
− λ+ 2µ

ρ
·∆w̃ =

∂2(w −H)

∂t2
− λ+ 2µ

ρ
·∆(w −H) = 0
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is true.

When the boundary condition (3.9)

divv = 0 on I × (D0 ∪Dl)

is satisfied, it can be observed readily from the definition (3.17) of h(t,x) that

h =
∂2w

∂t2
− λ+ 2µ

ρ
· (divv) = 0 on D0 ∪Dl

for each t ∈ I. Thus it follows from the definition (3.18) of H(t,x) that

H = 0 and so w̃ = w −H = 0 on I × (D0 ∪Dl).

This proves (3.16).

Now we define

u(t,x) ≡ v(t,x)−∇w̃(t,x)

so that v = u +∇w̃. It is clear that (3.14) is true:

divu ≡ divv − div∇w̃ = divv −∆w̃ = 0.

Since v satisfies the Lame equation (3.10), we have

∂2(u +∇w̃)

∂t2
=
λ+ µ

ρ
· ∇(divu + div∇w̃) +

µ

ρ
·∆(u +∇w̃)

in which v = u +∇w̃. Since divu = 0, we have

∂2(u +∇w̃)

∂t2
=
λ+ µ

ρ
· ∇(0 + div∇w̃) +

µ

ρ
·∆(u +∇w̃)

=
λ+ µ

ρ
· ∇(∆w̃) +

µ

ρ
·∆(u +∇w̃) =

µ

ρ
·∆u +

λ+ 2µ

ρ
· ∇(∆w̃).

Since w̃ satisfies the wave equation (3.13), we infer from the above equality that

∂2u

∂t2
− µ

ρ
·∆u = 0.

This proves (3.15).

Remark 3.2. The earliest version of the decomposition, using “grad” and “curl”, of a

vector field on R3 is due to H. von Helmholtz. Helmholtz Decomposition for vector fields

on R3 was used by Maxwell in his theory of classical Electromagnetic Field. Helmholtz’s

work motivated the earlier development of Cohomology Theory and Hodge Theory.
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It should be noted that the condition (3.16) of Theorem 3.3 is crucial for our theory.

Usually the choice of boundary condition for PDE depends on the nature of the problem

considered.

Recently, an existence theorem for the Lame equation, with nonlinear input force sat-

isfying “null condition”, was proved by Sideris and Klainerman under strict assumptions

on the smallness of initial data. See [27,36]. The elasticity problem, considered by Klain-

erman and Sideris, is defined on R3 without specific boundary condition imposed.

Remark 3.3. In elasticity theory, there are “Saint-Venant compatibility conditions” re-

lated to the “overdeterminedness of stress distribution”. Recently, it is known that these

compatibility conditions are related to de Rham cohomology [1, 2, 13,14].

We will call deformations, mentioned in Theorem 3.3, of the form

∇w̃(t,x) with w̃ satisfying (3.12) and (3.13)

“∗-exact deformations”. We will call deformations, mentioned in Theorem 3.3, of the form

u(t,x) with divu = 0 (3.14) satisfying (3.15)

“∗-closed deformations”.

Our next goal is to characterize the “∗-exact deformations”. We start with the following

preliminary result.

Proposition 3.4. Let I be an open interval for the time variable t. Assume that f(t, x2, x3)

is a C∞ function defined on I ×D satisfying the following wave equation

(3.20)
∂2f

∂t2
− λ+ 2µ

ρ
·
(
−n2 · π2

l2
· f +

∂2f

∂x2
2

+
∂2f

∂x2
3

)
= 0

in which n is a positive integer. Then the function w̃(t,x) defined by

(3.21) w̃(t, x1, x2, x3) ≡ f(t, x2, x3) ·
√

2

l
· sin

(n · π · x1

l

)
is a solution of the wave equation (3.13)

∂2w̃

∂t2
− λ+ 2µ

ρ
·∆w̃ = 0

satisfying the boundary condition (3.16)

w̃ = 0 on I × (D0 ∪Dl).

Let v(t,x) = ∇w̃(t,x). Then the deformation v(t,x) = ∇w̃(t,x) is a solution of the

Lame equation (3.10) satisfying the boundary conditions (3.8) and (3.9) at time t ∈ I.
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Proof. It can be inferred readily from (3.20) that w̃(t, x1, x2, x3) satisfies the wave equa-

tion (3.13). Since

(3.22) sin

(
n · π · 0

l

)
= sin

(
n · π · l

l

)
,

it is clear that w̃(t, x1, x2, x3) satisfies the boundary condition (3.16). Since

divv = ∆w̃ =

(
−n2 · π2

l2
· f +

∂2f

∂x2
2

+
∂2f

∂x2
3

)
· sin

(n · π · x1

l

)
,

it is clear that the boundary condition (3.9) is satisfied by v(t,x) = ∇w̃(t,x) because of

(3.22).

Now we consider the boundary condition (3.8). Since the boundary condition (3.9) is

satisfied, it follows from (3.6) and (3.7) that

〈(δS)(ej), ek〉 = λ · (divv) · δjk + 2µ · εjk

= 0 + µ ·
(
∂vk
∂xj

+
∂vj
∂xk

)
= 2µ · ∂2w̃

∂xj∂xk

on I × (D0 ∪Dl). Since n0 = ∓e1 on D0 ∪Dl, we have

〈(δS)(n0),n0〉 = 2µ · ∂2w̃

∂x1∂x1
= 0

because of (3.22).

Since the wave equation (3.13) and the pair of boundary conditions (3.8) and (3.9) are

all linear, it is clear that any convergent linear combination of functions of the form (3.21)

will give rise to a solution of the wave equation (3.13) satisfying the pair of boundary

conditions (3.8) and (3.9). Our next main theorem shows that these are exactly the only

solutions for the wave equation (3.13) satisfying the pair of boundary conditions (3.8) and

(3.9).

Theorem 3.5 (characterization of ∗-exact deformations). Let I be an open interval for

the time variable t. Assume that w̃(t,x) is a C∞ solution of the wave equation (3.13)

∂2w̃

∂t2
− λ+ 2µ

ρ
·∆w̃ = 0

on I × Ω satisfying the boundary condition (3.16)

w̃ = 0 on I × (D0 ∪Dl)

mentioned in Theorem 3.3. Assume that the boundary condition (3.9)

div∇w̃ = 0 on D0 ∪Dl
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and the boundary condition (3.8)

〈(δS)(n0),n0〉 = 0 on D0 ∪Dl

are satisfied by the deformation ∇w̃(t,x) at any time t ∈ I. Then the function w̃(t,x) can

be expressed as

(3.23) w̃(t,x) =
∞∑
n=1

Γn(t, x2, x3) ·
√

2

l
· sin

(n · π · x1

l

)
in which the function

Γn(t, x2, x3) =

∫ l

0
w̃(t, s, x2, x3) ·

√
2

l
· sin

(n · π · s
l

)
· ds

satisfies the wave equation (3.20)

∂2Γn
∂t2

− λ+ 2µ

ρ
·
(
−n2 · π2

l2
· Γn +

∂2Γn
∂x2

2

+
∂2Γn
∂x2

3

)
= 0.

Proof. Since div∇w̃ = 0 on D0 ∪Dl, it follows from (3.6) and (3.7) that

〈(δS)(ej), ek〉 = λ · (divv) · δjk + 2µ · εjk = 0 + 2µ · ∂2w̃

∂xj∂xk

on D0∪Dl at any time t ∈ I. Since n0 = ∓e1 on D0∪Dl, the condition 〈(δS)(n0),n0〉 = 0

on D0 ∪Dl can be expressed as

0 = 〈(δS)(n0),n0〉 = 2µ · ∂
2w̃

∂x2
1

= 0 on D0 ∪Dl.

Thus we have
∂2w̃

∂x2
1

(t, 0, x2, x3) = 0 =
∂2w̃

∂x2
1

(t, l, x2, x3)

at any time t ∈ I. It follows from the spectral theory that we have

(3.24)
∂2w̃

∂x2
1

(t,x) =

∞∑
n=1

γn(t, x2, x3) ·
√

2

l
· sin

(n · π · x1

l

)
in which

γn(t, x2, x3) =

∫ l

0

∂2w̃

∂x2
1

(t, s, x2, x3) ·
√

2

l
· sin

(n · π · s
l

)
· ds

is the L2 projection of ∂2w̃
∂x21

on the eigenfunction√
2

l
· sin

(n · π · s
l

)
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for the Dirichlet problem of one-dimensional Laplace operator on [0, l]. It should be noted

that the convergence of the Fourier series (3.24) is uniform. See Corollary 10.4 of [35].

Since w̃ = 0 on D0 ∪Dl at any time t ∈ I, we have

w̃(t,x) =
∞∑
n=1

Γn(t, x2, x3) ·
√

2

l
· sin

(n · π · x1

l

)
in which

Γn(t, x2, x3) =

∫ l

0
w̃(t, s, x2, x3) ·

√
2

l
· sin

(n · π · s
l

)
· ds.

Note, by using integration by parts twice, that

(3.25) γn = −n
2π2

l2
·
∫ l

0
w̃(t, s, x2, x3) ·

√
2

l
· sin

(nπ · s
l

)
· ds = −n

2π2

l2
· Γn.

Since w̃ = 0 on D0 ∪Dl at any time t ∈ I, we have

∂2w̃

∂x2
2

=
∂2w̃

∂x2
3

= 0 =
∂2w̃

∂t2
on D0 ∪Dl

at any time t ∈ I. Thus we have

∂2w̃

∂x2
2

(t,x) =
∞∑
n=1

√
2

l
sin
(nπx1

l

)
·
∫ l

0

∂2w̃

∂x2
2

(t, s, x2, x3) ·
√

2

l
sin
(nπs

l

)
· ds

=

∞∑
n=1

√
2

l
· sin

(n · π · x1

l

)
· ∂

2Γn
∂x2

2

(t, x2, x3)

(3.26)

and

∂2w̃

∂x2
3

(t,x) =
∞∑
n=1

√
2

l
sin
(nπx1

l

)
·
∫ l

0

∂2w̃

∂x2
3

(t, s, x2, x3) ·
√

2

l
sin
(nπs

l

)
· ds

=
∞∑
n=1

√
2

l
· sin

(n · π · x1

l

)
· ∂

2Γn
∂x2

3

(t, x2, x3).

(3.27)

Similarly we have

∂2w̃

∂t2
(t,x) =

∞∑
n=1

√
2

l
sin
(nπx1

l

)
·
∫ l

0

∂2w̃

∂t2
(t, s, x2, x3) ·

√
2

l
sin
(nπs

l

)
· ds

=
∞∑
n=1

√
2

l
· sin

(n · π · x1

l

)
· ∂

2Γn
∂t2

(t, x2, x3).

(3.28)

It can be inferred readily from (3.25), (3.26), (3.27) and (3.28) that the wave equa-

tion (3.13) can be expressed as

0 =
∂2w̃

∂t2
− λ+ 2µ

ρ
·∆w̃

=
∞∑
n=1

√
2

l
sin
(nπx1

l

)
·
[
∂2Γn
∂t2

− λ+ 2µ

ρ

(
−n2π2Γn

l2
+
∂2Γn
∂x2

2

+
∂2Γn
∂x2

3

)]
.
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In particular, the function Γn(t, x2, x3) must satisfy the wave equation (3.20)

∂2Γn
∂t2

− λ+ 2µ

ρ
·
(
−n2 · π2 · Γn

l2
+
∂2Γn
∂x2

2

+
∂2Γn
∂x2

3

)
= 0.

Remark 3.4. Theorem 3.5 shows us that the solutions of Class I may be classified by the

“shear index” n. We say that a solution of Class I has shear index n if and only if this

solution can be expressed as

Γn(t, x2, x3) ·
√

2

l
· sin

(n · π · x1

l

)
with the function Γn(t, x2, x3) satisfying the wave equation (3.20).

Now we discuss “∗-closed deformations”. Unlike “∗-exact deformations”, simple and

useful characterization of “∗-closed deformations” does not seem possible. In fact, a coho-

mological characterization of “∗-closed deformations” is possible but unlikely to be useful,

because we are most concerned about the “vibration frequencies” of such deformations.

Our next few propositions will be useful to help us to understand that “∗-closed deforma-

tions” have diverse vibration frequencies.

Proposition 3.6. Let I be an open interval for the time variable t. Assume that u(t,x) =

(u1(t,x), u2(t,x), u3(t,x)) is a C∞ vector-valued function defined on I × Ω with (3.14)

divu = 0

satisfying the wave equation (3.15)

∂2u

∂t2
− µ

ρ
·∆u = 0.

Then the boundary condition (3.8)

〈(δS)(n0),n0〉 = 0 on D0 ∪Dl

for the deformation u(t,x) is satisfied if and only if

(3.29)
∂u1

∂x1
(t, 0, x2, x3) = 0 =

∂u1

∂x1
(t, l, x2, x3).

When the boundary condition (3.8) is satisfied by u(t,x), the function u1(t,x) can be

expressed as a uniformly convergent series

(3.30) u1(t, x1, x2, x3) = c̃0(t, x2, x3) +
∞∑
n=1

c̃n(t, x2, x3) · cos
(n · π · x1

l

)
.
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Proof. Since divu = 0, it follows from (3.6) and (3.7) that

〈(δS)(ej), ek〉 = λ · (divu) · δjk + 2µ · εjk = 0 + µ ·
(
∂uk
∂xj

+
∂uj
∂xk

)
on D0 ∪Dl at any time t ∈ I. Since n0 = ∓e1 on D0 ∪Dl, the boundary condition (3.8)

〈(δS)(n0),n0〉 = 0 on D0 ∪Dl can be expressed as

0 = 〈(δS)(n0),n0〉 = 2µ · ∂u1

∂x1
on D0 ∪Dl

at any time t ∈ I. Thus the boundary condition (3.8) for the deformation u(t,x) is

satisfied if and only if (3.29)

∂u1

∂x1
(t, 0, x2, x3) = 0 =

∂u1

∂x1
(t, l, x2, x3)

is true. When the boundary condition (3.8) for u(t,x) is satisfied, it follows from the

spectral theory that we have

(3.31)
∂u1

∂x1
(t,x) =

∞∑
n=1

cn(t, x2, x3) ·
√

2

l
· sin

(n · π · x1

l

)
in which

cn(t, x2, x3) =

∫ l

0

∂u1

∂x1
(t, s, x2, x3) ·

√
2

l
· sin

(n · π · s
l

)
· ds.

Note that the Hölder continuity of ∂u1
∂x1

(t,x) in the variable x1 suffices to ensure that

the series (3.31) converges uniformly. See Corollary 10.4 of [35]. Thus we have

u1(t, x1, x2, x3) = u1(t, 0, x2, x3) +

∫ x1

0

∂u1

∂x1
(t, s, x2, x3) · ds

= u1(t, 0, x2, x3) +

∞∑
n=1

cn(t, x2, x3) ·
√

2

l
·
∫ x1

0
sin
(n · π · s

l

)
· ds

= c̃0(t, x2, x3) +

∞∑
n=1

c̃n(t, x2, x3) · cos
(n · π · x1

l

)
in which

c̃0(t, x2, x3) = u1(t, 0, x2, x3) +

∞∑
n=1

cn(t, x2, x3) ·
√

2

l
· l

n · π

and

c̃n(t, x2, x3) = −
√

2

l
· l

n · π
· cn(t, x2, x3)

for each positive integer n. This completes the proof of (3.30).
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Remark 3.5. In Theorem 3.5, we know that the functions Γn(t, x2, x3) must satisfy specific

wave equations. Unlike Theorem 3.5, Proposition 3.6 does not tell us what the functions

c̃n(t, x2, x3) should be.

Our next two propositions will show us how elementary “∗-closed deformations” can be

constructed. These elementary “∗-closed deformations”, constructed in Propositions 3.7

and 3.8, may help us understand the vibration frequencies of rubber wiper blade on convex

windshield.

Proposition 3.7. Let I be an open interval for the time variable t. Assume that f(t, x2, x3)

is a C∞ function defined on I ×D satisfying the following wave equation

∂2f

∂t2
− µ

ρ
·
(
−n2 · π2

l2
· f +

∂2f

∂x2
2

+
∂2f

∂x2
3

)
= 0

in which n is a positive integer. Let u(t,x) = (u1(t,x), u2(t,x), u3(t,x)) denote the C∞

vector-valued function defined on I × Ω as follows:

u1(t,x) =
l

n · π
· cos

(n · π · x1

l

)
·
(
∂2f

∂x2
2

+
∂2f

∂x2
3

)
with

u2(t,x) = sin
(n · π · x1

l

)
· ∂f
∂x2

and u3(t,x) = sin
(n · π · x1

l

)
· ∂f
∂x3

.

Then this deformation u(t,x) satisfies (3.14)

divu = 0

and the wave equation (3.15)
∂2u

∂t2
− µ

ρ
·∆u = 0.

Moreover, it satisfies the boundary condition (3.8)

〈(δS)(n0),n0〉 = 0 on D0 ∪Dl

because
∂u1

∂x1
(t, 0, x2, x3) = 0 =

∂u1

∂x1
(t, l, x2, x3).

Proof. This proposition can be checked directly.

Proposition 3.8. Let I be an open interval for the time variable t. Assume that g(t,x)

is a C∞ function on I × Ω satisfying the wave equation

∂2g

∂t2
− µ

ρ
·∆g = 0.
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Then the deformation u(t,x) = (u1(t,x), u2(t,x), u3(t,x)) defined by

u(t,x) =

(
0,− ∂g

∂x3
(t,x),

∂g

∂x2
(t,x)

)
satisfies (3.14)

divu = 0

and the wave equation (3.15)

∂2u

∂t2
− µ

ρ
·∆u = 0.

Moreover, it satisfies the boundary condition (3.8)

〈(δS)(n0),n0〉 = 0 on D0 ∪Dl

because u1(t,x) = 0.

Proof. This proposition can be checked directly.

4. Physical explanation

The pressure on the rubber wiper blade comes from the Wiper-Arm. This force only

acts on some sites of the rubber wiper blade. To reduce the “wind resistance” on the

windshield of a moving vehicle, the shape of windshield is generally strictly convex [7].

Since the windshield is strictly convex with (usually small) positive sectional curvature,

the ends of rubber wiper blade usually do not touch the convex windshield. See Figure 4.1.

Figure 4.1: Rubber wiper blade on strictly convex windshield.

Thus we may deduce from the Saint-Venant principle, mentioned in Section 2, that

“the infinitesimal variation of volume”, associated with the infinitesimal deformation v,

around the ends of rubber wiper blade is zero (3.9):

divv = 0 on D0 ∪Dl.
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More explanation on the mechanics of rubber wiper blade on convex windshield can be

found in [11].

Now we explain why Theorem 3.5 (characterization of ∗-exact deformations) leads to

the prediction that most of the vibration frequencies of Class I (∗-exact deformations)

should locate around (1.1): √
λ+ 2µ

ρ
· n

2l
Hz (Class I)

where n is a positive integer. Theorem 3.5 tells us that each general solution w̃(t,x) of

Class I can be expressed as (3.23):

w̃(t,x) =
∞∑
n=1

Γn(t, x2, x3) ·
√

2

l
· sin

(n · π · x1

l

)
in which the function Γn(t, x2, x3) satisfies the wave equation (3.20)

∂2Γn
∂t2

− λ+ 2µ

ρ
·
(
−n2 · π2

l2
· Γn +

∂2Γn
∂x2

2

+
∂2Γn
∂x2

3

)
= 0.

When a rubber wiper blade moves on the windshield of an automobile, the kinetic fric-

tional force, acting on the lower part of rubber wiper blade, causes the rubber wiper blade

to vibrate. From the physical point of view, it is reasonable to consider eigenfunctions

Γn(t, x2, x3) = ei·k·t · γn(x2, x3) satisfying

(4.1)
∂2Γn
∂x2

2

+
∂2Γn
∂x2

3

= −εn · Γn or
∂2γn
∂x2

2

+
∂2γn
∂x2

3

= −εn · γn.

Substituting (4.1) into the wave equation (3.20), we infer that

−k2 − λ+ 2µ

ρ
·
[
−n2 · π2

l2
− εn

]
= 0 or k = ±

√
λ+ 2µ

ρ
·
√
n2 · π2

l2
+ εn.

Usually εn lies in a limited range. Generating Γn(t, x2, x3) = ei·k·t · γn(x2, x3) with

large εn requires high energy. Thus we expect, by assuming εn relatively small, that the

vibration frequencies of Class I (∗-exact deformations) should locate around (1.1):

|k|
2π
≈

√
λ+ 2µ

ρ
· n

2l
Hz (Class I)

where n is a positive integer.

Similarly we may deduce from Proposition 3.7 that some vibration frequencies of

Class II (∗-closed deformations) should appear around (1.2):√
µ

ρ
· n

2l
Hz (Class II).



Geometric Analysis of the Vibration of Rubber Wiper Blade 513

On the other hand, we may infer from Proposition 3.8 that some other vibration frequencies

of Class II (∗-closed deformations) may appear at√
µ

ρ
·
√
ε

2π
Hz (Class II)

randomly.
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