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The Holomorphic Equivalence of Two Equidimensional Hartogs Domains

over Bounded Symmetric Domains

Ting Guo and Huan Yang*

Abstract. This paper is concerned with the biholomorphism of two equidimensional

Hartogs type domains over irreducible bounded symmetric domains HΩ(p) (see (1.1))

which is a Hua construction of Cartan–Hartogs domain. We develop a new simple

methods to give an sufficient and necessary condition for the two Hua domains to be

biholomorphic equivalent by using the function LΩ(z, ω) (see (1.2)). Furthermore as

an application, we can also give an equivalent description for the automorphism of

Hua domain.

1. Introduction

Let D1 and D2 be two domains in Cn. A holomorphic mapping F : D1 → D2 is said to

biholomorphic if it is a one-to-one mapping and its inverse mapping F−1 : D1 → D2 is

also holomorphic. We say that two domains D1 and D2 are holomorphic equivalent if

there exists a biholomorphic mapping between D1 and D2. In particular, when D1 = D2

this problem reduces to determine the automorphism group for a domain, which is an

important research branch of complex analysis and has attracted a lot of attention. The

study of holomorphic equivalence problem for domains in Cn is a classical problem in

several complex variables and complex geometry, and the methods are relative limited.

Moreover it also plays a great role in the study of the existence of Kähler Einstein metrics,

proper holomorphic mapping, the existence of balanced metrics and so on (e.g., [3–6,14]).

So it is interesting and of great importance to determine some holomorphic invariants

for domains or more precisely to establish a kind of rigidity results about biholomorphic

mappings between domains in Cn.

What is encouraging is that substantial progress has been made in this field with

the joint efforts of many experts. In 1968, Naruki [15] gave the sufficient and necessary

condition for two equidimensional complex ellipsoids to be holomorphic equivalent. Fol-

lowing by this, Kodama [12] (see also [7, 13]) studied complex ellipsoid and determined
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the explicit form of its automorphism group. There are other beautiful works about bi-

holomorphic mapping and automorphism group on some kind of Hartogs domains, please

refer to Ahn–Byun–Park [1] and the references therein for details.

In this paper, we will focus our attention on a well-known Hartogs domain called Hua

domain. For an irreducible bounded symmetric domain Ω ⊂ Cn in its Harish–Chandra

realization, the Hua domain HΩ(p) is defined by

HΩ(p) :=

(z, ω(1), . . . , ω(m)) ∈ Ω× Cn1 × · · · × Cnm :
m∑
j=1

‖ω(j)‖2pj < NΩ(z, z)

 ,

where p = (p1, p2, . . . , pm) ∈ Rm+ and NΩ(z, z) is a generic norm of Ω defined by

NΩ(z, ξ) := (V (Ω)K(z, ξ))−1/γ ,

where V (Ω) is the total volume of Ω with respect to the Euclidean measure of Cn, K(z, ξ)

is its Bergman kernel with respect to the Euclidean measure on Cn, and γ is the genus

for the irreducible bounded symmetric domain Ω. In general, one can check that the Hua

domain is a nonhomogeneous bounded pesudoconvex domain without smooth boundary.

In particular, when p1 = · · · = pm = 1, the Hua domain HΩ(p) degenerates into

Cartan–Hartogs domain. There are also many deep results on this domain. For studies of

Cartan–Hartogs domain, the reader is referred to [1, 2, 5, 9] and references therein.

Recently, Tu and Wang [16] studied the rigidity of proper holomorphic mappings be-

tween two equidimensional Hua domains and determined the explicit form for the biholo-

morphisms between two equidimensional Hua domains without checking Ω case by case.

Their results are very impressive. Besides, Guo, Feng and Bi [11] also studied a rigidity

of automorphism of Fock–Bargmann–Hartogs domains. Inspired by this, we will give an

equivalent description of biholomorphic mapping of two equidimensional Hua domains.

We should note that if a holomorphic mapping keeping (1.2) invariant between two

equidimensional Hua domains can be continuously extended to the boundary, it auto-

matically becomes a proper holomorphic mapping between this two equidimensional Hua

domains. Therefore by Tu and Wang’s result (see [16, Theorem 1.3]), it is biholomorphic,

provided that min{n1+δ, . . . , nm, n1+· · ·+nm} ≥ 2. However, it is still an open problem for

the case where all the fibre’s dimension equals one, namely the case for n1 = · · · = nm = 1.

Hence, in this paper we will give an equivalent conditions for a holomorphic mapping

between two equidimensional Hua domains with one dimension fibre to be biholomorphic.

More precisely, we mainly focus our attention on a specialized Hua domain where we

denote by HΩ(p), which is defined by

(1.1) HΩ(p) =

(z, ω) ∈ Ω× Cm ⊂ Cn × Cm :
m∑
j=1

|ωj |2p < NΩ(z, z)

 ,
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where Ω is an irreducible bounded symmetric domain in Cn in its Harish–Chandra real-

ization. Throughout this paper we can always assume that the domain HΩ(p) is written

in its standard form (this was named by Tu–Wang [16]), that is, when Ω is the unit ball in

Cn, then p 6= 1 or rank(Ω) ≥ 2. It is not hard to see that every Hua domain can be written

in its standard form by relabelling the coordinates. Furthermore, here and henceforth we

will use the following function defined on HΩ(p), namely

(1.2) LΩ(z, ω) = NΩ(z, z)−1
m∑
j=1

|ωj |2p.

Then our main result can be stated as follows.

Theorem 1.1. Let HΩ1(p) and HΩ2(q) be two equidimensional Hua domains in their

standard form, where Ω1 and Ω2 are two equidimensional irreducible bounded symmetric

domains in the Harish–Chandra realization. Assume that F is a holomorphic mapping

between HΩ1(p) and HΩ2(q). Then HΩ1(p) and HΩ2(q) are holomorphic equivalent if and

only if F satisfies the following property

LΩ2(F (z, ω)) = LΩ1(z, ω).

Combining with Theorem 1.1 in [16], we can easily get the main result in Feng [10].

Here we remark that our method is more simple than Feng’s method.

Corollary 1.2. Let HΩ1(p) and HΩ2(q) be two equidimensional Hua domains in their

standard form, where Ω1 and Ω2 are two equidimensional irreducible bounded symmetric

domains. Assume that F (z, ω) is a holomorphic mapping between HΩ1(p) and HΩ2(q). If

LΩ2(F (z, ω)) = LΩ1(z, ω),

then we get p = q and there exists a G ∈ Γ(H(q)), where Γ(H(q)) consists of all the

following mapping Φ:

Φ(z, ω) =

(
ϕ(z), eiθ1ω1

(NΩ2(z0, z0))1/(2q)

(NΩ2(z, z0))1/q
, . . . , eiθmωm

(NΩ2(z0, z0))1/(2q)

(NΩ2(z, z0))1/q

)
,

in which ϕ(z) ∈ Aut(Ω2) and z0 = ϕ−1(0) such that

G ◦ F (z, ω) = (zA, ω)

with A being a complex linear isomorphism of Cn and A(Ω1) = Ω2.

Furthermore, by our result, it is also easy to obtain the rigidity for the automorphism

of Hua domains.
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Corollary 1.3. Let HΩ(p) be the Hua domain in its standard form, and F (z, ω) is holo-

morphic self-mapping of HΩ(p). Then F (z, ω) is an automorphism of HΩ(p) if and only

if F (z, ω) keeps the function LΩ(z, ω) invariant, that is, LΩ(F (z, ω)) = LΩ(z, ω).

In particular, when p = 1 this is exactly an description for the automorphism of

Cartan–Hartogs domains. This case can also illustrate that writing Hua domains in its

standard form is essential.

This paper is organized as follows. In Section 2, we first recall some basic notations

and facts on bounded symmetric domains, and establish a revised Cartan Theorem on a

similar Hua domain. In Section 3, we prove that the Jacobian matrix of F (z, ω) at the

origin is non-degenerate. Then by using Cartan Theorem, we give the proof of our main

results.

2. Preliminaries

At the beginning, let us briefly recall some basic facts on irreducible bounded symmetric

domain and its generic norm.

Let Ω be an irreducible bounded symmetric domain in Cn with rank r in its Harish–

Chandra realization. Then there exists the Jordan triple product on Cn associated with the

Bergman kernel of Ω and the space Cn endowed with triple product is a simple Hermitian

positive Jordan triple system. Let e1, e2, . . . , er ∈ Cn be a frame for Cn. Then each z ∈ Cn

has the spectral decomposition

z = k(z) · (λ1(z)e1 + λ2(z)e2 + · · ·+ λr(z)er),

where k(z) ∈ K, λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0, and K is the connected component of the

identity in the Lie group of the (complex linear) automorphisms of Ω leaving the origin

fixed. It is well-known that irreducible bounded symmetric domain can be regarded as

the unit ball of the spectral norm, that is,

Ω = {z ∈ Cn : ‖|z|‖ < 1},

where ‖| · |‖ denotes the spectral norm of z (see [8]).

Then generic norm NΩ(z, z) can be expressed by

NΩ(z1, z2) = m(1, z1, z2),

where m(t, z1, z2) is the generic minimal polynomial of Cn (refer to [8]). It follows that

(2.1) NΩ(z, z) =

r∏
j=1

(
1− λ2

j (z)
)
.
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By using logarithmic expansion, (2.1) implies

(2.2) lnNΩ(z, z) = −
∞∑
k=1

1

k

r∑
j=1

λ2k
j (z), z ∈ Ω.

One can prove that (cf. [8])

r∑
j=1

λ2k
j (z) =

∑
|α|=|β|=k

fαβz
αzβ,

where α = (α1, α2, . . . , αn), αi ∈ N, 1 ≤ i ≤ n, |α| =
∑n

i=1 αi and zα =
∏n
i=1 z

αi
i .

Let z = k · (λ1(z)e1 + λ2(z)e2 + · · ·+ λr(z)er) be the spectral decomposition of z. For

given t ≥ 0, the spectral decomposition of tz is tz = k ·(tλ1(z)e1+tλ2(z)e2+· · ·+tλr(z)er).
By (2.1), we have

NΩ(tz, tz) =
r∏
j=1

(
1− t2λ2

j (z)
)

= 1− t2
r∑
j=1

λ2
j (z) + · · · .

Moreover, one can see that (also see [8])

(2.3)
r∑
j=1

λ2
j (z) = zCΩz

t,

where CΩ is a positive definite Hermite matrix. For the proofs of above facts and details,

please refer, e.g., to [8].

In the following, we give some properties of the generic norm of bounded symmetric

domain.

Lemma 2.1. [16, Proposition 2.1] Let Ω be an irreducible bounded symmetric domain in

Cn and let NΩ(z, z) be the generic norm of Ω. Then we have the results as follows:

(1) For any z0 ∈ Ω, NΩ(tz0, tz0) (0 ≤ t ≤ 1) is a decreasing function of t.

(2) We have

NΩ(z, 0) = 1 and 0 ≤ NΩ(z, z) ≤ 1, z ∈ Ω

and NΩ(z, z) = 1 if and only if z = 0.

Lemma 2.2 (Cartan theorem). Let D1 and D2 be two bounded circular domains in Cn

with 0 ∈ Di (i = 1, 2). Suppose that F : D1 → D2 is a biholomorphic mapping and

F (0) = 0. Then F is a linear transformation.

By Cartan theorem, we can easily get the following result.

Theorem 2.3. Let F : N−1
Ω1

(z, z)
∑m

j=1 |ωj |2p < ε → N−1
Ω2

(z, z)
∑m

j=1 |ωj |2q < ε′ be a

biholomorphic mapping where ε and ε′ are small enough numbers. If F (0) = 0, then F is

a linear transformation.
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3. Proof of the main theorem

Proof of Theorem 1.1. First, we know by [16] that F (z, ω) can be expressed by

F (z, ω) = Φ ◦ (zA, ωσ(1), . . . , ωσ(m))

where

Φ(z, ω) =

(
ϕ(z), eiθ1ω1

(NΩ2(z0, z0))1/(2q)

(NΩ2(z, z0))1/q
, . . . , eiθmωm

(NΩ2(z0, z0))1/(2q)

(NΩ2(z, z0))1/q

)
,

ϕ(z) ∈ Aut(Ω2), z0 = ϕ−1(0) and p = q. Since A is a biholomorphic complex linear

isomorphism of Cn with A(Ω1) = Ω2, it is easy to check that LΩ2(T (z, ω)) = LΩ1(z, ω),

where T (z, ω) denotes the biholomorphic mapping

T (z, ω) : HΩ1(p)→ HΩ2(q), (z, ω) 7→ (zA, ωσ(1), . . . , ωσ(m)).

Next we will prove that LΩ2 ◦ Φ(z, ω) = LΩ2(z, ω).

Using the following equality

NΩ2(ϕ(z), ϕ(z))NΩ2(ϕ(t), ϕ(t))

NΩ2(ϕ(z), ϕ(t))
=
NΩ2(z, z)NΩ2(t, t)

|NΩ2(z, t)|2

and let t = z0, where z0 = ϕ−1(0), we can get

NΩ2(ϕ(z), ϕ(z))NΩ2(0, 0)

NΩ2(ϕ(z), 0)
=
NΩ2(z, z)NΩ2(z0, z0)

|NΩ2(z, z0)|2
,

which means

NΩ2(ϕ(z), ϕ(z)) =
NΩ2(z, z)NΩ2(z0, z0)

|NΩ2(z, z0)|2
.

It follows that

LΩ2 ◦ Φ(z, ω) =

∑m
j=1 |eiθjωj

NΩ2
(z0,z0)1/(2q)

NΩ2
(z,z0)1/q |2q

NΩ2(ϕ(z), ϕ(z))
=

∑m
j=1 |ωj |2q

NΩ2
(z0,z0)

|NΩ2
(z,z0)|2

NΩ2
(z,z)NΩ2

(z0,z0)

|NΩ2
(z,z0)|2

=

∑m
j=1 |ωj |2q

NΩ2(z, z)
= LΩ2(z, ω).

Thus Φ(z, ω) keeps LΩ2(z, ω) invariant. In summary, we can learn that LΩ2 ◦ F (z, ω) =

LΩ1(z, ω).

In the following, we will prove that the converse also holds, which will be divided into

three steps.

Step 1. Let F (z, ω) = (F1(z, ω), F2(z, ω)) = (F11(z, ω), . . . , F1n(z, ω), F21(z, ω), . . . ,

F2m(z, ω)). By the fact that LΩ2(F (z, 0)) = LΩ1(z, 0), we obtain∑m
j=1 |F2j(z, 0)|2q

NΩ2(F1(z, 0), F1(z, 0))
= 0.
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Thus
m∑
j=1

|F2j(z, 0)|2q = 0.

Then we can see that F2(z, 0) = 0. It follows F (0, 0) = (u, 0) ∈ Ω2 × {0}. Consider a

biholomorphic self-mapping G of HΩ2(q) which is defined by

G(z, ω) =

(
χ(z), ω

NΩ2(u, u)1/(2q)

NΩ2(z, u)1/q

)
,

where χ(z) ∈ Aut(Ω2) with χ(0) = u. Then G(z, ω) maps (0, 0) to (u, 0). We notice that

G(z, ω) keeps the function LΩ2 onHΩ2(q) invariant. LetH = G−1◦F , thenH(0, 0) = (0, 0)

and LΩ2 ◦H = LΩ1 . Hence we have

H(z, ω) = (H1(z, ω), H2(z, ω)) = (z, w)T + higher order terms,

where

T =

A B

V U

 .

Since H2(z, 0) = 0, we have B = 0. Now assume that H(0, ω) = (h1(ω), h2(ω)), in which

h1(ω) = ωV +
∑
i≥2

fi(ω), h2(ω) = ωU +
∑
i≥2

gi(ω),

where fi(ω) and gi(ω) are homogeneous polynomials of degree i (i ≥ 2). For any (0, ω) ∈
HΩ1(p), we obtain

m∑
j=1

|ωj |2p < 1.

For any t ∈ [0, 1], we can see (0, tω) ∈ HΩ1(p). By LΩ2 ◦H(0, tω) = LΩ1(0, tω), we have

(3.1)

∑m
j=1 |(h2(tω))j |2q

NΩ2(h1(tω), h1(tω))
=

m∑
j=1

|tωj |2p.

Substituting h1(tω) and h2(tω) into (3.1), we obtain∑m
j=1

∣∣(tωU +
∑

i≥2 gi(tω)
)
j

∣∣2q∑m
j=1 |tωj |2p

= NΩ2

tωV +
∑
i≥2

fi(tω), tωV +
∑
i≥2

fi(tω)

 .

This leads to

t2q
∑m

j=1

∣∣(ωU +
∑

i≥2 t
i−1gi(ω)

)
j

∣∣2q
t2p
∑m

j=1 |ωj |2p
= NΩ2

tωV +
∑
i≥2

fi(tω), tωV +
∑
i≥2

fi(tω)

 .
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Taking t → 0+, we get q = p. Otherwise, the limit on the left-hand side of this equation

doesn’t exist or is 0. Hence we will write q as p in the following proof.

Then we obtain
m∑
j=1

|(ωU)j |2p =
m∑
j=1

|ωj |2p.

It follows that ω → ωU is a biholomorphic self-maps of complex ellipsoid
{
ω ∈ Cm :∑m

j=1 |ω|2p < 1
}

. Thus the mapping L(z, w) defined by

L(z, ω) = (z, ωU), (z, ω) ∈ Cn × Cm

induces a holomorphic automorphism of HΩ2(q). Thus by [16], we can see that

ωU = (ωσ(1), . . . , ωσ(m))


eiθ1

. . .

eiθm

 ,

where σ denotes a permutation of {1, . . . ,m}. Therefore, taking the composite mapping

H ◦ L−1 if necessary, we can assume that

h2(ω) = ω +
∑
i≥2

gi(ω).

Moreover, applying the Cartan Lemma to h2(ω), we must have h2(ω) = ω, namely U =

Im×m. Hence we have H(0, ω) = (h1(ω), ω). Since L2 ◦H(0, ω) = L1(0, ω), it follows that∑m
j=1 |ωj |2p

NΩ2(h1(ω), h1(ω))
=

m∑
j=1

|ωj |2p.

It yields that NΩ2(h1(ω), h1(ω)) = 1 which implies h1(ω) = 0 by Lemma 2.1, and V = 0.

Therefore we have

(3.2) H1(z, ω) = zA+
∑
i≥2

Pi(z, ω), H2(z, ω) = ω +
∑
i≥2

Qi(z, ω)

where Pj and Qj are homogeneous polynomials of degree j.

Step 2. In this step, we will show that the matrix A is an invertible matrix. Let

(z, ω) ∈ HΩ1(p). It is not hard to see that

(tz, tω) ∈ HΩ1(p), ∀ t ∈ [0, 1]

by Lemma 2.1. By LΩ2 ◦H(tz, tω) = LΩ2(tz, tω), we get

(3.3)

∑m
j=1 |(H2(tz, tω))j |2p∑m

j=1 |tωj |2p
=
NΩ2(H1(tz, tω), H1(tz, tω))

NΩ1(tz, tz)
.
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Substituting H1(tz, tω) and H2(tz, tω) into (3.3), we obtain∑m
j=1

∣∣(tω +
∑

i≥2Qi(tz, tω)
)
j

∣∣2p∑m
j=1 |tωj |2p

=
NΩ2

(
tzA+

∑
i≥2 Pi(tz, tω), tzA+

∑
i≥2 Pi(tz, tω)

)
NΩ1(tz, tz)

.

Therefore we get ∑m
j=1

∣∣ωj +
(∑

i≥2 t
i−1Qi(z, ω)

)
j

∣∣2p∑m
j=1 |ωj |2p

=
NΩ2

(
tzA+

∑
i≥2 Pi(tz, tω), tzA+

∑
i≥2 Pi(tz, tω)

)
NΩ1(tz, tz)

.

(3.4)

For the sake of simplicity, we write Rj(t, z, ω) =
(∑

i≥2 t
i−1Qi(z, ω)

)
j

(1 ≤ j ≤ m). A

straightforward computation yields that (ωj 6= 0, 1 ≤ j ≤ m)

(3.5)

∑m
j=1 |ωj +Rj(t, z, ω)|2p∑m

j=1 |ωj |2p
= 1 +

∑m
j=1 |ωj |2p

(
puj + p(p−1)

2 u2
j + o(t2)

)∑m
j=1 |ωj |2p

,

where uj = Tj(t, z, ω)/|ωj |2 and Tj(t, z, ω) is defined by

Tj(t, z, ω) := 2 Re(ωjRj(t, z, ω)) + |Rj(t, z, ω)|2

= t(2 Re(ωjQ2,j(z, ω))) + t2(2 Re(ωjQ3,j(z, ω)) + |Q2,j(z, ω)|2).

Combining (3.4) and (3.5), we can learn that

ln

(
1 +

∑m
j=1 |ωj |2p

(
puj + p(p−1)

2 u2
j + o(t2)

)∑m
j=1 |ωj |2p

)

= ln

(
NΩ2

(
tzA+

∑
i≥2 Pi(tz, tω), tzA+

∑
i≥2 Pi(tz, tω)

)
NΩ1(tz, tz)

)
.

(3.6)

By (2.2), we have

lnNΩ2

tzA+
∑
i≥2

Pi(tz, tω), tzA+
∑
i≥2

Pi(tz, tω)


= −t2

r2∑
l=1

Λ2
l

zA+
∑
i≥2

ti−1Pi(z, ω)

+ o(t2),

(3.7)

and

(3.8) lnNΩ1(tz, tz) = −t2
r1∑
l=1

λ2
l (z) + o(t2).
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Substituting (3.7) and (3.8) into (3.6), and then taking t → 0+ by dividing both sides of

(3.6) by t2, one can get

m∑
j=1

p|ωj |2(p−1)(2 Re(ωjQ2,j(z, ω))) ≡ 0.

Since Q2,j(z, ω) are homogeneous polynomial functions of degree 2, hence it is easy to get

Q2,j(z, ω) ≡ 0, 1 ≤ j ≤ m.

On the other hand, dividing both sides of (3.6) by t2 and combining with above equation,

we can see that

m∑
j=1

p|ωj |2(p−1)(2 Re(ωjQ3,j(z, ω))) +
m∑
j=1

|ωj |2pS2(z, z) ≡ 0,

where

S2(z, z) =

r2∑
l=1

Λ2
l (zA)−

r1∑
l=1

λ2
l (z).

We also note that Q3,j(z, ω) and S2(z, z) are homogeneous polynomial functions of degree

3 and degree 2, respectively. Similarly we have S2(z, z) = 0. This implies that

r2∑
l=1

Λ2
l (zA) =

r1∑
l=1

λ2
l (z).

By (2.3), we can learn that

zACΩ2A
t
zt = zCΩ1z

t.

Thus A is an invertible matrix.

Step 3. Since A is invertible, it means that H(z, ω) is biholomorphic at a neighborhood

U of the origin. Furthermore, we can choose a small enough ε such that

H̃ := H
∣∣∣
N−1

Ω1

∑m
j=1 |ωj |2p<ε

: N−1
Ω1

(z, z)

m∑
j=1

|ωj |2p < ε ⊂ U → N−1
Ω2

(z, z)

m∑
j=1

|ωj |2p < ε

is biholomorphic by the fact that LΩ2 ◦H(z, ω) = LΩ1(z, ω). Therefore we have H̃(z, ω)

is a linear mapping by Theorem 2.3. This implies that H̃(z, ω) = (zA, ω) by (3.2).

Obviously, the mapping H̃(z, ω) can be holomorhically extended to HΩ1(p). Therefore

by the identify principle theorem, we can conclude that

H(z, ω) = (zA, ω), (z, ω) ∈ HΩ1(p).

Therefore by Step 1 we can get that F (z, ω) is biholomorphic. The proof is finished.



The Holomorphic Equivalence 625

Proof of Corollary 1.2. By Theorem 1.1, we know that F is biholomorphic. Then by

Theorem 1.1 in [16], there exist an automorphism G ∈ Γ(HΩ(p)) and a permutation

σ ∈ Sm with pσ(i) = qi such that

G ◦ F (z, ω) = (zA, ω),

where z ∈ Ω1 7→ zA ∈ Ω2 is a biholomorphic mapping of Ω1 onto Ω2. Thus we have p = q.

The proof is completed.
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[8] J. Faraut, S. Kaneyuki, A. Korányi, Q.-k. Lu and G. Roos, Analysis and Geometry on

Complex Homogeneous Domains, Progress in Mathematics 185, Birkhäuser Boston,
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