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A Variational Approach to the Problem of Continuous Dependence of

Solutions to Second Order Periodic System
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Abstract. In the paper a second order differential system with a periodic bound-

ary data is considered. Using some variational methods sufficient conditions for the

continuous dependence of trajectories on controls are proved. The obtained results

are applied then to the optimal control problem governed by the above system and

the cost functional of a Bolza-type. In the end of the paper, an example of periodic

optimal control problem demonstrating the applicability of the results is presented.

1. Introduction

In this paper we investigate the optimal control problem governed by the second order

differential equation

(1.1) ẍ(t) = f1(t, x(t))u(t) + f2(t, x(t))

with periodic boundary conditions

(1.2) x(0) = x(T ) and ẋ(0) = ẋ(T ),

where t ∈ [0, T ], T > 0, f1 : [0, T ] × Rn → Rn×m, f2 : [0, T ] × Rn → Rn and u : [0, T ] →
M ⊂ Rm is an admissible control. We assume that the matrix field f1 and the vector field

f2 are potential, i.e., there exist a vector function F 1 = F 1(t, x) and a scalar function

F 2 = F 2(t, x) such that F 1
x = f1 and F 2

x = f2. Any solution to system (1.1)–(1.2) can be

extended to the periodic function defined for all t ∈ R.

The main results of the paper are theorems on the existence and continuous dependence

on the functional parameter u of solutions to (1.1)–(1.2). In addition, we consider a Bolza-

type optimal control problem (see e.g., [7]) by using the above properties, optimal control

problem associated to (1.1)–(1.2) and the following cost functional

(1.3) J(x, u) =

∫ T

0
f(t, x(t), ẋ(t), u(t)) dt+ l(x(T )),
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where f and l are given scalar functions. The cost functional consists of the “integral

part” and the endpoint cost function.

We use a variational approach to investigate the existence and continuous dependence

problem. To be more specific, on the space H1
T we define a functional of action for

system (1.1)–(1.2) whose critical points are, by the well-known Fundamental Lemma (see

[20]), Carathéodory solutions to (1.1)–(1.2). The existence of the above critical points

is obtained by the classical minimization of the functional of action or by the Saddle

Point Theorem, depending on assumptions (see Theorems 3.2 and 3.4). The continuous

dependence problem, due to the fact that critical point is not unique in both cases, is

described with the aid of properties of some multifunction or the notion of the upper limit

in the Kuratowski–Painlevé sense (see Definition 2.4). Finally, the existence problem of

optimal solutions for optimal control for problem (1.1)–(1.3) is investigated in Section 4.

Using Theorem 3.2 and the well-known sufficient condition for the lower semicontinuity

of integral functionals, we prove the existence of optimal processes for system (1.1)–(1.3)

(see Theorem 4.1). We also add an illustrative example at the end of this section.

Periodic systems are important due to their numerous applications and physical in-

terpretations. The most famous periodic phenomenon is the movement of the pendulum

or—more generally—all kinds of oscillators. Probably the first paper applying variational

methods to study periodic systems (more precisely, the forced pendulum system) was

published by Hamel [12] in 1922. The existence problem of solutions for nonlinear peri-

odic systems using variational approach was considered in many papers and monographs

(see [20,21,25,28], and references therein). An excellent review of variational methods for

periodic systems, with interesting historical comments, can be found in the well-known

book of Mawhin and Willem [20]. In fact, a variational approach presented in our paper

is based on this book.

It is difficult to overestimate the importance of continuous dependence on differential

problems. This is again due to many applications, interpretations and potential implica-

tions for numerical solutions to differential problems. In the classic book [8] of Courant

and Hilbert, we read: “A mathematical problem which is to correspond to physical reality

should satisfy the following basic requirements:

(1) The solution must exist.

(2) The solution should be uniquely determined.

(3) The solution should depend continuously on the data.

(...) The third requirement, particularly incisive, is necessary if the mathematical for-

mulation is to describe observable natural phenomena. Data in nature cannot possibly be

conceived as rigidly fixed; the mere process of measuring them involves small errors.”
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Certainly, the continuous dependence problem of solutions to differential problems is

less studied than the existence problem of solutions. It has been investigated for both

periodic and non-periodic systems among others in [3, 4, 9, 11, 13, 14, 16, 18, 26]. However,

if we compare it to our result, either a different type of equation or a different method

is used. To be more specific, in [11] the authors investigate a quasilinear Hamiltonian

system. They approximate a quasilinear differential equation by a sequence of semilinear

differential equations. Finally, the existence problem of solutions is solved using the moun-

tain pass theorem applied to an approximated functional. In [16] the author studies the

continuity of the dependence of a so-called Bohr almost periodic solution of the nonlinear

control system. Our paper concerns periodic boundary problem, however, the continu-

ous dependence problem was also studied for problems with other boundary conditions:

Dirichlet [29], Neumann [17,23,27], or Robin [19].

It has to be noted that system (1.1)–(1.2) has a variational form—it is an Euler–

Lagrange equation for a specific functional of action. This justifies the application of

variational methods to study it. Moreover, this approach seems to be appropriate for the

continuous dependence problem with the lack of the uniqueness of solutions. The set-

valued analysis tools (among others the notion of the Kuratowski–Painlevé limit) allow

for a clear study of this issue. This idea was used first by Walczak [29] and was continued

by his students and us. Similar methods were used in papers [3, 4]. However, in [4] the

considered system is of the fourth order, while in [3] only the classical variational method

was used with more restrictive assumptions. Some improvement concerning the nature of

the minimizing sequence which can be strongly convergent in most cases is given in [10].

For a comprehensive introduction to nonlinear analysis with an up to date approach, we

refer to [24].

The results presented in [20] concern the problem without parameter

ẍ(t) = ∇F (t, x(t)), x(0) = x(T ) and ẋ(0) = ẋ(T ),

where

(1.4) |∇F (t, x(t))| ≤ g(t)

with g ∈ L1. In paper [28], the author has weakened assumption (1.4) assuming that

|∇F (t, x(t))| ≤ f(t)|x|α + g(t)

with f, g ∈ L1 and α ∈ [0, 1). Following this type of assumption, we consider a periodic

system with a functional parameter u. In fact, the existence of solutions to (1.1)–(1.2)

for a given u can be deduced from [28]. As far as we know, the result concerning the

continuous dependence for the second order periodic systems via variational approach is

new.
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2. Formulation of the problem

Let H1
T be the space of absolutely continuous functions x : [0, T ] → Rn such that ẋ ∈

L2([0, T ],Rn) and x(0) = x(T ), where T > 0. It is clear that H1
T is a Hilbert space with

the inner product

〈x, y〉H1
T

=

∫ T

0

(
〈x(t), y(t)〉Rn + 〈ẋ(t), ẏ(t)〉Rn

)
dt

and the corresponding norm

‖x‖H1
T

=

(∫ T

0
|x(t)|2 dt+

∫ T

0
|ẋ(t)|2 dt

)1/2

=
(
‖x‖2L2 + ‖ẋ‖2L2

)1/2
,

where 〈 · , · 〉Rn denotes the classical scalar product in Rn. In what follows, we shall denote

by 〈 · , · 〉 the dual pair between (H1
T )∗ and H1

T .

It is easy to check that the norm

(2.1) ‖x‖ = |x|+ ‖ẋ‖L2 , where x =
1

T

∫ T

0
x(s) ds

is equivalent to ‖ · ‖H1
T

. In our considerations we shall use norm (2.1) in H1
T .

Let M ⊂ Rm be a given convex and compact subset of Rm and let p ∈ [1,∞]. Define

the set

U =
{
u ∈ Lp([0, T ],Rm) : u(t) ∈M for all t ∈ [0, T ] a.e.

}
.

The set U will be referred to as the set of admissible controls.

We consider a control system described by the second order differential equations with

periodic boundary data

ẍ(t) =
(
F 1
x (t, x(t))

)T
u(t) + F 2

x (t, x(t)), t ∈ [0, T ] a.e.,(2.2)

x(0) = x(T ), ẋ(0) = ẋ(T ),(2.3)

where u ∈ U , x ∈ H1
T , F 1 : [0, T ]× Rn → Rm and F 2 : [0, T ]× Rn → R.

It is easy to see that the functional of action for equation (2.2) is of the form

(2.4) ϕu(x) =

∫ T

0

(
1

2
|ẋ(t)|2 + 〈F 1(t, x(t)), u(t)〉Rm + F 2(t, x(t))

)
dt.

We will make the following assumptions:

(A1) F 1(t, x) and F 2(t, x) are measurable with respect to t ∈ [0, T ] for any x ∈ Rn and

continuously differentiable in x for t ∈ [0, T ] a.e.,
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(A2) there are functions a ∈ C(R+,R+) and b ∈ L1([0, T ],R+) such that

|F i(t, x)| ≤ a(|x|)b(t)

for all x ∈ Rn, t ∈ [0, T ] a.e. and i = 1, 2,

(A3) there exist a function g ∈ L1([0, T ],R+) and a number α ∈ [0, 1) such that

|F ix(t, x)| ≤ g(t)(|x|α + 1)

for all x ∈ Rn, i = 1, 2. Here we consider such a norm for the matrix F 1
x (t, x) that

|(F 1
x (t, x))Tu| ≤ |F 1

x (t, x)| · |u| (e.g., Euclidean norm |[aij ]| =
∑

i,j |aij |).

Remark 2.1. Assumptions (A1) and (A2) are of a technical nature and are typical for

variational approach for such a type of problems (see [20, Sections 1.4 and 4.3]). Generally

speaking, Assumptions (A1)–(A3) allow to define the functional of action (2.4) and ensure

its basic properties related to differentiability. As already mentioned, (A3) means that

problem (2.2)–(2.3) is sublinear and is a weakening of the assumption considered in book

[20].

Remark 2.2 (On physical interpretation of the problem). Equation (2.2) can be interpreted

physically as a model of motion of a point in a potential force field. In our case one of

the field components can be controlled in a linear way. The assumptions adopted in

the paper represent the sublinear (with respect to the point location) character of the

force. Considering problem (2.2)–(2.3), we are looking for periodic orbits of a point. The

functional of action is then the integral of the difference between kinetic and potential

energy, i.e., the classical Lagrange functional. A classical Hamilton’s principle of least

action says that motion of the mechanical system (2.2) coincides with extremal of Lagrange

functional. In fact, the above principle is the physical justification of the direct variational

methods on which the approach presented in the paper is based.

A special case of system (2.2) is an autonomous system with one degree of freedom

(i.e., when n = 1 and F i does not depend on t). In this case, there is a clear method of

analyzing solutions by drawing phase curves (see [1]). However, it is rather difficult to

compare this method with the results obtained in our paper.

Proposition 2.3. Assume (A1)–(A3) hold. Then for any u ∈ U , functional ϕu defined

by (2.4) is of class C1(H1
T ,R). Moreover, for any u ∈ U and x, h ∈ H1

T , we have

(2.5) 〈ϕ′u(x), h〉 =

∫ T

0

(
〈ẋ(t), ḣ(t)〉Rn+〈F 1

x (t, x(t))h(t), u(t)〉Rm+〈F 2
x (t, x(t)), h(t)〉Rn

)
dt.

For the convenience of the reader, we provide several definitions of notions used in the

paper, in particular for the concept of the upper limit of sets in the Kuratowski–Painlevé

sense.
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Definition 2.4. We say that the sequence of sets Zk ⊂ H1
T tends to Z0 in H1

T if any

sequence (xk)k, xk ∈ Zk, k ∈ N, possesses cluster points (in the sense of the norm topology

of H1
T ) in the set Z0 only, i.e., LimSupZk ⊂ Z0, where the symbol LimSupZk denotes

the set of all cluster points of the sequence (xk), xk ∈ Zk, k ∈ N. The set LimSupZk is

referred to as the upper limit of the sequence of sets in the Painlevé–Kuratowski sense

(see [2]). In the case when Zk are singletons, Zk = {xk}, k ∈ N0, then the convergence of

sets is identical with the strong convergence of points in H1
T .

Definition 2.5. We say that the functional ϕu is uniformly coercive with respect to u ∈ U
if for each K > 0, there exists an R > 0 such that ϕu(x) > K for all u ∈ U and |x| > R.

Definition 2.6. A sequence (xk)k in a Banach space X is called a Palais–Smale se-

quence ((PS) sequence) for functional ϕ : X → R if there is a constant R > 0 such that

‖ϕ(xk)‖ ≤ R and ϕ′(xk) → 0 as k → ∞. We say that ϕ satisfies Palais–Smale condition

((PS) condition) if any (PS) sequence admits a convergent subsequence.

3. Continuous dependence on controls of solutions to periodic systems

In this section, we will prove some sufficient conditions under which the set of minimizers

and the set of saddle points of the functional of action semicontinuously depends on

controls. As a consequence, we can formulate similar results concerning solutions to

periodic system (2.2)–(2.3).

Whenever we consider a sequence (uk)k ⊂ U and a function u0 ∈ U , then ϕk stands

for the functional of action defined by (2.4) corresponding to uk, k ∈ N0, i.e.,

ϕk(x) := ϕuk(x) =

∫ T

0

(
1

2
|ẋ(t)|2 + 〈F 1(t, x(t)), uk(t)〉Rm + F 2(t, x(t))

)
dt

for x ∈ H1
T and k ∈ N.

First, we prove

Lemma 3.1. Assume (A1)–(A3) hold. If a sequence (uk)k ⊂ U , k ∈ N, tends to u0 ∈ U
weakly in Lp when p ∈ [1,∞) or weakly–* when p = ∞, then sequences (ϕk)k, (ϕ′k)k

converge to ϕ0, ϕ′0, respectively, uniformly on any ball Br ⊂ H1
T .

Proof. Suppose that functionals ϕk do not tend to the functional ϕ0 uniformly on some

ball Bρ ⊂ H1
T . So there exist a > 0 and a sequence (xk)k ⊂ Bρ such that

(3.1) |ϕk(xk)− ϕ0(xk)| ≥ a

for k ∈ N. Since Bρ is weakly compact and the weak convergence in H1
T implies the

uniform convergence (see [20, Proposition 1.2]), we may assume that the sequence (xk)k
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tends to some x0 uniformly on [0, T ]. It is easy to calculate that

ϕk(xk)− ϕ0(xk) =

∫ T

0

(
〈F 1(t, xk(t)), uk(t)〉Rm − 〈F 1(t, xk(t)), u0(t)〉Rm

)
dt

=

∫ T

0
〈F 1(t, xk(t))− F 1(t, x0(t)), uk(t)− u0(t)〉Rm dt

+

∫ T

0
〈F 1(t, x0(t)), uk(t)− u0(t)〉Rm dt.

Let ε > 0. Since uk tends to u0 weakly in Lp (or weakly–* in L∞) and xk converges to x0

uniformly on [0, T ], we obtain from (A1)–(A2) that∣∣∣∣∫ T

0
〈F 1(t, xk(t))− F 1(t, x0(t)), uk(t)− u0(t)〉Rm dt

∣∣∣∣ < ε

2

and ∣∣∣∣∫ T

0
〈F 1(t, x0(t)), uk(t)− u0(t)〉Rm dt

∣∣∣∣ < ε

2

for sufficiently large k. This is a contradiction to (3.1), which means that ϕk converges to

ϕ0 uniformly on any ball Bρ ⊂ H1
T , ρ > 0.

For the proof of uniform convergence ϕ′k to ϕ′0, assume on the contrary that there are

a > 0 and a sequence (xk)k ⊂ Bρ such that

sup
‖h‖≤1

|〈ϕ′k(xk)− ϕ′0(xk), h〉| ≥ a

for k ∈ N. Next, we note by (2.5) that

〈ϕ′k(xk)− ϕ′0(xk), h〉 =

∫ T

0
〈F 1

x (t, xk(t))h(t), uk(t)− u0(t)〉Rm .

Hence we get a contradiction by Assumptions (A1), (A3) and reason as before.

3.1. The case of minimizers

In what follows, Yk denotes the set of minimizers for ϕk for k ∈ N0, i.e.,

Yk =

{
x ∈ H1

T : ϕk(x) = min
y∈H1

T

ϕk(y)

}
.

Theorem 3.2. If

(1) functions F 1, F 2 satisfy Assumptions (A1)–(A3),

(2) |r|−2α
∫ T

0

(
〈F 1(t, r), u(t)〉 + F 2(t, r)

)
dt → ∞ uniformly with respect to u ∈ U when

|r| → ∞ for α ∈ [0, 1) mentioned in (A3),
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(3) the sequence (uk)k ⊂ U of admissible controls tends to u0 ∈ U in the weak topology

of Lp when p ∈ [1,∞) or the weak–* topology of L∞ when p =∞,

then

(a) for any k, the set Yk of minimizers of the functional ϕk is nonempty,

(b) there exists a ball B(0, ρ) ⊂ H1
T such that Yk ⊂ B(0, ρ) for k ∈ N0,

(c) any sequence (xk)k ⊂ H1
T such that xk ∈ Yk for k ∈ N possesses a strong cluster

point x0 ∈ Y0, in particular,

∅ 6= LimSupYk ⊂ Y0.

If the sets Yk are singletons, i.e., Yk = {xk} for k ∈ N0, then xk tends to x0 in H1
T .

Proof. The proof will be divided into three steps.

First step. We will show that the set Yk of minimizers of the functional ϕk is not

empty for k ∈ N0. Note that the functional H1
T 3 x 7→

∫ T
0

1
2 |ẋ(t)|2 dt is convex and

continuous, therefore it is weakly lower semicontinuos. On the other hand, the functional

H1
T 3 x 7→

∫ T
0

(
〈F 1(t, x(t)), u(t)〉Rm + F 2(t, x(t))

)
dt is weakly continuous for any u ∈ U

(see [20, Proposition 1.2]). Thus the functional ϕk is weakly lower semicontinuous for

k ∈ N0.

We now fix u ∈ U . For x ∈ H1
T , we put x̃ = x− x, where x =

∫ T
0 x(s) ds. By (A3) and

Sobolev inequality [20], we get∣∣∣∣∫ T

0
〈F 1(t, x(t))− F 1(t, x), u(t)〉Rm dt

∣∣∣∣
≤
∫ T

0
|F 1(t, x(t))− F 1(t, x)| · |u(t)| dt

≤
∫ T

0

(∫ 1

0
|F 1
x (t, x+ sx̃(t))x̃(t)| ds

)
· |u(t)| dt

≤
∫ T

0

(∫ 1

0
g(t)

(
|x+ sx̃(t)|α + 1

)
ds

)
· |x̃(t)| · |u(t)| dt

≤ 2

∫ T

0

(
|u(t)||x̃(t)|

∫ 1

0

(
g(t)|x|α + g(t)|sx̃(t)|α + g(t)

)
ds

)
dt(3.2)

≤ 2C

∫ T

0
g(t)

(
|x|α|x̃(t)|+ |x̃(t)|α+1 + |x̃(t)|

)
dt

≤ 2C‖x̃‖∞|x|α
∫ T

0
g(t) dt+ 2C‖x̃‖α+1

∞

∫ T

0
g(t) dt+ 2C‖x̃‖∞

∫ T

0
g(t) dt

≤ 3

2T
‖x̃‖2∞ +

2TC2

3
|x|2α‖g‖2L1 + 2C‖x̃‖α+1

∞ ‖g‖L1 + 2C‖x̃‖∞‖g‖L1
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≤ 1

8
‖ẋ‖2L2 + C1|x|2α + C2‖ẋ‖α+1

L2 + C3‖ẋ‖L2 .

where C1, C2 and C3 are some positive constants not depending on u. In an analogous

way, we obtain that∣∣∣∣∫ T

0

(
F 2(t, x(t))− F 2(t, x)

)
dt

∣∣∣∣ ≤ ∫ T

0

(∫ 1

0
|F 2
x (t, x+ sx̃(t))x̃(t)| ds

)
dt

≤
∫ T

0

(∫ 1

0
g(t)(|x+ sx̃(t)|α + 1) ds

)
· |x̃(t)| dt

and conclude similarly that∣∣∣∣∫ T

0

(
F 2(t, x(t))− F 2(t, x)

)
dt

∣∣∣∣ ≤ 1

8
‖ẋ‖2L2 +K1|x|2α +K2‖ẋ‖α+1

L2 +K3‖ẋ‖L2 .

Therefore

ϕu(x) =

∫ T

0

(
1

2
|ẋ(t)|2 + 〈F 1(t, x), u(t)〉Rm + F 2(t, x)

)
dt

+

∫ T

0

(
〈F 1(t, x(t))− F 1(t, x), u(t)〉Rm +

(
F 2(t, x(t))− F 2(t, x)

))
dt

≥ 1

4
‖ẋ‖2L2 +A‖ẋ‖α+1

L2 +B‖ẋ‖L2

+ |x|2α
(∫ T

0
|x|−2α

(
〈F 1(t, x), u(t)〉Rm + F 2(t, x)

)
dt+D

)
,

(3.3)

where A, B, D are some constants not depending on u. Thus, if ‖x‖ → ∞, then ϕu(x)→
∞ uniformly with respect to u by Assumption (2). So the functional ϕu is weakly lower

semicontinuous and (uniformly) coercive with respect to u. This implies that the set Yk

of minimizers of the functional ϕk is not empty for k ∈ N0.

Second step. We now prove that Yk ⊂ B(0, ρ) for k ∈ N0 for some ρ > 0. Suppose

on the contrary that there exists a sequence (xk)k such that xk ∈ Yk for k ∈ N0 and

‖xk‖ → ∞ if k → ∞ (note that each of the set Yk is bounded by (3.3)). From (A2) and

the facts that xk is a minimizer for ϕk and M is compact, it follows that

ϕk(xk) ≤ ϕk(0) ≤
∫ T

0

(
〈F 1(t, 0), uk(t)〉Rm + F 2(t, 0)

)
dt

≤
∫ T

0

(
a(0)b(t)|uk(t)|+ a(0)b(t)

)
dt ≤ D

for k ∈ N0, but this contradicts the fact that ϕk(xk)→∞ if k →∞ (the first step).

Third step. Let (xk)k ⊂ H1
T be any sequence such that xk ∈ Yk for k ∈ N. Passing,

if necessary, to a subsequence, we may assume that xk tends weakly to some x0 on H1
T .

Now, we shall show that x0 ∈ Y0. For k ∈ N0, let

mk := ϕk(xk) = min
{
ϕk(y) : y ∈ H1

T

}
= min{ϕk(y) : y ∈ B(0, ρ)}.
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Since ϕk tends to ϕ0 uniformly on the ball B(0, ρ) by Lemma 3.1, we have

(3.4) mk → m0.

Suppose that x0 does not belong to Y0. The set Y0 is not empty, thus there exists v ∈ Y0

such that x0 6= v and

mk −m0 = ϕk(xk)− ϕ0(v)

= (ϕk(xk)− ϕ0(xk)) + [ϕ0(xk)− ϕ0(x0)] + (ϕ0(x0)− ϕ0(v)).
(3.5)

Because x0 /∈ Y0, we have ϕ0(x0) − ϕ0(v) > 0. Passing with k → ∞ in (3.5), we get a

contradiction to (3.4) (note that ϕ0 is weakly lower semicontinuous). Consequently, we

have proved that (xk)k possess a weak cluster point x0 ∈ Y0. We will prove that the above

weak cluster point is also a strong cluster point. Weak convergence in H1
T implies uniform

convergence on [0, T ] (see [20, Proposition 1.2]), therefore we may assume that xk ⇒ x0.

Note that ϕk is Gâteaux differentiable and xk is a minimizer for ϕk, thus ϕ′k(xk) = 0 for

k = 0, 1, . . .. Consequently by (A3),

0 = 〈ϕ′k(xk)− ϕ′0(x0), xk − x0〉

≥ ‖ẋk − ẋ‖2L2 −
∫ T

0
g(t)

(
|xk(t)|α + 1

)
(|uk(t)|+ 1)|xk(t)− x0(t)| dt

−
∫ T

0
g(t)

(
|x0(t)|α + 1

)
(|u0(t)|+ 1)|xk(t)− x0(t)| dt.

Hence ‖ẋk − ẋ‖L2 → 0 as k →∞ and consequently xk → x0 in H1
T .

The proof is then completed.

Remark 3.3. The key assumption of Theorem 3.2 is Assumption (2). It describes the type

of the convergence at infinity of the average value of the potential. Similar to (A3), this is

a generalization of the assumption from a book by Mawhin and Willem [20]. This implies

a property of the functional of action (coercivity, in this case) that is essential for the

existence of solutions (as well as for continuous dependence). An interesting problem is

whether we can allow α = 1 in Assumptions (A3) and (2) (which would mean that we

also allow a linear case). First of all, we point out that assuming (A3) with α = 1 it is

impossible to obtain estimation (3.2) and consequently (3.3) in the proof of Theorem 3.2.

On the other hand, the linear system ẍ = x does not have periodic solutions (except

stationary point), while the system ẍ = −x has only periodic solutions (except stationary

point). In both cases, Theorem 3.2(2) is not satisfied (even if we allow α = 1) which means

that this theorem is only a specific necessary condition for the existence of solutions to

the considered problem. A similar observation applies to the case of saddle points and

Theorem 3.4.
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3.2. The case of saddle points

Let

X+ :=

{
x ∈ H1

T :

∫ T

0
x(t) = 0

}
and X− :=

{
x ∈ H1

T : x(t) = constant
}
.

It is easy to see that H1
T = X+ ⊕X−.

Next, for R > 0, let

B−R := {x ∈ X− : ‖x‖ ≤ R} and Γ :=
{
γ ∈ C(B−R , H

1
T ) : γ(x) = x for x ∈ ∂B−R

}
.

Let (uk)k ⊂ U be an arbitrary sequence and let u0 ∈ U . Denote by

Sk = {x ∈ H1
T : ϕk(x) = ck and ϕ′k(x) = 0}

the set of critical points of the functional ϕk = ϕuk for k ∈ N0, which corresponds to the

critical value

ck = cuk = inf
γ∈Γ

max
s∈B−

R

ϕk(γ(s)).

Theorem 3.4. If

(1) functions F 1, F 2 satisfy Assumptions (A1)–(A3),

(2) |r|−2α
∫ T

0

(
〈F 1(t, r), u(t)〉+F 2(t, r)

)
dt→ −∞ uniformly with respect to u ∈ U when

|r| → ∞, for α ∈ [0, 1) mentioned in (A3),

(3) the sequence (uk)k ⊂ U of admissible controls tends to u0 ∈ U in the weak topology

of Lp when p ∈ [1,∞), or the weak–* topology of L∞ when p =∞,

then

(a) for any k, the set Sk of saddle points of the functional ϕk is not empty,

(b) there exists a ball B(0, ρ) ⊂ H1
T such that Sk ⊂ B(0, ρ) for k ∈ N0,

(c) any sequence (xk)k ⊂ H1
T such that xk ∈ Sk for k ∈ N possesses a strong cluster

point x0 ∈ S0, in particular,

∅ 6= LimSupSk ⊂ S0.

If the sets Sk are singletons, i.e., Sk = {xk} for k ∈ N0, then xk tends to x0 in H1
T .
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Proof. The proof is based on Rabinowitz’s Saddle Point Theorem (cf. [25]) and will be

divided into three steps.

First step. We notice first that the functional ϕu is unbounded from above and below

for any u ∈ U .

In an analogous way as in Theorem 3.2 we can prove that there are constants A, B,

C such that for every x ∈ X+ and every u ∈ U ,

ϕu(x) ≥ 1

4
‖x‖2 +A‖x‖α+1 +B‖x‖+ C.

This means that ϕu is unbounded from above and

inf
x∈X+

ϕu(x) > −∞.

Next, for x ∈ X−, we have that

ϕu(x) =

∫ T

0

(
〈F 1(t, x), u(t)〉Rm + F 2(t, x)

)
dt

and by Assumption (2), ϕu(x) → −∞ uniformly with respect to u ∈ U as ‖x‖ → ∞,

x ∈ X−. Therefore ϕu is unbounded from below and there exists R > 0 such that for

every u ∈ U we have that

max
x∈∂B−

R

ϕu(x) < inf
x∈X+

ϕu(x).

Fix u ∈ U , we will show that ϕu satisfies (PS) condition. Let (xk)k ⊂ H1
T be such

that ϕ′u(xk) → 0 as k → ∞ and (ϕu(xk))k is bounded. Let xk = xk + x̃k where xk =

(1/T )
∫ T

0 x(t) dt. Similarly as in the proof of Theorem 3.2, we get that∣∣∣∣∫ T

0

(
〈(F 1

x (t, xk(t)))
T x̃k(t), u(t)〉Rm + 〈F 2

x (t, xk(t)), x̃k(t)〉Rn

)
dt

∣∣∣∣
≤ 1

4
‖ẋk‖2L2 + C1|xk|2α + C2‖ẋk‖α+1

L2 + C3‖ẋk‖L2

for all k and some positive constants C1, C2, C3. This shows that

(3.6) |〈ϕ′u(xk), x̃k〉| ≥
3

4
‖ẋk‖2L2 − C1|xk|2α − C2‖ẋk‖α+1

L2 − C3‖ẋk‖L2 .

Since ϕ′u(xk)→ 0 as k →∞, for sufficiently large k

(3.7) |〈ϕ′u(xk), x̃k〉| ≤ ‖x̃k‖.

Consequently, by inequalities (3.6) and (3.7), we get for sufficiently large k that,

‖x̃k‖ ≥
3

4
‖ẋk‖2L2 − C1|xk|2α − C2‖ẋk‖α+1

L2 − C3‖ẋk‖L2 ,
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thus

(3.8) C1|xk|2α ≥
3

4
‖ẋk‖2L2 − C2‖ẋk‖α+1

L2 − (C3 + 1)‖ẋk‖L2 .

Analysis similar to that in the proof of Theorem 3.2 with application of (3.8) and the fact

that (xk)k is (PS) sequence, we show that

C5 ≤ ϕu(xk) =

∫ T

0

(
1

2
|ẋk(t)|2 + 〈F 1(t, xk), u(t)〉Rm + F 2(t, xk)

)
dt

+

∫ T

0
〈F 1(t, xk(t))− F 1(t, xk), u(t)〉Rm dt+

∫ T

0

(
F 2(t, xk(t))− F 2(t, xk)

)
dt

≤ |xk|2α
(
|xk|−2α

∫ T

0

(
〈F 1(t, xk), u(t)〉Rm + F 2(t, xk)

)
dt+ C6

)
for some constants C5, C6 and sufficiently large k. Hence, by Assumption (2), (|xk|)k
is bounded. Consequently, by (3.8), the sequence (xk)k is bounded in H1

T . Passing to

a subsequence, we can assume that (xk)k tends weakly to some x ∈ H1
T and therefore

strongly in C([0, T ],Rn) (see [20, Proposition 1.2]).

So 〈ϕ′u(xk)− ϕ′u(x), xk − x〉 → 0 as k →∞ and since

〈ϕ′u(xk)− ϕ′u(x), xk − x〉 = ‖ẋk − ẋ‖2L2

+

∫ T

0
〈F 1

x (t, xk(t))(xk(t)− x(t)), u(t)〉Rm dt

+

∫ T

0
〈F 2

x (t, xk(t)), (xk(t)− x(t))〉Rm dt

−
∫ T

0

(
〈F 1

x (t, x(t))(xk(t)− x(t)), u(t)〉Rm

)
dt

−
∫ T

0

(
〈F 2

x (t, x(t)), (xk(t)− x(t))〉Rm

)
dt,

it follows from (A2) that ‖ẋk − ẋ‖L2 → 0 as k →∞. Consequently, xk → x in H1
T and ϕu

satisfies (PS) condition.

Applying Rabinowitz’s Saddle Point Theorem [25] shows that there exists R > 0 such

that for any u ∈ U , the functional ϕu possesses a critical point which corresponds to the

critical value cu = infγ∈Γ maxx∈B−
R
ϕu(γ(x)).

Second step. Let (uk)k ⊂ U be a sequence as in Assumption (3). First, note that all ck

are uniformly bounded from below for k ∈ N0. Indeed, for k ∈ N0, we have by (A2) that

max
x∈B−

R

ϕk(γ(x)) ≥ ϕk(γ(R)) = ϕk(R) ≥ −K

for all functions γ ∈ Γ and some K.
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We will now show that the sets Sk are uniformly bounded for k ∈ N0. Let xk ∈ Sk for

k ∈ N0. Similarly as in the first step, we have

0 = 〈ϕ′k(xk), x̃k〉 ≥
3

4
‖ẋk‖2L2 − C1|xk|2α − C2‖ẋk‖α+1

L2 − C3‖ẋk‖L2 ,

where xk = xk + x̃, xk = (1/T )
∫ T

0 xk(t) dt and C1, C2, C3 > 0. Hence

(3.9) C1|xk|2α ≥
3

4
‖ẋk‖2L2 − C2‖ẋk‖α+1

L2 − C3‖ẋk‖L2

for k ∈ N0 and some constant C > 0. Since all ck are uniformly bounded from below for

k ∈ N0, it follows that

−K ≤ ϕk(xk) ≤ |xk|2α
(
|xk|−2α

∫ T

0

(
〈F 1(t, xk), uk(t)〉Rm + F 2(t, xk)

)
dt+ 2C1

)
for k ∈ N0. Hence (|xk|)k is bounded by Assumption (2). Consequently, by (3.9), the

sequence (xk)k is also bounded. In the same way, we can prove that every sequence

(xk)k ∈ Sk0 is bounded for every k0. This means that there exists ρ > 0 such that

Sk ⊂ B(0, ρ) for all k ∈ N0.

Third step. Let (xk)k ⊂ H1
T be such a sequence such that xk ∈ Sk for k ∈ N (that is,

(xk)k is a sequence of saddle points). Let B(0, ρ) ⊂ H1
T be the ball referred to as in the

previous step. By Assumption (2) and Lemma 3.1, there is ε > 0 such that for sufficiently

large k,

ck = inf
γ∈Γ

max
x∈B−

R

(
ϕk(γ(x))− ϕ0(γ(x)) + ϕ0(γ(x))

)
≤ inf

γ∈Γ
max
x∈B−

R

(
ε+ ϕ0(γ(x))

)
= ε+ c0.

Following this and using Lemma 3.1 again, we get

(3.10) lim
k→∞

ϕ0(xk) = lim
k→∞

(
(ϕ0(xk)− ϕk(xk)) + ϕk(xk)

)
= lim

k→∞
ck = c0

and

(3.11) 0 = lim
k→∞

(
ϕ′0(xk)− ϕ′k(xk)

)
= lim

k→∞
ϕ′0(xk).

This means that (xk)k is a (PS) sequence for ϕ0 which, as we have proved in the previous

step, satisfies (PS) condition. Let x0 be a cluster point of this sequence. By (3.10) and

(3.11), c0 = limk→∞ ϕ0(xk) = ϕ0(x0) and 0 = limk→∞ ϕ
′
0(xk) = ϕ′0(x0). Hence x0 ∈ S0.

The proof is thus completed.

Remark 3.5. It is easy to see that Conditions (a)–(c) imply that the set-valued mapping

U 3 u→ Su ⊂ H1
T is upper semicontinuous with respect to the weak topology in Lp when

p ∈ [1,∞), or the weak–* topology of L∞ when p =∞, and the strong topology in H1
T .
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3.3. Remarks on periodic solutions

Remark 3.6. Theorems 3.2 and 3.4 describe some properties of critical points of functional

ϕu defined by (2.4). However, applying the Fundamental Lemma [20] gives us that every

critical point xu of ϕu is a solution to problem (2.2)–(2.3), and vice versa.

Remark 3.7. If the functional of action ϕu given by (2.4) is convex, then the set of critical

points Yu is identical with the set of solutions to periodic problem (2.2)–(2.3). If the

functional ϕu is strictly convex, then Yu is a singleton.

Consequently, we can formulate the following

Theorem 3.8. Assume that the functions F 1, F 2 satisfy Assumptions (A1)–(A3) and

that

(a) |r|−2α
∫ T

0

(
〈F 1(t, r), u(t)〉Rm +F 2(t, r)

)
dt→∞ uniformly with respect to u ∈ U when

|r| → ∞ for some α ∈ [0, 1), or

(b) |r|−2α
∫ T

0

(
〈F 1(t, r), u(t)〉Rm + F 2(t, r)

)
dt → −∞ uniformly with respect to u ∈ U

when |r| → ∞ for some α ∈ [0, 1).

Then, for any u ∈ U , there exists at least one solution xu to (2.2)–(2.3) corresponding

to u. If the sequence (uk)k ⊂ U of admissible controls tends to u0 ∈ U in the weak

topology of Lp when p ∈ [1,∞), or the weak–* topology of L∞ when p = ∞, then the

sequence (xk)k ⊂ H1
T of solutions to (2.2)–(2.3) corresponding to uk and such that they

are critical points of suitable type (minimizer or saddle point), possesses a cluster point x0

in the strong topology of H1
T which is a solution to (2.2)–(2.3) corresponding to u0, being

a critical point of the same type.

Moreover, in the case of Assumption (a), if additionally ϕu is strictly convex then the

solution xu corresponding to u is a unique solution which depends continuously on u.

4. Existence of optimal controls and example

Consider optimal control problem governed by the second order differential system with

the periodic boundary conditions

ẍ(t) =
(
F 1
x (t, x(t))

)T
u(t) + F 2

x (t, x(t)),(4.1)

x(0) = x(T ), ẋ(0) = ẋ(T )(4.2)

and with the cost functional

(4.3) J(x, u) =

∫ T

0
f(t, x(t), ẋ(t), u(t)) dt+ l(x(T )),

where x ∈ H1
T , u ∈ U = {w ∈ L2([0, T ],Rm) : w(t) ∈M}, M is a subset of Rm.

Further, we shall assume
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(A4) the vector function F 1 and the scalar function F 2 satisfy Conditions (A1)–(A3) and

the functional of action given by (2.4) is convex,

(A5) |r|−2α
∫ T

0

(
〈F 1(t, r), u(t)〉Rm + F 2(t, r)

)
dt → ∞ uniformly with respect to u ∈ U

when |r| → ∞ for α ∈ [0, 1) mentioned in (A3), or |r|−2α
∫ T

0

(
〈F 1(t, r), u(t)〉Rm +

F 2(t, r)
)
dt→ −∞ uniformly with respect to u ∈ U for α ∈ [0, 1) mentioned in (A3),

(A6) the integrand f = f(t, x, ẋ, u) : [0, T ]×Rn×Rn×M → R is measurable with respect

to t, continuous with respect to (x, ẋ, u) and convex with respect to (ẋ, u). Moreover,

we assume that, for any ball B(0, ρ) ⊂ Rn, there exists a constant C > 0 such that

|f(t, x, ẋ, u)| ≤ C(1 + |ẋ|2)

for t ∈ [0, T ] a.e. x ∈ B(0, ρ), ẋ ∈ Rn and u ∈ M and the function l : Rn → R is

lower semicontinuous.

Applying the results of Section 3, we prove the following existence theorem for the

periodic optimal control problem (4.1)–(4.3).

Theorem 4.1. If the set M ⊂ Rn is convex and compact, and the functions F 1, F 2,

f and l satisfy Conditions (A4)–(A6), then periodic optimal control system (4.1)–(4.3)

possesses at least one optimal process (x0, u0) where u0 ∈ U and x0 ∈ H1
T .

Proof. Let (xk, uk)k be a minimizing sequence for the problem considered, i.e., limk→∞

J(xk, uk) = inf J(x, u) = µ, uk ∈ U and xk is a solution of the periodic system (4.1)–(4.3)

with u = uk. Since uk(t) ∈ M and M is compact and convex, the sequence (uk)k is

compact in the weak topology of L2([0, T ],Rm). Passing, if necessary, to a subsequence,

we may assume that uk tends to some u0 ∈ U weakly in L2([0, T ],Rm). By Theorem 3.2,

we may assume that xk tends to x0 ∈ H1
T in the norm topology of H1

T and the pair

(x0, u0) is admissible, i.e., u0 ∈ U and x0 satisfies problem (4.1)–(4.2) with u = u0. This

implies that xk → x0 uniformly on [0, T ] and ẋk → ẋ0 in L2([0, T ],Rn). Without loss

of generality, we may assume that ẋk tends to ẋ0 pointwise on [0, T ] and there exists a

function h ∈ L2([0, T ],Rn) such that |ẋk(t)| ≤ h(t) for t ∈ [0, T ] a.e. and k ∈ N (see [6]).

Assumption (A4) and the well-known theorem on lower semicontinuity of integral

functionals (see e.g., [5, 15,22]) imply that

µ = lim
k→∞

J(xk, uk) = lim
k→∞

∫ T

0
f(t, xk(t), ẋk(t), uk(t)) dt

≥ lim
k→∞

∫ T

0
f(t, x0(t), ẋ0(t), u0(t)) dt = J(x0, u0) ≥ µ.

Consequently, we have shown that the pair (x0, u0) is admissible and inf J(x, u) = J(x0, u0).

Thus (x0, u0) is an optimal process.
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We now consider an illustrative calculation example of an optimal control periodic

system. Although the example is theoretical, it shows a specific situation for which it is

possible to apply theorems proved in the paper.

Example 4.2. Consider the following optimal control problem

(4.4) J(x, u) =

∫ T

0

[
(x(t))4(u1(t))2 − ẋ(t)u2(t) + ẋ(t)x(t)

]
dt→ min

subject to

(4.5) ẍ(t)− |x(t)|α = 〈Gx(t, x(t)), u(t)〉R2 , x(0) = x(T ), ẋ(0) = ẋ(T ),

where x ∈ H1
T , u = (u1, u2) ∈ U =

{
u ∈ L2([0, T ],R2) : |u1| ≤ 1 and |u2| ≤ 1

}
, α ∈ [0, 1),

and G : [0, T ]× R→ R2 is of the form

G(t, v) =
(
t2v3/2 + cos v, sin v − tv

)
.

The functional of action related to system (4.5) is of the form

ϕu(x) =

∫ T

0

(
1

2
|ẋ(t)|2 + 〈G(t, x(t)), u(t)〉R2 +

1

α+ 1
|x(t)|α+1

)
dt.

It is easy to see that when

F 1(t, x) = G(t, x) and F 2(t, x) =
1

α+ 1
|x|α+1,

all assumption of Theorem 3.8 are satisfied. In particular, the functional ϕu is strictly

convex on H1
T . Thus, for any admissible control u ∈ U , system (4.5) has exactly one

solution xu ∈ H1
T which depends continuously on u. Next, notice that the cost functional

given by (4.4) and the functions

F 1(t, x) = G(t, x), F 2(t, x) =
1

α+ 1
|x|α+1

satisfy Assumptions (A1)–(A6). Thus Theorem 4.1 implies that periodic optimal control

problem (4.4)–(4.5) possesses at least one solution.
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