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On the Existence of Auslander-Reiten (d + 2)-angles in (d + 2)-angulated

Categories

Panyue Zhou

Abstract. Let C be a (d + 2)-angulated category. In this note, we show that if C is
locally finite, then C has Auslander-Reiten (d + 2)-angles. This extends a result of

Xiao and Zhu for triangulated categories.

1. Introduction

Auslander-Reiten theory was introduced by Auslander and Reiten in [1,2]. Since then,
Auslander-Reiten theory has become a fundamental tool for studying the representation
theory of Artin algebras. Later it has been generalized to the situations such as ex-
act categories [9], triangulated categories [6,(15] and its subcategories [3,|10], as well as
some additive categories [10,[12/16] by researchers. Extriangulated categories were intro-
duced by Nakaoka and Palu [13] as a simultaneous generalization of exact categories and
triangulated categories. Hence, many results hold on exact categories and triangulated
categories can be unified in the same framework. Iyama, Nakaoka and Palu [7] introduced
the notions of almost split extensions and Auslander-Reiten-Serre duality for extriangu-
lated categories. Meanwhile, they gave explicit connections between these notions and the
classical notion of dualizing k-varieties. Xiao and Zhu [17,[18] showed that if a triangu-
lated category C is locally finite, then C has Auslander-Reiten triangles. Recently, Zhu
and Zhuang [20] proved that if an extriangulated category C is locally finite, then C has
Auslander-Reiten E-triangles.

In [5], Geiss, Keller and Oppermann introduced a new type of categories, called (d+2)-
angulated categories, which generalize triangulated categories: the classical triangulated
categories are the special case d = 1. These categories appear for instance when consider-
ing certain d-cluster tilting subcategories of triangulated categories. Iyama and Yoshino [§]

defined Auslander-Reiten (d + 2)-angles in special (d 4 2)-angulated categories. Later,
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Fedele [4] defined Auslander-Reiten (d + 2)-angles in additive subcategories of (d + 2)-
angulated categories which are closed under d-extensions, an example of which is a wide
subcategory. He also proved that there are Auslander-Reiten (d + 2)-angles in certain
additive subcategories of (d + 2)-angulated categories. Recently, the author [19] showed
that a (d + 2)-angulated category C has Auslander-Reiten (d + 2)-angles if and only if C
has a Serre functor.

In this note, we continue to study Auslander-Reiten (d+ 2)-angles in (d+ 2)-angulated
categories. We will generalize Xiao and Zhu’s result to (d + 2)-angulated categories.
Moreover, our proof is different from the usual triangulated case.

Our main result is the following.

Theorem 1.1. (see Theorem for details) Let C be a locally finite (d + 2)-angulated
category. If X € C is an indecomposable object, then there are an Auslander-Reiten (d+2)-
angle ending at X, and an Auslander-Reiten (d + 2)-angle starting at X . In this case, we
say that C has Auslander-Reiten (d + 2)-angles.

This article is organized as follows: In Section 2| we review some elementary concepts
to be used later, including (d + 2)-angulated categories and Auslander-Reiten (d + 2)

angles. In Section [3, we prove our main result.

2. Preliminaries

In this section, we first recall some definitions and basic properties of (d + 2)-angulated
categories from [5]. Let C be an additive category with an automorphism %?: C — C,
where d is an integer no less than one.

A (d+ 2)-X%-sequence in C is a sequence of objects and morphisms

Ao Lo Ay I Ay Ly i g T g T g

Its left rotation is the (d 4 2)-X%-sequence

_ dzd
Ay D ay By Loy T gy T sy SO g

A morphism of (d + 2)-X%sequences is a sequence of morphisms ¢ = (g, @1, - ., Pds1)
such that the following diagram

fo f1 fo o fa fa+1

Ao Ay Aa Agyr — X%
lcpo lcm lsoz l%ﬂ J/Ed%
By 9o B, g1 Bs 92 9d Bd+1 E} ZdBo

commutes, where each row is a (d+2)-2%sequence. It is an isomorphism if g, 1, P2, .. .,

@d+1 are all isomorphisms in C.
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Definition 2.1. [5, Definition 2.1] A (d + 2)-angulated category is a triple (C, %9, 0),
where C is an additive category, 3¢ is an automorphism of C (Ed is called the d-suspension
functor), and © is a class of (d+2)-X%sequences (whose elements are called (d+2)-angles),
which satisfies the following axioms:

(N1) (a) The class © is closed under isomorphisms, direct sums and direct summands.

(b) For each object A € C, the trivial sequence
A AS50502 500204

belongs to O.
(c) Each morphism fy: Ag — A; in C can be extended to (d + 2)-X4-sequence:

PN LTI N [l NI LN R LN 3 7Y

(N2) A (d+ 2)-X%sequence belongs to © if and only if its left rotation belongs to ©.

(N3) Each solid commutative diagram

Ag—Loay g, S Ad+ L 244
\ \

J{% lsol | 2 | Pd-+1 DI
¥ Y

By—2>B, - B, L. 2, p,,, I vdp,

with rows in ©, the dotted morphisms exist and give a morphism of (d + 2)-%9-

sequences.

(N4) In the situation of (N3), the morphisms @9, @3, ...,¢4+1 can be chosen such that

the mapping cone

(F o)
- Ay B

(S ouns)
201 gat1
-

4 (o) Gl o
1@ By ¥" Ao @ Bay1

YA, & XB,
belongs to O.
Now we give an example of (d + 2)-angulated categories.

Example 2.2. We recall the standard construction of (d + 2)-angulated categories given
by Geiss-Keller-Oppermann [5, Theorem 1]. Let C be a triangulated category and T a
d-cluster tilting subcategory which is closed under ¢, where ¥ is the shift functor of C.
Then (7,%%,0) is a (d + 2)—angulated category, where O is the class of all sequences

AO A1 A2 f2 fd—1> A —) ACH— fd—+1> EdAO
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such that there exists a diagram

. Ay
/\/\ /N
F—Ais<+t+— A5 -+ Ag_15<+—Aun

with A; € T for all i € Z, such that all oriented triangles are triangles in C, all non-oriented

triangles commute, and fg41 is the composition along the lower edge of the diagram.
The following two lemmas are very useful which are needed in the sequel.

Lemma 2.3. [4, Lemma 3.13] Let C be a (d + 2)-angulated category, and
(2.1) Ag 20 A Dy Ay 22y 00 280 4, 240 4, 28 sl g
a (d+ 2)-angle in C. Then the following statements are equivalent:

(1) ap is a section;

(2) ag is a retraction;

(3) agse1 =0.
If a (d+ 2)-angle (2.1)) satisfies one of the above equivalent conditions, it is called split.
Lemma 2.4. [11, Corollary 3.4] Let C be a (d + 2)-angulated category, and

dt1

Ag 29 4y 24 4, 22 S0 4, 24y 4, S8 gy

a (d + 2)-angle in C. Then for any morphism ¢o: Ay — By, there exists the following

commutative diagram of (d + 2)-angles

Ap —20m Ay % gy 02 ML q 0, S s g
| | |
l@o | p1 | p2 | Pd DI
A \ A
B, Bo By B1 By P2 Ba—1 B, Ba Adir Ba+1 EdBo
such that
(%) (o ) (29 (estarl.)
AOLAI@BO&)AQ@Bl LIV - - Aqg® By
(¢dsBa—1) B, (—1)%0g 4184 EdAO

is a (d + 2)-angle in C.
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Now we recall the Auslander-Reiten (d + 2) theory in (d 4 2)-angulated categories.

We denote by rade the Jacobson radical of C. Namely, rade is an ideal of C such that
rade(A, A) coincides with the Jacobson radical of the endomorphism ring End(A) for any
AeC.

Definition 2.5. (see [8 Definition 3.8] and [4, Definition 5.1]) Let C be a (d+2)-angulated
category. A (d + 2)-angle

agd— « aq
Ag: Ag 2 AL & A 22 0 0 A, 2 Ay —E5 294,

in C is called an Auslander-Reiten (d+ 2)-angle if ag is left almost split, oy is right almost

split and a1, as,...,aq_1 are in rade when d > 1.

Remark 2.6. |4, Remark 5.2] Assume A, as in Definition is an Auslander-Reiten
(d + 2)-angle. Since ay is left almost split, we obtain that End(Ay) is local and hence Ay
is indecomposable. Similarly, since g is right almost split, it follows that End(Agy1) is
local and hence Ag41 is indecomposable. Moreover, when d = 1, we have oy and g4 in
rade, so that ag is right minimal and «g is left minimal. When d > 1, since a4_1 € rade,

we have that g is right minimal and similarly «q is left minimal.

Remark 2.7. [4, Lemma 5.3] Let C be a (d + 2)-angulated category and
Ag: Ag 2% Ay 84 4, 22 200 4, 24 p, ) SO wd g

a (d 4 2)-angle in C. Then the following statements are equivalent:

(1) A, is an Auslander-Reiten (d + 2)-angle;

(2) ap,a1,...,aq-1 are in rade and «y is right almost split;

(3) ai1,a9,...,aq4 are in rade and «y is left almost split.
Lemma 2.8. [4, Lemma 5.4] Let C be a (d + 2)-angulated category and

gyl

Qd—1 «
A, A()%Al a—1>A2£>---—>Ad—d>Ad+1—>sz0

a (d + 2)-angle in C. Assume that agq is right almost split and, if d > 1, also that

Qi,Qo,...,aq-1 are in rade. Then the following statements are equivalent:
(1) Ae is an Auslander-Reiten (d + 2)-angle;
(2) End(Ag) is local;
(3) aqgr1 is left minimal;

(4) «ap is in rade.
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In the case d = 1, so in the case of a triangulated category, a morphism can be extended
to a triangle in a unique way up to isomorphism. On the other hand, for d > 1, a morphism
can be extendend to a (d 4 2)-angle in different non-isomorphic ways. However, we still

have a unique “minimal” (d + 2)-angle extending any given morphism.

Lemma 2.9. (see [14, Lemma 5.18] and [4, Lemma 3.14]) Let d > 1 and h: Agy1 — X% Ag
be any morphism in a (d+ 2)-angulated category C. Then, up to isomorphism, there exists

a unique (d + 2)-angle of the form
Ap 29 Ay &5 Ay 2 202 4y 2 A 2 Ag B B4

with a1, a9, ...,0aq_1 in rade.

3. Proof of the main result

In this section, let k& be a field. We always assume that C is a k-linear Hom-finite Krull-
Schmidt (d + 2)-angulated category. We denote by ind(C) the set of isomorphism classes
of indecomposable objects in C. For any X € ind(C), we denote by Supp Hom¢ (X, —)
the subcategory of C generated by objects Y in ind(C) with Home(X,Y) # 0. Simi-
larly, Supp Hom¢(—, X') denotes the subcategory generated by objects Y in ind(C) with
Home (Y, X) # 0. If Supp Home (X, —) (Supp Home(—, X), respectively) contains only
finitely many indecomposable objects, we say that | Supp Home (X, —)| < oo (] Supp
Home(—, X)| < oo respectively).

Based on the definition of locally finite triangulated categories [17,|18], we define the
notion of locally finite (d + 2)-angulated categories.

Definition 3.1. A (d+2)-angulated category C is called locally finite if | Supp Home (X, —)|
< oo and | Supp Home(—, X)| < oo, for any object X € ind(C).

We know that the derived categories of finite dimensional hereditary algebras of finite
type and the stable module categories of finite dimensional self-injective algebras of finite
type are examples of locally finite triangulated categories, see [17,/18]. In those locally
finite triangulated categories, we take a d-cluster titling subcategory which is closed under
the d-th power of the shift functor. By Example we obtain some locally finite (d + 2)-

angulated categories.

Definition 3.2. Let C be a (d + 2)-angulated category and X € ind(C). We define a set
of (d + 2)-angles as follows:

S(X):={Ae: A% Ay 5 T 4, 0 x T vy |
A, is a non-split (d + 2)-angle with A € ind(C), and when d > 1,

a1,09,...,04-1 in radc}.
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Dually, we can define a set of (d 4 2)-angles as follows:
T(X):={Ae: X 2% A; 2 . 200 4, 2 4 20, wd g |
A, is a non-split (d + 2)-angle with A € ind(C), and when d > 1,
a1,09,...,04_1 in radc}.
Lemma 3.3. Let C be a (d + 2)-angulated category and X € ind(C). Then S(X) and
T(X) are non-empty sets.

Proof. 1t is enough to prove that S(X) is non-empty set because we can prove the state-
ment on 7'(X) by duality.

Since X € ind(C), there is an object A € C such that Home (X, X?A) # 0. Thus there
exists a non-split (d + 2)-angle:

xg—2

Be: A% B “p, 22, Y2 p Yl p tdoxhosdy

We decompose A into a direct sum of indecomposable objects, i.e., A = ;" ; A;. Without
loss of generality, we can assume that A = U & V where U and V are indecomposable
objects. By Lemma for the morphism (1,0): U @ V — U, there exists the following

commutative diagram of (d + 2)-angles

(u,0)

UaV 2 A - 4y -2 200 g, 2 x sy g wdy
\ \ \
l(m) | p1 | \ (1,0)
Bo Vo YV B Ba-1 ¥ Ba Bd+1 d
U Cy Co e Cy X Yey.
Similarly, for the morphism (0,1): U & V — V, there exists the following commutative
diagram
U @ V (U,U) Al (&%) A2 a9 . ag—1 Ad Qg X h ZdU @ Zdv
\ \ \
l(o,l) 91 \ \ i(O,l)
70 Y ga! Y 2 Yd—1 ¥ Yd Vd+1 d
v Dy Do Dy X eV

of (d+ 2)-angles. We assert that at least one of the following two (d + 2)-angles

ba x Do sy,

Yd+1

Bo B1 P2 Ba—1

U Cl Cg Cd

1% Y0 Dl 71 D2 Y2 .“'Ydfl Dd Yd X

»iy

is non-split. Otherwise, we obtain 8511 = 0 = 7441 by Lemma By (N3), we have the

following commutative diagram

(u,v) [e%1 a9 Qad—1 Qg

UeV Ay Ao Ay X " o ydy g iy

), .

\ \ 5
UV -—2-016D =0y Dy 2. S0 0 Dy -2 X @ X 2L 2y g ndy
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of (d + 2)-angles, where ¢; = (% 702_ ) It follows that h = 0. This is a contradiction since
B, is non-split.

For the morphism 441 # 0 or 7441 # 0, by Lemma we can find a (d + 2)-angle as
desired. This shows that S(X) is a non-empty set. O

Definition 3.4. Let C be a (d + 2)-angulated category, and
Ag: A2 Ay 24 2L 4, Yy SO v g
Ba—1

B.: B2 g &y . By g By Bant v

two (d+2)-angles in S(X). We say that Ae > B, if there are morphisms ¢; € Home(A4;, B;),
(i=0,1,...,d) such that the following diagram

A0 4y Mg, 2 ML Ayt x S s gy
:<P0 :‘Pl :@2 :@d :chpo
B b g B f B Py 4 8y Ban odp
commutes. We say that A, ~ B, if g is an isomorphism.
Dually, let
Ae: X 2% Ap 2 200 4, 24 A T8 wd g,

Be: x 2 By Py g By g B g

be two (d + 2)-angles in T'(X). We say that A > B, if there are morphisms ¢; €
Home(A;, B;), (i =1,2,...,d+ 1) such that the following diagram

X 20 Ay M gy e B g, Y B sy
I | | |

I 1 | P2 | ¢d | Pd+1
\ \ \i \

X Bo By B1 By B2 Ba—1 B, Bd B Bat1 sd

commutes. We say that A ~ B, if ¢411 is an isomorphism.

Lemma 3.5. Both S(X) and T(X) are direct ordered sets with the relations defined in
Definition [3.4]

Proof. We only prove that the first statement is true for S(X), and the second statement
for T'(X) can be proved similarly.

Assume that

agd— o
Ag: A S A 2. 22 f, 2y x T g

Be: B2y g By ity g B x B g
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belong to S(X).
We first show that if Ay > B, and Be > A,, then Ay ~ B,.

Since Ae > B, and B, > A,, we have the following two commutative diagrams

A0 Ay = Ay e PR g 7
| | | |
I vo | 1 | P2 | Pd 24
i 4 \4 ¥ Al
B Bo B B1 By B2 o Ba—1 B, Bd X Ba+1 EdBQ,
Bo B1 B2 Ba—1 Ba Bat1 g
B B By e By X YX*By
\ | | | |
4o I 41 | o | g I 2dapg
v [e7s) M [e%1 M a9 ag—1 ¥ aq Qg1 Y
A Ay Ay Ay X Y9A.

Since A is indecomposable, we have that End(A) is local. This implies that 1gpp is
nilpotent or an isomorphism. If ¢gpg is nilpotent, there exists a positive integer m such

that (¥opo)™ = 0. We write w; = 1;p;. Thus we have the following commutative diagram

@Q

A Py P T 7 T Ay —2d x 2 sd g
l(wowo)m l(wl)m l(wz)m l(wd—ﬂm l(%)m iEd(dJos&o)m
A o Al [e%1 A2 a2 ad—2 Ad—l Qg—1 Ad g X Qd41 ZdAo.

Then agry = X% (owo)™ager = 0. This is a contradiction since A, is non-split. Hence
Yoo is an isomorphism. Similarly, we can also obtain that ¢t is an isomorphism. This
shows that (g is an isomorphism. So Ae ~ B,.

It is clear that if Ae > Be and Be > C,, then Ay ~ C,.

Now we show that if A,, Be € S(X), then there exists Cy € S(X) such that Ae > C,
and Be ~ Cl,.

For the morphism 34: By — X, by the duality of Lemmal[2.4] there exists the following
commutative diagram of (d + 2)-angles

A Y0 Dy Y1 D, Y2 Va1 Dy Yd By Yd+1 sd 4
| | |
I 1 I 2 I a l’}’d
o v (051 v a9 Qq—1 ¥ agq Qg1
A Ay Ay e Ay X YeA

such that

My: Dy — My — My — - — My_q — By Ay L2220, x 7 sdpy,

is a (d + 2)-angle in C, where M; = D;11 ® A; (i =1,2,...,d — 1). Since neither §; nor

ag is a retraction, we have that (84, ag) is also not a retraction. Otherwise, there exists a
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morphism (7): X — By & Ag such that (84, aq)(;) = 1x and then Bys + agt = 1x. Since
X is indecomposable, we have that End(X) is local. This implies that either S4s or a4t
is an isomorphism. Thus either 84 or g is a retraction, a contradiction. That is, M, is
non-split.

Assume that D1 = U@V where U and V are indecomposable objects. By Lemma
for the morphism (1,0): U & V — U, there exists the following commutative diagram of
(d + 2)-angles

vaev-""L M, By Ay ——= X —= YU @ XV

| | |
lu,o) |1 | | J{(LO)
8o \ \ \
U Ly Lo e Ly X Y.

h

Similarly, for the morphism (0,1): U & V — V, there exists the following commutative
diagram of (d + 2)-angles

(u,v)

UaV M, My BidAj——=X —=YU XV
| | |
i(ﬂvl) 1 \ | l(o,n
o Y \ \
174 N Ny e Ny X »ay.

By the similar arguments as in the proof of Lemma we conclude that the at least one
of the following two (d + 2)-angles is non-split

do

U I Lo Ly X I yiy,
V"N Ny Ny X LTS
Without loss of generality, we assume that
U1, Lo Ly X I ydy
is non-split. By Lemma we can find a non-split (d + 2)-angle
Co: U200y Mooy 22 Ml M x b say
with A1, Ag, ..., Ag—1 in rade. By (N3), we have the following commutative diagram
/Ly P N P L PR LS L
UV N oty By AP X iy g sy
i(l,O) l@l \L l l(l,O)
v—2 .1, Ly La X" iy
o :
U2 o Mg, X Moo M x by
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of (d + 2)-angles. This shows that Ay > C,.

By (N3), we have the following commutative diagram

B g P p B B p By B cap
: 1 : W) 1
Vo ) Y Y (Busara) !

UV M, M, e Bi®A;—*X —= YU @ 24V
l(l,o) llpl J{ l J{(l,o)
Uv—> .1, Ly . Lu X" _ydy
o :
N NS R, M TS B FELYI SRS 5

of (d + 2)-angles. This shows that Be > C,. O

Lemma 3.6. Let C be a locally finite (d + 2)-angulated category and X € ind(C). Then

S(X) has a minimal element, and T(X) has a minimal element.

Proof. We only prove the first statement, the second statement can be proved similarly.
Since X € ind(C), there is an object A € C such that Home (X, X¢A) # 0. Then there
exists a non-split (d + 2)-angle

Qd— aq— h
Ae: A% A 25 Ay 220 22 4, 25N A, 2 X D 2dA,

We decompose By into a direct sum of indecomposable objects, i.e., Ag = @}._; Bx. Thus

Ao can be written as

n
ag— Qq— b1,b2,...,bn h
Av: A% A2 Ay 2 202y g, 2o, (y gy Ouleeli), o By sy
k=1

where by, € rade(Bg, X), k=1,2,...,n.

Since C is locally finite, there are only finitely many objects X; € ind(C),i=1,2,...,m
such that Home(X;, X) # 0. We assume that \;; (1 < j < ¢;) form a basis of the k-vector
space rade (B, X). Put M := (@)_, Br) ® (D;_,(X;)®%), considering the morphism

0= (bl,bg, .. .,bn,)\u, .. .,)\Z‘j,. . '7>‘mqm) S I‘adc(M,X)
which is not a retraction, it can be embedded in a (d + 2)-angle:
My: B M —My—--— My — M3 X 5B,

Thus M, is non-split since J is not a retraction. Assume that B = U @ V where U and V
are indecomposable objects. By Lemma for the morphism (1,0): U & V — U, there
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exists the following commutative diagram of (d + 2)-angles

(u,v)

UsV M, M, M X YU @ v
| | |
lu,o) |1 \ \ i(LO)
fo \ A \i f
U Ly Lo e Ly X YIy.

Similarly, for the morphism (0,1): U & V — V, there exists the following commutative
diagram of (d + 2)-angles

(u,v)

UV M, M, M X YU @ v
| | |
l(o,l) I 1 | | i(o,n
o \ A \
1% Ly Lo e Ly X xav.

By the similar arguments as in the proof of Lemma [3.3] we conclude that at least one of

the following two (d + 2)-angles

v-—.1, Ly Ly x Loy

V"N N Ny X »dy
is non-split. Without loss of generality, we assume that

v, Lo Ly xLoxay

is non-split. By Lemma we can find a non-split (d + 2)-angle

wo w1 “2_ ... wd—1 wd X f EdU

Ce: U C4 Co

Cq

with wi,wo,...,w4—1 in rade. Then Cy € S(X). By (N3), we have the following commu-

tative diagram

vev-"L M, M-S x ST @ v
o T
Uv—2 .1, Ly Ly x—1 . yay

| | |
wo ¥ w1 v w2 Wd—1 i wq f
U Cy Cs Cy X Yy

of (d + 2)-angles.
For any D € S(X), it can be written as

z d=(dy,da,...,dy)
Dy: D—Dy— Dy — -+ = Dy = P Li ——5 X - %D
i=1
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with d; € rade(Li, X), i = 1,2,...,p. Since Do € S(X) is non-split, we get that d is not
a retraction which implies d € rade ( P Li, X ) By the definitions of );; and d, there
exists a morphism p: @?_; L, — M such that d = dp. By (N3), we have the following

commutative diagram

D D, Dy Ddlﬂ@zlLHXHEdD
\ | \ | ‘
\ | | | ‘
¥ ¥ ¥ ¥ v
B M, M, My, YiB

of (d + 2)-angles, where B = U @ V. Thus we get the following commutative diagram

D Dy Dy Dy 1——6&p L HXHEdD
U wo Cl w1 02 w2 L Wd—2 Cd—l Wd—1 EdU
of (d + 2)-angles. This shows that C, is a minimal element in S(X). O

Remark 3.7. If there exists a minimal element in S(X) or T'(X), then it is unique up to

isomorphism by Lemma 2.9

We are now in a position to prove our main result.

Theorem 3.8. Let C be a locally finite (d + 2)-angulated category. If X € ind(C), then
there are an Auslander-Reiten (d+2)-angle ending at X, and an Auslander-Reiten (d+2)-
angle starting at X. In this case, we say that C has Auslander-Reiten (d + 2)-angles.

Proof. Since X € ind(C), we know that S(X) is non-empty by Lemma[3.3] By Lemmal[3.6]
there exists a (d 4 2)-angle

Ae: A 2% Ay &y 2t g, 24y x 24 s g
which is a minimal element in S(X). Since A, € S(X), we have that aq,as,..., a4, | €
rade and A is indecomposable. Then End(A) is local.
We need to prove that A, is an Auslander-Reiten (d 4 2)-angle. By Lemma it
suffices to show that a4 is right almost split.
Assume that g: M — X is not a retraction. By the duality of Lemma [2.4] there exists

the following commutative diagram of (d + 2)-angles

A Y0 Bl 71 32 Y2 Yd—1 Bd Yd M Yd+1 EdA
| I |
I 1 | 2 | Ya l'm
(7)) v [e%1 M a2 ad—1 ¥ aq Ad41
A A Ay Ay X PV
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such that
. (9,2a) h d
Ne: BN >Ny — -+ —>Nj_1 >MobpA; —= X =3B

is a (d + 2)-angle in C, where N; = B;j11 ® A;, i =1,2,...,d — 1. Since g and ay are not
retractions, we have that (g,aq) is also not a retraction by the similar arguments as in
the proof of Lemma [3.5l That is, N, is non-split.

Without loss of generality, we can assume that By = U @& V where U and V are
indecomposable objects. By Lemma for the morphism (1,0): U & V. — U, there

exists the following commutative diagram of (d + 2)-angles

Ue vy, N Mo A —— X —— YU iy

\ \ \
la,o) I 1 \ ! l(l,o)
5 ¥ y ¥ ¥ J
U Ly Lo e Ly X 2.

Similarly, for the morphism (0,1): U @ V' — V, there exists the following commutative
diagram of (d + 2)-angles

(u,v)

UpV N No M®dA;——=X —= YU g3V
| | |
l(OJ) 1 ! ! l(o,n
7o \ \ \
4 Q1 Q2 e Qa X v

By the similar arguments as in the proof of Lemma [3.3] we conclude that at least one of

the following two (d + 2)-angles

o f

Ly Lo e Ly X Y4y,
T Q> Q= Q> X ——= XV

is non-split. Without loss of generality, we assume that
U0, — L, Ly x Loyay

is non-split. By Lemma we can find a non-split (d + 2)-angle

Ao A1 A2 Ad—1 Ad

C, !

Co: U 4 Cy X vy

with A1, Ag, ..., A\¢q—1 in rade. By (N3), we have the following commutative diagram
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A [ey) Al al A2 a9 Qg1 Ad Qg X Qg4 EdA[)
[ \ [ [
| | | l(?)
\ (u,v) \ N (9,04) |l
UpV —>N; No M®dA;—5 X — =Yy gxiv
la,o) l‘?l l \L l(l,o)
U—2 .1, Ly . Ly X1 vy
| | |
\ \ A Y
U2 oy Moo, 2 Mt oMy T vay

of (d+2)-angles. We obtain that As > C,, which implies Ay ~ C,, since A, is the minimal

element in S(X). Thus there exists the following commutative diagram

)\0 )\1 )\2 /\d 1

U Ch Co

RN

Ry P P

ad+1

of (d + 2)-angles. Hence we get the following commutative diagram

(u,0)

UV Ny Ny M@AdﬂX sz@zdv
I
A @ Al [e51 Ag a2 o Qd—1 Qd41 ZdAO

of (d + 2)-angles. It follows that g = aay. This shows that ay is right almost split.
Similarly, we can show that if X € ind(C), then there exists an Auslander-Reiten
(d + 2)-angle starting at X. This completes the proof. O

Remark 3.9. As a special case of Theorem when d = 1, that is, if C is a locally finite
triangulated category, then C has Auslander-Reiten triangles, see [17.|18].
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