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Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange

Equations

Magdalena Chmara

Abstract. This paper is concerned with the following Euler-Lagrange system
d
dtLv(t, u(t), u̇(t)) = Lx(t, u(t), u̇(t)) for a.e. t ∈ [−T, T ],

u(−T ) = u(T ),

Lv(−T, u(−T ), u̇(−T )) = Lv(T, u(T ), u̇(T )),

where Lagrangian is given by L = F (t, x, v)+V (t, x)+〈f(t), x〉, growth conditions are

determined by an anisotropic G-function and some geometric conditions at infinity.

We consider two cases: with and without forcing term f . Using a general version of

the mountain pass theorem and Ekeland’s variational principle we prove the existence

of at least two nontrivial periodic solutions in an anisotropic Orlicz-Sobolev space.

1. Introduction

We consider the second order system

(1.1)


d
dtLv(t, u(t), u̇(t)) = Lx(t, u(t), u̇(t)) for a.e. t ∈ I,

u(−T ) = u(T ),

Lv(−T, u(−T ), u̇(−T )) = Lv(T, u(T ), u̇(T )),

where I = [−T, T ], |I| ≥ 1 and L : I × RN × RN → R is given by

L(t, x, v) = F (t, x, v) + V (t, x) + 〈f(t), x〉.

If Lv is strictly convex with respect to v, then Lv(−T, u(−T ), u̇(−T )) = Lv(T, u(T ), u̇(T ))

is equivalent to u̇(−T ) = u̇(T ).

The growth of L is determined by function G such that

(G) G : RN → [0,∞) is a continuously differentiable G-function (i.e., G is convex, even,

G(0) = 0 and G(x)/|x| → ∞ as |x| → ∞) satisfying ∆2 and ∇2 conditions (at

infinity).
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In Section 2 we use G to define an Orlicz space. The following assumption on F , V and

f will be needed throughout the paper.

Function F : I × RN × RN → R is of class C1 and satisfy

(F1) F (t, x, · ) is convex for all (t, x) ∈ I × RN .

(F2) there exist a ∈ C(R+,R+) and b ∈ L1(I,R+) such that for all (t, x, v) ∈ I×RN×RN ,

|F (t, x, v)| ≤ a(|x|)(b(t) +G(v)),

|Fx(t, x, v)| ≤ a(|x|)(b(t) +G(v)),

G∗(Fv(t, x, v)) ≤ a(|x|)(b(t) +G(v)).

(F3) there exists θF > 0 such that for all (t, x, v) ∈ I × RN × RN ,

〈Fx(t, x, v), x〉+ 〈Fv(t, x, v), v〉 ≤ θF F (t, x, v).

(F4) there exists Λ > 0 such that for all (t, x, v) ∈ I × RN × RN ,

F (t, x, v) ≥ ΛG(v).

(F5) F (t, x, 0) = 0, Fv(t, x, 0) = 0 for all (t, x) ∈ I × RN .

On potential V ∈ C1(I × RN ,R) we assume

(V1) V (t, x) = K(t, x)−W (t, x) for x ∈ RN , t ∈ I,

(V2) there exist M > 0, εV > 0, θV > θF , 1 < pK ≤ θV − εV , such that

〈Vx(t, x), x〉 ≤ (θV − εV )K(t, x)− θV W (t, x)

and

(1.2) W (t, x) > K(t, x) > |x|pK

for |x| > M , t ∈ I,

(V3) there exist ρ > 0, b > 1 and g ∈ L1(I,R), such that V (t, x) ≥ bG(x) − g(t) for

G(x/(2|I|)) ≤ ρ/2,

(V4)
∫
I V (t, 0) dt = 0 for t ∈ I.

We assume that the forcing term f belongs to the space LG
?

and

(f)
∫
I G
∗(f(t)) + g(t) dt < min{Λ, b− 1}ρ.
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Using the general form of the mountain pass theorem and Ekeland’s variational princi-

ple we show that the problem (1.1) has at least two nontrivial solutions in an anisotropic

Orlicz-Sobolev space (see Theorems 3.1, 4.2 and 4.4).

Problems similar to (1.1) were considered e.g. in [9,20,22] for F (t, x, v) = |v|p, in [1] for

F being an isotropic G-function and in [7,17] (periodic problem) for F being an anisotropic

G-function. Recently in [8] authors proved the existence of a Dirichlet problem, where F

is in general form and satisfies (F1)–(F5).

In [7–9,20,22] the existence of a mountain pass type solution was shown using the well

known mountain pass theorem by Ambrosetti and Rabinowitz [2]. One of the assumptions

of this theorem is that the action functional is greater than zero on the boundary of some

ball, i.e.,

(1.3) there exists r > 0 such that if ‖x‖ = r, then J(x) > 0.

In the Orlicz-Sobolev space norm is a sum of Luxemburg norms ‖u‖W1 LG = ‖u̇‖LG+‖u‖LG

(see more in Section 2). To apply theorem of Ambrosetti and Rabinowitz to the anisotropic

Orlicz-Sobolev space setting it was necessary to establish connections between Luxemburg

norm ‖ · ‖LG and modular
∫
I G(·) dt (see papers [4, 7, 8]).

It turns out that the ball Br = {u ∈W1 LG : ‖u‖W1 LG < r} is not the most suitable

set to obtain the mountain pass geometry in the anisotropic case (an example explaining

this fact can be found in Section 5). Therefore, instead of the ball, we use the set

(1.4) Ω = Φ−1([0, ρ)) =

{
u ∈W1 LG :

∫
I
G(u̇) +G(u) dt < ρ

}
,

where Φ: W1 LG → [0,∞) is given by Φ(u) =
∫
I G(u̇) +G(u) dt. Φ is not a norm, but it

is better suited to geometric idea of MPT in the anisotropic case.

In the literature we can find a lot of versions of the mountain pass theorem. In our

case we use general form of the MPT with a bounded open neighborhood instead of the

ball. The following theorem is a direct consequence of Theorem 4.10 in [16].

Theorem 1.1. Let X be a Banach space and J ∈ C1(X,R). Assume that there exist

e0, e1 ∈ X and a bounded open neighborhood Ω of e0 such that e1 ∈ X \ Ω and

inf
u∈∂Ω

J(u) > max{J(e0), J(e1)}.

Let

Γ = {g ∈ C([0, 1], X) : g(0) = e0, g(1) = e1} and c = inf
g∈Γ

max
s∈[0,1]

J(g(s)).

If J satisfies the Palais-Smale condition, then c is a critical value of J and

c > max{J(e0), J(e1)}.
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In fact, there is only one difference between Theorem 1.1 and Theorem 4.10 in [16].

In [16] it is assumed that J satisfies the Palais Smale condition at the level c. When

the Palais-Smale condition is satisfied (i.e., {J(un)} is bounded and J ′(un)→ 0), we can

check immediately that the Palais Smale condition at the level c (i.e., {J(un)} → c and

J ′(un)→ 0) holds for all c ∈ R [12, p. 16].

In the proof of Theorem 3.1 we show that our action functional satisfies conditions of

Theorem 1.1 where Ω is given by (1.4).

Using the Ekeland Variational Principle we show the existence of a second nontrivial

solution of (1.1), which belongs to the interior of Ω. The existence of two solutions was

investigated for example in [22] for ordinary p-Laplacian systems and in [21] for p(t)-

Laplacian systems. In these papers it was shown that there exists u2 such that

J (u2) = inf
u∈Br

J (u) ≤ 0 (or < 0, in [22])

and that there exists a minimizing sequence {vn} which is a Palais-Smale sequence of J ,

contained in a small ball centered at 0. In our case we use similar methods, but instead of

the ball Br we take Ω = Φ−1([0, ρ)). Since Ω is not a ball we cannot simply cite [21, 22].

Our proof is based on concepts of [3, 16].

We shall distinguish cases with and without forcing. In the case with forcing it is

enough that

inf
u∈Ω
J (u) ≤ 0.

In the case without forcing u0 ≡ 0 is a trivial solution of (1.1), so we need the sharp

inequality. To obtain this we need additional assumptions:

(F6) there exist ζF > 1, λ0 ∈ (0, 1) such that

F (t, λx, λv) ≤ λζFF (t, x, v)

for λ ∈ (0, λ0), t ∈ I, G
(
x

2|I|
)
≤ ρ/2,

(V5) there exist ζK , ζW > 1, ζW < min{ζF , ζK}, λ0 ∈ (0, 1) and W : I × RN → (0,∞)

such that

V (t, λx) ≤ λζKK(t, x)− λζWW (t, x)

for λ ∈ (0, λ0), t ∈ I, G
(
x

2|I|
)
≤ ρ/2.

2. Preliminaries

A function G∗(y) = supx∈RN {〈x, y〉 − G(x)} is called the Fenchel conjugate of G. As an

immediate consequence of the definition we have the Fenchel-Young inequality

∀x, y ∈ RN , 〈x, y〉 ≤ G(x) +G∗(y).
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Now we briefly recall the notion of anisotropic Orlicz spaces. For more details we refer

the reader to [6, 19]. The Orlicz space associated with G is defined to be

LG = LG(I,RN ) =

{
u : I → RN :

∫
I
G(u) dt <∞

}
.

The space LG equipped with the Luxemburg norm

‖u‖LG = inf

{
λ > 0 :

∫
I
G
(u
λ

)
dt ≤ 1

}
is a reflexive Banach space. We have the Hölder inequality∫

I
〈u, v〉 dt ≤ 2‖u‖LG‖v‖LG∗ for every u ∈ LG and v ∈ LG

∗
.

Let us denote by

W1 LG = W1 LG(I,RN ) =
{
u ∈ LG : u̇ ∈ LG

}
an anisotropic Orlicz-Sobolev space of vector valued functions with the usual norm

‖u‖W1 LG = ‖u‖LG + ‖u̇‖LG .

It is known that elements of W1 LG are absolutely continuous functions.

We introduce the following subset of W1 LG

W1
T LG =

{
u ∈W1 LG : u(−T ) = u(T )

}
.

Functional RG : LG → [0,∞) given by formula RG(u) :=
∫
I G(u) dt is called modular

(see [11, 14, 18]). For Lebesgue spaces notions of modular and norm are indistinguishable

because

‖u‖Lp =

(∫
I
|u(t)|p dt

)1/p

.

In the Orlicz space this relation is more complicated. One can easily see, that

(2.1) RG(u) ≤ ‖u‖LG for ‖u‖LG ≤ 1 and RG(u) > ‖u‖LG for ‖u‖LG > 1.

The modular RG is coercive in the following sense [15, Proposition 2.7]:

lim
‖u‖

LG→∞

RG(u)

‖u‖LG

=∞.

The following lemma is crucial to Theorems 3.1 and 4.2. We will use it to show that

J |∂Ω > 0 and that J is negative in the interior of Ω.

Lemma 2.1. If |I| ≤ 1, then RG(u̇) + RG(u) ≥ 2|I|G
(u(t)

2

)
for t ∈ I, u ∈ W1 LG. If

|I| ≥ 1 then RG(u̇) +RG(u) ≥ 2G
(u(t)

2|I|
)

for t ∈ I, u ∈W1 LG.
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Proof. Let u ∈W1 LG. Since u is absolutely continuous we have

u(t)− u(s) =

∫ t

s
u̇ dt for s, t ∈ I.

Hence, by Jensen’s integral inequality and since G(kx)/k is increasing with respect to

k > 0 for x ∈ RN we obtain

G

(
1

|I|

(
u(t)− 1

|I|

∫
I
u(s) ds

))
= G

(
1

|I|

(∫
I

u(t)− u(s)

|I|
ds

))
≤ 1

|I|

∫
I
G

(
u(t)− u(s)

|I|

)
ds =

1

|I|

∫
I
G

(
1

|I|

∫ t

s
u̇(r) dr

)
ds

=
1

|I|

∫
I
G

(
1

|t− s|

∫ t

s

|t− s|
|I|

u̇(r) dr

)
ds ≤ 1

|I|

∫
I

1

|t− s|

∫ t

s
G

(
|t− s| u̇(r)

|I|

)
dr ds

≤ 1

|I|

∫
I

1

|I|

∫ t

s
G
(
u̇(r)

)
drds ≤ 1

|I|

∫
I
G
(
u̇(r)

)
dr.

(2.2)

Let |I| ≤ 1. Then by (2.2), Jensen’s integral inequality and convexity of G we have

that for all t ∈ I,∫
I
G(u) +G(u̇) dt ≥ |I|

(
G

(
1

|I|

∫
I
u

)
+G

(
1

|I|

(
u(t)− 1

|I|

∫
I
u

)))
≥ 2|I|G

(
u(t)

2

)
.

Let |I| ≥ 1. Then by (2.2), Jensen’s integral inequality and convexity of G we have that

for all t ∈ I,∫
I
G(u) +G(u̇) dt ≥

(
G

(
1

|I|2

∫
I
u

)
+G

(
1

|I|
u(t)− 1

|I|2

∫
I
u

))
≥ 2G

(
u(t)

2|I|

)
.

In the proof of the existence of a second solution we will need the following inequality

by Brezis and Lieb [5, Lemma 3] (see also [14, Lemma 4.7]).

Lemma 2.2. For all k > 1, 0 < ε < 1/k, x, y ∈ RN , we have

|G(x+ y)−G(x)| ≤ ε|G(kx)− kG(x)|+ 2G(Cεy),

where Cε = 1
ε(k−1) .

Let us also recall Proposition 2.4 in [7], which will be used in the proof of the fact that

our action functional satisfies the Palais-Smale condition.

Proposition 2.3. For any 1 < p ≤ q <∞, such that | · |p ≺ G(·) ≺ | · |q,∫
I
|u|p dt ≥ C‖u‖p−q

W1 LG‖u‖qLG

for u ∈W1 LG \ {0} and some C > 0.
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3. Existence of the first solution

Define the action functional J : W1
T LG(I,RN )→ R by

(3.1) J (u) =

∫
I
F (t, u, u̇) + V (t, u) + 〈f, u〉 dt.

Since F and V are of class C1 and F satisfies (F2), J is well defined and of class C1.

Furthermore, its derivative is given by

J ′(u)ϕ =

∫
I
〈Fv(t, u, u̇), ϕ̇〉 dt+

∫
I
〈Fx(t, u, u̇) + Vx(t, u) + f, ϕ〉 dt.

For more details see [6, Theorem 5.7].

We can now formulate the first of our main results.

Theorem 3.1. Let F , V and f satisfies (F1)–(F5), (V1)–(V4) and (f). Then (1.1) has

at least one nontrivial periodic solution.

Proof. We show that J satisfies assumptions of Theorem 1.1 for Ω = Φ−1([0, ρ)), where

ρ > 0, Φ: W1 LG → [0,∞), Φ(u) = RG(u̇) +RG(u).

Step 1. One can see, that Ω is a bounded open neighborhood of 0. We claim that

∂Ω = Φ−1({ρ}). Since Φ is continuous,

∂Φ−1([0, ρ)) ⊂ Φ−1(∂[0, ρ)) = Φ−1({ρ}).

For the opposite inclusion (not true in general) suppose that x ∈ Φ−1({ρ}), x1
n = n+1

n x,

x2
n = n

n+1x for n ∈ N. Then x1
n, x

2
n → x. From convexity of Φ and since ρ > 0, we have

Φ(x1
n) ≥ n+ 1

n
Φ(x) > Φ(x) and Φ(x2

n) ≤ n

n+ 1
Φ(x) < Φ(x)

for all n ∈ N. Hence x ∈ ∂Ω.

Step 2. In this step we show that J satisfies the Palais-Smale condition. Fix u ∈
W1

T LG, such that ‖u‖W1 LG 6= 0. From (F3) we have∫
I
〈Fv(t, u, u̇), u̇〉+ 〈Fx(t, u, u̇), u〉 dt ≤ θF

∫
I
F (t, u, u̇) dt.

Combining it with (F4) we have

(3.2)

∫
I
θV F (t, u, u̇)− 〈Fv(t, u, u̇), u̇〉 − 〈Fx(t, u, u̇), u〉 dt ≥ Λ(θV − θF )

∫
I
G(u̇) dt.

Set

MV = sup{|(θV − εV )K(t, x)− θVW (t, x)− 〈Vx(t, x), x〉| : t ∈ I, |x| ≤M}.
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Then, by Assumptions (V1) and (V2),

θV

∫
I
V (t, u)− 〈Vx(t, u), u〉 dt

= εV

∫
I
K(t, u) dt+ (θV − εV )

∫
I
K(t, u) dt− θV

∫
I
W (t, u) dt−

∫
I
〈Vx(t, u), u〉 dt

≥ εV
∫
I
K(t, u) dt− |I|MV .

(3.3)

Applying (1.2) and Proposition 2.3 we have that for some C1, C2 = C2(|I|) > 0,

(3.4)

∫
I
K(t, u) dt ≥ C1

‖u‖q
LG

‖u‖q−pK
W1 LG

− C2

for all q such that G ≺ | · |q.
Since f ∈ LG

∗
, by Hölder’s inequality we have

(3.5) (θV − 1)

∫
I
〈f(t), u〉 dt ≥ −2(θV − 1)‖f‖LG?‖u‖LG ≥ −Cf‖u‖W1 LG ,

where Cf = 2(θV − 1)‖f‖LG? > 0.

Let {un} ⊂ W1 LG be a Palais-Smale sequence for functional J . Then there exist

CJ , CJ ′ > 0 such that

(3.6) − CJ ≤ J (un) ≤ CJ , −CJ ′‖un‖W1 LG ≤ J ′(un)un ≤ CJ ′‖un‖W1 LG .

Assume that {un} is not bounded. Then there exists a subsequence of {un} such that

‖un‖W1 LG →∞.

Combining (3.2)–(3.6), we obtain

θV CJ + CJ ′‖un‖W1 LG ≥ θV J (un)− J ′(un)un

=

∫
I
θV F (t, un, u̇n)− 〈Fv(t, un, u̇n), u̇n〉 − 〈Fx(t, un, u̇n), un〉 dt

+

∫
I
θV V (t, un)− 〈Vx(t, un), un〉 dt+

∫
I
(θV − 1)〈f(t), un〉 dt

≥ C0

∫
I
G(u̇n) dt+ C1

‖un‖qLG

‖un‖q−pKW1 LG

− C2 − C3‖un‖W1 LG

for some C0, C1, C2, C3 > 0. Hence

‖un‖W1 LG

(
RG(u̇n)

‖un‖W1 LG

+
‖un‖qLG

‖un‖q−pK+1
W1 LG

− C4

‖un‖W1 LG

− C5

)
≤ C6

for some C4, C5, C6 > 0.

In the proof of Lemma 3.2 in [7] it was shown that the left-hand side of the above

inequality goes to the infinity, which is impossible. Hence {un} is bounded.
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Repeating arguments used in the proof of Lemma 4.2 in [8] one can show that there

exists a converging subsequence, i.e., the Palais Smale condition is satisfied.

Step 3. Take u ∈ Φ−1({ρ}). Then, by Lemma 2.1, we have G
(u(t)

2|I|
)
≤ ρ/2 for all t ∈ I.

From (F4), (V3) and Fenchel’s inequality,

J (u) ≥
∫
I

ΛG(u̇) + bG(u)−G(u)−G∗(f)− g(t) dt

≥ min{Λ, b− 1}ρ−
∫
I

(
G∗(f) + g(t)

)
dt.

Combining it with (f) we obtain J (u) > 0 on Φ−1({ρ}).
Step 4. Now we show that there exists e ∈ Φ−1((ρ,∞)) such that J (e) < 0. By (V2),

for |x| > M , t ∈ I, λ > 1 we obtain

log

(
−V (t, λx)

−V (t, x)

)
=

∫ λ

1

d

dλ
log(−V (t, λx)) dλ =

∫ λ

1

−〈Vx(t, λx), λx〉
−λV (t, λx)

dλ

≥
∫ λ

1

−(θV − εV )K(t, λx) + θVW (t, λx)

−λV (t, λx)
dλ ≥ θV

∫ λ

1

1

λ
= log

(
λθV
)
.

Hence

V (t, λx) ≤ λθV V (t, x) for |x| > M.

In similar way, from (F3), we have

F (t, λx, λv) ≤ λθFF (t, x, v)

for x, v ∈ RN , t ∈ I, λ > 1. Let λ > 1 and ψ ∈W1
T LG be such that |{t ∈ I : |ψ(t)| >

0}| > 0. Then we obtain

J (λψ) ≤
∫
I
λθFF (t, ψ, ψ̇) + λ〈f(t), ψ〉 dt+

∫
{|ψ(t)|>M}

λθV V (t, ψ) dt+ CV |I|,

where CV = sup{V (t, x) : |x| < M, t ∈ I}. Note that V is negative for |x| > M and

θV > θF . Therefore, if we take e = λψ for sufficiently large λ, we get J (e) < 0 and

Φ(e) > ρ.

Step 5. To finish the proof note that by (3.1), (F5) and (V4) we have that J (0) = 0.

Applying Theorem 1.1 to J , e0 = 0 and e1 = e, we obtain that there exists a critical point

u1 with a critical value

c1 := inf
g∈Γ

max
s∈[0,1]

J (g(s)) > 0,

where

Γ =
{
g ∈ C

(
[0, 1],W1 LG

)
| g(0) = 0, g(1) = e

}
.
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4. Existence of the second solution

Theorem 3.1 ensures the existence of the first solution of (1.1). To obtain the second

solution we use the well known Ekeland’s Variational Principle.

Theorem 4.1. [10, Theorem 1.1] Let V be a complete metric space and J : V → R∪{+∞}
a lower semi continuous function, bounded from below, 6≡ +∞. Let u ∈ V and ε > 0 be

such that

(4.1) J(u) ≤ inf
v∈V

J(v) + ε.

Then for all δ > 0 there exists some point v ∈ V such that

(i) J(v) ≤ J(u),

(ii) d(u, v) ≤ δ,

(iii) J(w) > J(v)− ε
δd(v, w) for all w 6= v.

Set

c2 := inf
u∈Ω
J (u).

Let us recall, that Ω = Φ−1([0, ρ)). Firstly we consider the case with forcing.

Theorem 4.2. Let F and V satisfies (F1)–(F5), (V1)–(V4) and f(t) 6≡ 0. Then (1.1) has

at least two periodic solutions.

Proof. Note that Ω is a complete metric space with respect to the norm in W1 LG and J
is bounded from below on Ω. Fix ε > 0 and choose δ =

√
ε. There exists u ∈ Ω such that

J (u) ≤ c2 + ε. By Theorem 4.1, there exists v ∈ Ω such that

c2 ≤ J (v) ≤ c2 + ε,(4.2)

‖v − u‖W1 LG ≤
√
ε,(4.3)

J (w) ≥ J (v)−
√
ε‖w − v‖W1 LG for all w 6= v.(4.4)

Now we show that v ∈ Ω. Since J (0) = 0, c2 ≤ 0. Hence and by (4.2) we have that

0 ≥ c2 ≥ J (v)− ε.

If we assume that v ∈ ∂Ω, then J (v) > 0, by Step 2 in the proof of Theorem 3.1. Taking

sufficiently small ε, we deduce that 0 ≥ c2 ≥ J (v)− ε > 0, which is a contradiction.

Take w = v + sh with 0 < s ≤ 1, h ∈ W1 LG such that ‖h‖W1 LG = 1. Then, by

Lemma 2.2 we have that∫
I
G(v + sh) dt ≤

∫
I
G(v) +

√
s|G(2v)− 2G(v)|+ 2G(

√
sh) dt
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and ∫
I
G(v̇ + sḣ) dt ≤

∫
I
G(v̇) +

√
s|G(2v̇)− 2G(v̇)|+ 2G(

√
sḣ) dt.

Hence

Φ(v + sh) ≤
∫
I
G(v) +G(v̇) +

√
s
(
|G(2v)− 2G(v)|+ |G(2v̇)− 2G(v̇)|

)
dt

+ 2

∫
I
G(
√
sh) +G(

√
sḣ) dt.

Note that ‖
√
sh‖LG ≤ 1. From (2.1) we obtain

∫
I G(
√
sh) ≤ ‖

√
sh‖LG ≤

√
s. Hence

Φ(v + sh) ≤
∫
I
G(v) +G(v̇) +

√
s
(
|G(2v)− 2G(v)|+ |G(2v̇)− 2G(v̇)|

)
dt+ 4

√
s.

Since Φ(v) < ρ, it follows that for s sufficiently small Φ(v + sh) < ρ. By (4.4),

J (v + sh) ≥ J (v)−
√
ε‖sh‖W1 LG .

Hence
J (v + sh)− J (v)

s
≥ −
√
ε.

Taking the limit as s→ 0, we have 〈J ′(v), h〉 ≥ −
√
ε for h ∈W1 LG such that ‖h‖W1 LG =

1. Since −h ∈ Ω, we have sup‖h‖=1 |〈J ′(v), h〉| ≤
√
ε and hence

‖J ′(v)‖(W1 LG)? ≤
√
ε.

Let {un} be a minimizing sequence of J . We choose εn in the following way

εn =

J (un)− infΩ J , J (un) > infΩ J ,
1
n , J (un) = infΩ J .

One can see, that εn → 0 as n→∞. Since un satisfies (4.1) for each n, we have

c2 ≤ J (vn) ≤ c2 + εn, ‖vn − un‖W1 LG ≤
√
εn, ‖J ′(vn)‖(W1 LG)? ≤

√
εn

for vn associated to un and εn in (4.2)–(4.4). Hence we can see that {vn} is a Palais-

Smale sequence of J . Since J satisfies the Palais-Smale condition (Step 2 in the proof of

Theorem 3.1), we have that there is u2 such that J (u2) = c2 and J ′(u2) = 0, so u2 is the

desired solution of (1.1).

Remark 4.3. Similar arguments regarding the existence of a second solution can be found

in [13, Proof of Lemma 3.3] and [21, Step 4 in the proof of Theorem 1.1]. See also [16,

Theorem 4.2, Corollary 4.1] and [3, Theorem 3.1] for more detailed computations.
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If f(t) ≡ 0 it is necessary to show that infu∈Ω J (u) < 0. Without this assumption it is

possible that the minimizing sequence found in the proof of Theorem 4.2 converges to the

solution u0 ≡ 0. In order to avoid this phenomenon we add Assumptions (F6) and (V5).

Theorem 4.4. Let F and V satisfies (F1)–(F6), (V1)–(V5) and f(t) ≡ 0. Then (1.1) has

at least two nontrivial periodic solutions.

Proof. Let 0 6= ψ ∈ Ω. Then, by Lemma 2.1, G
(ψ(t)

2|I|
)
≤ ρ/2 for all t ∈ I. Choose

λ < min

{
1,

(
CW
CFK

)1/(min{ζF ,ζK}−ζW )
}
,

where CW =
∫
IW (t, ψ) dt, CFK =

∫
I F (t, ψ, ψ̇) +K(t, ψ) dt.

By (F6), (V5) and f(t) ≡ 0 we have

J (λψ) =

∫
I
F (t, λψ, λψ̇) + V (t, λψ) dt

≤
∫
I
λζFF (t, ψ, ψ̇) + λζKK(t, ψ)− λζWW (t, ψ) dt

≤ CFKλmin{ζF ,ζK} − CWλζW < 0.

Hence c2 < 0. In the same way as in the proof of Theorem 4.2 we show that there exists a

minimizing sequence {vn} such that J (vn)→ 0 and J ′(vn)→ c2 as n→∞. Hence there

is u2 such that J (u2) = c2 and J ′(u2) = 0 and u2 is the second solution of (1.1). Since

c2 < 0 and J (0) = 0, u2 is nontrivial.

Remark 4.5. Theorem 4.4 is some generalization of existing results for (see for example

[13,22]). Although we consider only periodic problem, but we do it for more general kinetic

part of Lagrangian.

We can consider simpler class of potentials

V (t, x) = A0(t)G0(x)−A1(t)G1(x)−A2(t)G2(x),

where Gi : RN → [0,∞) are convex functions of class C1 satisfying Gi(0) = 0 (to provide

(V4)) and assumptions ∆2 ∇2 in infinity with Simonenko indices (see [7]) min{p∞G1
, p∞G2
} >

q∞G0
(to provide (V2)). To provide (V3) we assume thatA1(t)G1(x) < g(t) forG(x/(2|I|)) <

ρ/2, A0(t) > b and

lim
G(x/(2|I|))→0

G2(x)

G(x)
= 0.

To ensure that Assumption (V5) is satisfied we need that G1 satisfies ∆2 globally and G0

satisfies ∇2 globally with Simonenko indices qG1 < pG0 .
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5. Example

We finish the paper with some example of function F , potential and forcing satisfying

Assumptions (V1)–(V5), (F1)–(F6) and (f). We also show that they do not satisfy as-

sumptions in [7], which indicate that taking Φ−1([0, ρ)) instead of the ball
{
u ∈W1 LG :

‖u‖W1 LG < r
}

is better to obtain the mountain pass geometry in the anisotropic case.

Let us recall that in [7] condition (1.3), mentioned in the introduction, was guaranteed

by the following assumptions:

(A3) there exist r0, b > 1 and g ∈ L1(I,R), such that V (t, x) ≥ bG(x)− g(t) for |x| ≤ r0,

either

(5.1)

∫ T

−T
G∗(f(t)) + g(t) dt < min{1, b− 1}(r0/(2C∞,G)), r0 ≥ 2C∞,G

or

(5.2)

∫ T

−T
G∗(f(t)) + g(t) dt < min{1, b− 1}

(r0/(2C∞,G))qG , r0 ≤ 2C∞,G,

(r0/(2C∞,G))pG , r0 > 2C∞,G,

where C∞,G is an embedding constant for W1 LG ↪→ L∞ given by formula C∞,G =

max{1, |I|}A−1
G

(
1
|I|
)
, AG : [0,∞)→ [0,∞) is the greatest convex minorant of G (see [17]),

r = r0/C∞,G.

Sets of assumptions

(i) (A3), ((5.1) or (5.2)),

(ii) (V3), (f)

are independent, namely for some potentials it is not possible to find r0 such that the first

assumptions are satisfied, but for the same potential one can find ρ such that the latter

are met.

Example 5.1. Let I = [−1, 1], x = (x1, x2), v = (v1, v2) ∈ Rn × Rn,

F (t, x, v) = G(v) = v2
1 + (v1 − v2)4, K(t, x) = 2G(x) + |x|2 log(|x|2 + 1),

W (t, x) =
(
G(x)

)2
+
|x|3/2 + |x|5

100
, V (t, x) = K(t, x)−W (t, x),

f0(t) =
2− t2

250
, f = (f0, . . . , f0), g(t) ≡ 0.001, b = 2, ρ = 0.004,

θV = 4.9, εV = 0.001, θF = 4, ζW =
31

16
, ζK = 2, ζF = 2.
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If we take F , V and f given above one can check, that (V1)–(V5), (F1)–(F6) and (f) are

satisfied. However, there do not exist a, b, r0 such that either (A3) and (5.1) or (A3) and

(5.2) holds. This situation was shown in Figure 5.1.

V3

In[79]:= (*sprawdzenie założenia V3*)

b = 2;

g = .001;

ρ = 0.004;

r0 = 0.17;

wykres regionu na płaszczyźnie

RegionPlot[{V[x, y] ≥ b G[x, y] - g, G[x / 4, y / 4] ≤ ρ / 2,

pierwiastek kwadratowy

Sqrt[x^2 + y^2] ≤ r0},

{x, -1, 1}, {y, -1, 1},

styl brzegu

BoundaryStyle →
czarny

Black,

legenda dla grafik

PlotLegends → {"A", "B", "

stała

C"},

styl grafiki

PlotStyle → {

nieprzezroczy⋯
Opacity[.1,

czarny

Black],

nieprzezroczy⋯
Opacity[.3,

czarny

Black],

nieprzezroczy⋯
Opacity[.5,

czarny

Black]}]

Out[83]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

A

B

C

In[36]:= (*sprawdzenie założenia (f)*)

In[37]:= conju[x_, y_] := v x + u y - x^2 - (x - y)^4

rozwią⋯
Solve[{

oblicz pochodną

D[conju[x, y], x] == 0,

oblicz pochodną

D[conju[x, y], y] == 0}, {x, y}]

Out[38]= x → u + v

2
, y → 1

2
21/3 u1/3 + u + v,

x → u + v

2
, y → -

1 - ⅈ 3  u1/3

2 × 22/3
+
u + v

2
, x → u + v

2
, y → -

1 + ⅈ 3  u1/3

2 × 22/3
+
u + v

2


PrzykladDoPublikowanejWersjiArtykulu.nb 7

Figure 5.1: The shape of A is such that for a ball B = Br0(0) with r0 such that B ⊂ A

neither (5.1) nor (5.2) is satisfied. For C ⊂ A condition (f) is satisfied.

The shape of the area

A = {x ∈ Rn × Rn : V (x) ≥ bG(x)− g}

is such that for a ball

B = {x ∈ Rn × Rn : |x| ≤ r0}

with sufficiently small radius (such that B ⊂ A), neither (5.1) nor (5.2) is satisfied. If,

instead of the ball, we take “more anisotropic” area

C =

{
x ∈ Rn × Rn : G

(
x

2|I|

)
≤ ρ

2

}
⊂ A,

connected with condition (V3), then (f) is satisfied.

Figure 5.2: Plot of the function h1. Figure 5.3: Plot of the function h2.
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• If we assume that (5.1) is met, then for each r0 > 2CG,∞ there exists x ∈ Br0(0)

such that V (x) < bG(x)− g for all b > 1, g < r0
2C∞,G

, which contradicts assumption

(A3).

In fact, taking x ∈ ∂Br0(0) it suffices to show that function h1 : Rn × Rn → R,

h1(x) = G(x) − V (x) − |x|
2CG,∞

can have positive values for any r0 > 2CG,∞ (see

Figure 5.2).

• If we assume that (5.2) is met, then for each r0 > 0 there exists x ∈ Br0(0) such

that V (x) < bG(x)− g for all b > 1, g < min
{(

r0
2C∞,G

)2
,
(

r0
2C∞,G

)4}
.

In fact, taking x ∈ ∂Br0(0) it suffices to show that function h2 : Rn × Rn → R,

h2(x) = G(x)−V (x)−
( |x|

2CG,∞

)2
can have positive values for any r0 (see Figure 5.3).

Remark 5.2. In the above example we can also take a more complicated F , e.g.,

F (t, x, v) = G(v)(2 + |x|9/2 − sin t).
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