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On the Pricing Formula for the Perpetual American Volatility Option Under

the Mean-reverting Processes

Hsuan-Ku Liu, Tse-Yu Lin and Yen-Lung Tsai*

Abstract. This paper studies the properties of the parabolic free-boundary prob-

lem arising from pricing of American volatility options in mean-reverting volatility

processes. When the volatility index follows the mean-reverting square root process

(MRSRP), we derive a closed-form pricing formula for the perpetual American power

volatility option. Moreover, an artificial neural network (ANN) approach is extended

to find an approximate solution of the free boundary problem arising from pricing

the perpetual American option. The comparison results demonstrates that the ANN

provides an accurate approach to approximate solution for the free boundary problem.

1. Introduction

1.1. The probability density function and expectation

In the case of mean-reverting square root process (MRSRP), the index process under the

Martingale measure Q is presented as

dxt = β(m− xt) dt+ σ
√
xt dwt

with β, m and σ representing the speed of mean-reversion, the long-run mean, and the

volatility of the volatility index, respectively [3,6]. Here, x denotes the index of volatility,

t denotes the time-to-maturity and dwt denotes an increment in the Wiener process under

the Martingale probability measure Q. The probability density function of x at the future

time T under the current time t is given as (see Cox et al. [1])

(1.1) p(xT , xt|β,m, σ) = ce−u−v
(v
u

)q/2
Iq(2
√
uv),

where c = 2β

σ2
(

1−e−β(T−t)
) , u = cxte

−β(T−t), v = cxT , q = 2βm
σ2 − 1 and Iq is the modified

Bessel function of the first kind of order q.
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In the case of mean-reverting 3/2 volatility process, the index process under the Mar-

tingale measure Q is given as follows:

dxt = (αxt − βx2
t ) dt+ kx

3/2
t dwt,

where α > 0, β > 0 and k 6= 0 are constants. This model has a nonlinear drift so that

it exhibits substantial nonlinear mean-reverting behavior when the volatility is above its

long-run mean. Hence, after a large volatility spike, the volatility can potentially quickly

decrease, while after a low volatility period it can be slow to increase. Applying change

of variables yt = 1/xt, y follows the following MRSRP

dyt = ((k2 + β)− αyt) dt− k
√
yt dwt.

Based on (1.1), the probability density function of y is then presented as follows:

(1.2) p(yT , yt|α, k
2+β
α ,−k) = ce−u−z

( z
u

)q/2
Iq(2
√
uz),

where c = 2α

k2
(

1−e−α(T−t)
) , u = cyte

−α(T−t), z = cyT and q = 1 + 2β
k2

(see Goard and

Mazur [5]). Since the probability density function of the MRSRP and the mean-reverting

3/2 processes are given in (1.1) and (1.2), respectively, the value of a European option

can be obtained as

V (x, t) = e−r(T−t)EQ[ψ(xT )|xt = x],

where ψ(x) is the payoff function of the European volatility option and EQ denotes the

expectation under the martingale measure Q.

1.2. The solution of partial differential equations

Except considering the probability density function to find the expectation for the price,

the pricing formula of the European volatility option is also the solution of partial differ-

ential equations. When the volatility index follows the MRSRP, the pricing equation of

the volatility option V (x, t) is presented as

(1.3)

(
LM0 −

∂

∂t

)
V = 0, 0 ≤ x <∞, 0 < t <∞,

where LM0 is defined as

LM0 ≡
1

2
σ2x

∂2

∂x2
+ β(m− x)

∂

∂x
− r.

The fundamental solution of (1.3) is given by Feller [4]. When the volatility index follows

the mean-reverting 3/2 volatility model, the value V (x, t) of the volatility option can also

be obtained by solving the following parabolic equation(
LQ0 −

∂

∂t

)
V = 0, 0 ≤ x <∞, 0 < t <∞,



On the Pricing Formula 367

where the operator L0 is given in the form

(1.4) LQ0 ≡
1

2
k2x3 ∂

2

∂x2
+ (αx− βx2)

∂

∂x
− r.

The coefficients are all continuously differentiable and 1
2k

2x3 > 0 for 0 < x < ∞, k 6= 0

and r > 0. By setting x = 1/y, LQ0 V (x) can be changed to LM0 V (y).

The closed-form expression for the value of a European volatility call option was pro-

posed by Grunbichler and Longstaff [6], who found that the price of a volatility call option

can be below its intrinsic value and that the traditional put-call parity relation does not

hold for these options. This is because the volatility is not the price of a traded as-

set. However, the value of the American style volatility call option, unlike the European

option, is bounded below by its early exercise payoff. Evidently, the lower bound is a

consequence of the possibility of immediate exercise. Moreover, the European option still

has value as the volatility decreases to zero in the MRSRP case. Detemple and Osakwe [3]

said that the reason for this difference is the multiplicative impact of the uncertainty of

future volatility. They also showed that the price of the American style volatility call

(ψ(x) = max{x−K, 0}) is an increasing function of the time-to-maturity.

1.3. The free boundary problem for pricing an American volatility option

For the American-style option, an entirely satisfactory analytic solution has not been found

for the MRSRP model and the mean-reverting 3/2-volatility model, even though several

researchers have concentrated on finding the properties of the value as well as the early

exercise boundary for American options. Liu [10] proposed the properties of the price and

the early exercise boundary for the American volatility put option (ψ(x) = max{K−x, 0})
when the volatility index satisfies the mean-reverting 3/2 volatility process.

In this paper, we consider the pricing problem for the American volatility call with

the payoff function ψ(x) = max{xn −K, 0}, n ∈ Z. Applying LM0 to ψ(x) yields that

LM0 ψ(x) =

−(βn+ r)xn +
(

1
2σ

2(n− 1) + βm
)
nxn−1 + rK if xn > K,

0 if xn < K.

Since rK > 0 and LM0 ψ(ξ) → −∞ as ξ → ∞ if βn + r > 0. This implies that there

exists d > 0 such that

(1.5) LM0 ψ(x)

> 0 for 0 < x < d,

< 0 for d < x <∞.

Precisely, this paper examines the following one-dimensional free boundary problem for

linear parabolic equations arising from the problem of valuing an American-style volatility

option in the models of MRSRP. Define L = LM0 − ∂
∂t .
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Let u(x, t) and s(t) be the price and the early exercise price of the American volatility

power call. For the case of n > 0, we consider the following free boundary problem

(1.6)



Lu = 0, 0 < x < s(t), 0 < t <∞,

u(x, t) > xn −K, 0 < x < s(t), 0 < t <∞,

u(x, 0) = xn −K, 0 ≤ x ≤ s(0),

u(s(t), t) = sn(t)−K, 0 ≤ t <∞,
∂u
∂x(s(t), t) = ψ′(s(t)), 0 ≤ t <∞.

Since u(x, t) denotes the price of an American volatility power call, the condition

u(0, t) <∞ is added in the model. These additional condition will be used in finding the

pricing formula of the corresponding perpetual American option.

For the case of n < 0, we have xn > K if x < 1
n√K . Hence, the value of the American

volatility option satisfies the following free boundary problem

(1.7)



Lu = 0, s(t) < x <∞, 0 < t <∞,

u(x, t) > xn −K, s(t) < x <∞, 0 < t <∞,

u(x, 0) = xn −K, s(0) ≤ x ≤ ∞,

u(s(t), t) = sn(t)−K, 0 ≤ t <∞,
∂u
∂x(s(t), t) = ψ′(s(t)), 0 ≤ t <∞.

In the mean reverting 3/2 volatility process, the pricing problem for the American

volatility option can be considered by changing the variable x = 1/y. It would be inter-

esting to consider the properties of the value as well as the early exercise boundary of

American volatility power options while the properties have not been mentioned in the

case of the MRSRP and the mean-reverting 3/2 volatility process.

In the cases of the MRSRP and the mean-reverting 3/2 volatility process, we derive a

closed-pricing formula for the perpetual American volatility power option, where the early

exercise price can be obtained iteratively. Moreover, we consider neural network (NN)

approach to the solution of the free boundary differential equation arising from pricing a

perpetual American volatility option under the MRSRP. The numerical results show that

the ANN approach is an accurate approach for pricing the American volatility option in

the case of MRSRP. This NN approach can also be applied to approximate the pricing

formula of the perpetual American option under the different process. In future studies,

our results can be applied to consider the properties of other American-style derivatives

with the payoff function satisfying (1.5) in the cases of the MRSRP and the mean-reverting

3/2 volatility process.
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2. Properties of the solution

Let T denote the set of all stopping time τ for the process. The value of an American-style

option is obtained by evaluating the following optimization problem

(2.1) û(x, t) = sup
τ∈T

EQ[ψ(xτ )|x(t) = x].

Kotlow [9] showed that the solution (s, u) to Problem (1.6) resolves the optimization

problem (2.1) by setting

û(x, t) =

u(x, t) if (x, t) ∈ C,

ψ(x) if (x, t) ∈ Q− C,

where Q = (0,∞)× (0,∞) and C = {(x, t) | 0 < x < s(t), 0 < t <∞}.
Let {s, u} be the solution to Problem (1.6) and denote C, namely the continuation

region, as

C = {(x, t) | 0 < x < s(t), 0 < t <∞}.

Applying results of Kotlow [9] directly to (1.6), we obtained the following theorems.

Theorem 2.1. Let {s, u} be a solution of (1.6). They have the following properties:

(a) ut > 0 in C.

(b) s(0) = d and s(t) > d for 0 < t <∞.

(c) s(t) is a non-decreasing function.

(d) There exists an s∞ ∈ (d,∞) such that s(t)→ s∞ uniformly as t→∞ if

lim supξ→∞[LM0 ψ(ξ)] < 0 and βn+ r > 0.

In the case of the American put option, Liu [10] provided the properties for the price as

well as the early exercise boundary under the mean-reverting 3/2 volatility model. When

the payoff function satisfies (1.5), we obtained the following theorem by modifying the

proof of Theorem 2.3 in [10]. The following theorem includes the call option and the

power call option in the MRSRP or the mean-reverting 3/2 volatility models.

Theorem 2.2. Let {s, u} be a solution of (1.6). Then

(a) s(t) is a strictly increasing function.

(b) ux(x, t) > 0 for (x, t) ∈ C.

(c) When β > 0, ux(x, t) < ψ′(x) for (x, t) ∈ Cd, where Cd = {(x, t) ∈ C | x > d}.
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According to Theorems 2.1 and 2.2, we propose properties for the value and the early

exercise boundary of an American volatility power option in the MRSRP (Theorem 2.3)

and the mean-reverting 3/2 volatility process (Theorem 2.5). The similar results for the

American volatility call can also be founded in Detemple and Kitapbayev [2].

Theorem 2.3. Let u(x, t) and s(t) be the value and the early exercise boundary of an

American volatility power option in the MRSRP. When βn+ r > 0, we have the following

properties.

(a) The value u(x, t) increases with an increase in both the time-to-maturity.

(b) The value u(x, t) increases (decreases, respectively) with an increase in the volatility

index x for n > 0 (for n < 0, respectively).

(c) The early exercise boundary s(t) strictly increases (decreases, respectively) with an

increase in the time-to-maturity for n > 0 (for n < 0, respectively).

(d) The early exercise boundary s(t) is bounded by d and s∞, where s∞ is the exercise

boundary of its corresponding perpetual American option.

(e) The early exercise boundary starts at d, that is s(0) = d.

Proof. The coefficients of (1.3) are all continuously differentiable and 1
2σ

2x > 0 for 0 <

x <∞ and r > 0. To show that the value and the early exercise boundary of an American

volatility power option satisfy Theorems 2.1 and 2.2, it suffices to show that there exists

a d in R such that LM0 ψ(x) satisfies

LM0 ψ(x)

> 0 for 0 < x < d,

< 0 for d < x <∞

for some d > 0.

Applying LM0 to ψ(x) = max{xn −K, 0} for a volatility power option yields that

LM0 ψ(x) =

−(βn+ r)xn +
(

1
2σ

2(n− 1) + βm
)
nxn−1 + rK if xn > K,

0 if xn < K.

Let f(x) = −(βn+ r)xn +
(

1
2σ

2(n− 1) + βm
)
nxn−1 + rK. We have f(0) = rK > 0 and

limx→∞ f(x) = −∞ since −(βn + r) < 0. Since f is a continuous function on R, f has

at least one positive root. Moreover, we have f ′(x) = xn−2
[
− n(βn + r)x +

(
1
2σ

2(n −

1) + βm
)
n(n − 1)

]
. This implies that f(x) increases as x <

(
1
2
σ2(n−1)+βm

)
(n−1)

βn+r and

decreases as x >

(
1
2
σ2(n−1)+βm

)
(n−1)

βn+r . By the continuity of f , we obtained that f has

exactly one positive root, say d′. Then we can define d = max{K1/n, d′} for n > 0 and

d = min{K1/n, d′} for n < 0.
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Remark 2.4. For the American volatility call option with ψ(x) = max{x − K, d}, we

have d = max
{
K, r

r+βK
}

= K in the case of the MRSRP. This is because β > 0 and

LM0 ψ(x) = −(β + r)x+ rK for x > K.

Now, we consider properties of an American volatility power option in the mean-

reverting 3/2 volatility process.

Theorem 2.5. When 1
2k

2(n− 1) < β and u > 0, the value u(x, t) and the early exercise

boundary s(t) of an American power option have the same properties of (a) to (d) in

Theorem 2.3 with the volatility following the mean-reverting 3/2 volatility process.

Proof. Applying LQ0 to ψ(x) = max{xn −K, 0} for a volatility power option yields that

LQ0 ψ(x) =


(

1
2k

2n(n− 1)− βn
)
xn+1 + (αn− r)nxn + rK if x > K,

0 if x < K.

Let f(x) = nAxn+1 +(αn−r)nxn+rK, where A = 1
2k

2(n−1)−β. Then f ′(x) = nxn[(n+

1)Ax + (αn − r)] and f(0) = rK > 0. Since A < 0, we have limx→∞ f(x) = −∞ and

f ′(x) > 0 if x < r−αn
(n+1)A and f ′(x) < 0 if x > r−αn

(n+1)A . Hence f(x) increases with x < r−αn
(n+1)A

and deceases with x > r−αn
(n+1)A . Therefore, we obtained that f(x) has exactly one positive

root, say d′. Then we can define d = max{K1/n, d′} for n > 0 and d = min{K1/n, d′} for

n < 0.

Remark 2.6. According to Theorem 2.5, the value of s(0) = d for the American call option

with ψ(x) = max{x−K, 0} is obtained as d = max{K, d′}, where d′ =
(α−r)+

√
(α−r)2+4rKβ

2β

> 0.

3. Asymptotic behavior of exercise boundary infinitely far from expiry

Since s(t) is a strictly increasing function of the time-to-maturity for the American volatil-

ity power option, the lower boundary for the optimal exercise boundary s(t) for t > 0 is

obtained by limt→0+ s(t) = d in the MRSRP and the mean-reverting 3/2 volatility process.

It would be interesting to explore whether s(t) is bounded or not as t→∞. At the same

time, the pricing formula for the perpetual American volatility power option is obtained

in the MRSRP and the mean-reverting 3/2 volatility process.

Before solving the ordinary differential equation arising from pricing the perpetual

American volatility option, we first introduce the confluent hypergeometric functions of

which the integral representations are given as

Φ(a, b, x) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0
extta−1(1− t)b−a−1 dt.
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In the following theorem, we will provide a pricing formula for the perpetual American

volatility power option.

Theorem 3.1. Let (v, s) be the value and the early exercise boundary of a perpetual

American volatility power option in MRSRP. Assume 2βm
σ2 > 1 for the Feller condition.

If n > 0, then (v, s) solves the following free boundary problem

LM0 v(x) = 0, 0 < x < s,

v(s) = sn −K, v′(s) = nsn−1,

where LM0 is defined in (1.3). The solution is obtained in the form

(3.1) v(x) = C1Φ

(
r

β
,
2βm

σ2
;
2β

σ2
x

)
, 0 < x < s,

where C1 = sn−K
Φ
(
r
β
, 2βm
σ2

; 2β
σ2
s
) and s is a root of the following equation

(3.2)
Φ
(
r
β ,

2βm
σ2 ; 2β

σ2 s
)

σ2r
2β2m

Φ
(
r
β + 1, 2βm

σ2 + 1; 2β
σ2 s
) =

sn −K
nsn−1

,

which can be solved iteratively for s.

If n < 0, then (v, s) solves the following free boundary problem

LM0 v(x) = 0, s < x <∞,

v(s) = sn −K, v′(s) = nsn−1, lim
x→∞

v(x) = 0,
(3.3)

where LM0 is defined in (1.3). The solution is obtained in the form

v(x) = (sn −K)
(x
s

)1− 2βm

σ2
Φ
(
r
β + 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2x
)

Φ
(
r
β + 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2 s
) , s < x <∞.

Here s is a root of the following equation

s1− 2βm

σ2 Φ
(
r
β + 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2 s
)

d
dx

[
x1− 2βm

σ2 Φ
(
r
β + 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2x
)]∣∣

x=s

=
sn −K
nsn−1

,

which can be solved iteratively for s.

Proof. By letting y = 2β
σ2x, LM0 v(x) = 0 is changed to

(3.4) y
d2v

dy2
+

(
2βm

σ2
− y
)
dv

dy
− r

β
v = 0, 0 < y <

2β

σ2
s,

which is regarded as a Kummer’s equation.
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The solutions of Kummer’s equation (3.4) are expressed through the confluent hyper-

geometric function Φ(α, ν, x). Precisely, the general solutions are written in the form

v(y) = C1Φ

(
r

β
,
2βm

σ2
; y

)
+ C2y

1− 2βm

σ2 Φ

(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
; y

)
,

where C1 and C2 are arbitrary constants.

Displaying the solution in terms of x, the equation is rewritten in the form

v(x) = C1Φ

(
r

β
,
2βm

σ2
;
2β

σ2
x

)
+ C2

(
2β

σ2
x

)1− 2βm

σ2

Φ

(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
;
2β

σ2
x

)
.

We first consider the case of n > 0. The value v(x) of an American volatility power

option is finite in [0, s], that is, v(s) < ∞ for all x ∈ [0, s]. Since βm > 1
2σ

2 and

Φ(α, β;x) 6= 0 as x→ 0, we have
(2β
σ2x
)1− 2βm

σ2 →∞ as x→ 0 and C2 = 0. Consequently,

the value of the perpetual American volatility option equals to

(3.5) v(x) = C1Φ

(
r

β
,
2βm

σ2
;
2β

σ2
x

)
.

To determine the free boundary s and the coefficient C2, we substitute v(s) = sn −K
and v′(s) = nsn−1 into (3.5) and obtain that

C1Φ

(
r

β
,
2βm

σ2
;
2β

σ2
s

)
= sn −K

and

C1
d

dx

[
Φ

(
r

β
,
2βm

σ2
;
2β

σ2
x

)]∣∣∣
x=s

= nsn−1.

Moreover, we have d
dx

[
Φ
(
r
β ,

2βm
σ2 ; 2β

σ2x
)]∣∣

x=s
= σ2r

2β2m
Φ
(
r
β + 1, 2βm

σ2 + 1; 2β
σ2 s
)
.

Hence, we find that the free boundary satisfies the following nonlinear algebraic equa-

tion
Φ
(
r
β ,

2βm
σ2 ; 2β

σ2 s
)

σ2r
2β2m

Φ
(
r
β + 1, 2βm

σ2 + 1; 2β
σ2 s
) =

sn −K
nsn−1

.

When the free boundary s is obtained by the solving the above equation numerically, the

coefficient C1 is expressed as

C1 =
sn −K

Φ
(
r
β ,

2βm
σ2 ; 2β

σ2 s
) .

We then consider the case of n < 0. Since limx→∞ v(x) = 0, we have 2β
σ2x

1− 2βm

σ2 → 0

as x→∞ and

C1Φ

(
r

β
,
2βm

σ2
; 0

)
→ 0 as x→∞
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which means C1 = 0. Consequently, we have

(3.6) v(x) = C2

(
2β

σ2
x

)1− 2βm

σ2

Φ

(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
;
2β

σ2
x

)
.

To determine the free boundary s and the coefficient C2, we substitute v(s) = sn −K
and v′(s) = nsn−1 into (3.6) and obtain that

C2

(
2β

σ2
s

)1− 2βm

σ2

Φ

(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
;
2β

σ2
s

)
= sn −K

and

C2
d

dx

[(
2β

σ2
x

)1− 2βm

σ2

Φ

(
r

β
+ 1− 2βm

σ2
, 2− 2βm

σ2
;
2β

σ2
x

)]∣∣∣
x=s

= nsn−1.

Hence, we find that the free boundary satisfies the following nonlinear algebra equation(2β
σ2 s
)1− 2βm

σ2 Φ
(
r
β + 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2 s
)

d
dx

[(2β
σ2x
)1− 2βm

σ2 Φ
(
r
β + 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2x
)]∣∣

x=s

=
sn −K
nsn−1

.

When the free boundary s is obtained by the solving the above equation numerically, the

coefficient C2 is expressed as

C2 =
sn −K(2β

σ2 s
)1−βm

Φ
(
r
β + 1− 2βm

σ2 , 2− 2βm
σ2 ; 2β

σ2 s
) .

Remark 3.2. When (v, s) are the value and the early exercise boundary of a perpetual

American volatility option in mean reverting 3/2 volatility process, (v, s) is the solution

of the following free boundary problem

LQ0 v(x) = 0, 0 < x < s,

v(s) = s−K, v′(s) = nsn−1, v(0) = 0,

where LQ0 is defined in (1.4). When taking x = 1/y, this problem becomes to price a

perpetual American volatility option in the MRSRP with ψ(x) = (1/x −K, 0)+. Hence,

the price of a perpetual American option becomes to satisfy the following free boundary

problem

LM0 u(y) = 0, 1/s < y <∞,

u(s) = 1/s−K, u′(s) = −1/s2, u(y)→ 0 as y →∞.

The solution of this equation can be obtained by changing it to a Kummer’s equation.

In the mean-reverting 3/2 volatility process, a closed pricing formula for the perpetual

American volatility put option is proposed by Liu [10].
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This paper provides a formula for the perpetual American volatility power call in

the MRSRP model. Liu [10] provided a formula for the perpetual American volatility

put in the mean-reverting 3/2 volatility model. These two papers considered distinct

options (call and put) in the different processes (the MRSRP and the mean-reverting

3/2 volatility process). Using the change of variables, the differential equations in both

two papers are changed to the same Kummer’s differential equation with the different

boundary conditions. The general solution is expresses by the combination of the confluent

hypergeometric function of the first and second kinds.

For the volatility call, we have a finite initial condition and an upper free boundary;

For the volatility put, we have a lower free boundary and assume that the put value

tends to zero as the volatility tends to infinite. The different conditions for both put and

call induces different pricing formulas. For the volatility call, we eliminate the second

independent solution by the finite initial condition. For the volatility put, we eliminate

the first independent solution since the put value tends to zero as the volatility tends

to infinite. Moreover, the advantage of this paper is that we add a power to the payoff

function, ψ(x) = max{xn − K, 0}. When setting the volatility x to 1/y (i.e., choosing

n = −1), the MRSRP model can be changed to the mean-reverting 3/2 volatility model.

In this case, the boundary conditions are changed to a lower free boundary and zero value

at the infinite.

4. Artificial neural network approach

In this section, we consider neural network (NN) approach to the solution of the free

boundary differential equation arising from pricing a perpetual American volatility option

under the MRSRP.

Alternatively, this NN approach can also be applied to approximate the pricing formula

of the perpetual American option under the different process.

We first state a formal definition of a neural network used in this paper.

Definition 4.1. A neural network (NN) is a function fΘ : Rn → Rm defined by a series

of alternative compositions of affine and non-linear functions with a set of parameters

Θ = {(Ai, bi) : 0 ≤ i ≤ n} of the following form

f = Ln ◦ σn−1 ◦ Ln−1 ◦ · · ·σ0 ◦ L0,

where Li : Rhi → Rhi+1 is an affine transformation defined by Li(x) = Aix+bi, σi : Rhi+1 →
Rhi+1 is a non-linear activation function. Note that activation function operates on vectors

component-wisely. That is, σ(x) = (σ(x1), σ(x2), . . . , σ(xn)) for x = (x1, . . . , xn) ∈ Rn. n

is called the depth of the NN and hi is the width of the i-th layer of the NN, for i ≥ 1.
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Note that an NN is called a shallow net if n = 1, and it is called a deep neural network

for n ≥ 3.

Hornik, Stinchcombe and White [7] show that any Borel measure function could be

approximated in any degree of accuracy by a shallow net, provided a sufficient number

of neurons in the hidden layer. In this paper, we consider a special activation function,

called Swish function defined by x
1+e−x . For more detail of this activation function, please

refer to [12].

Now, we go back to the NN approach to our MRSRP problem. Suppose that 2βm
σ2 > 1

and (v, s) are the value and the early exercise boundary of a perpetual American volatility

power option in MRSRP. Then (v, s) is the solution the free boundary problem (3.3).

Transferring y = x
s and defining w(y) = v(x), the free boundary problem is changed to

the following boundary value problem

(4.1)
1

2
σ2yw′′ + β(m− sy)w′ − rsw = 0, 0 < y < 1

with w(1) = sn −K and w′(1) = nsn−1. Substituting s = (w(1)−K)1/n into (4.1) yields

1

2
σ2yw′′ + β(m− (w(1) +K)1/ny)w′ − r(w(1) +K)1/nw = 0, 0 < y < 1

with w′(1) = n(w(1) +K)(n−1)/n. We consider the following trial solution

wA(y) = fΘ(y),

where fΘ : R2 → R is a shallow net defined by Θ. Then, we obtain s = (fΘ(y) + K)1/n

and w′A(1) = n(fΘ(1) +K)(n−1)/n. Therefore, we turn into solve the following equation

1

2
σ2yw′′A(y) + β(m− (fΘ(1) + 1 +K)1/ny)w′A(y)− r(fΘ(1) + 1 +K)1/nwA(y) = 0

with w′A(1) = n(fΘ(1) +K)(n−1)/n.

To find an optimal fΘ to solve the above equations, we consider the following mini-

mization problem

min
Θ
L(Θ),

where

L(Θ) =

∫ 1

0

[
1

2
σ2yw′′A(y) + β(m− sy)w′A(y)− rswA(y)

]2

+ [w′A(1)− nsn−1]2 dy

is the L2-loss between NN and the solution of equation and the boundary condition, and

s = (fΘ(1) +K)1/n.
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In addition, an NN could be write down as follows:

fΘ(y) =

HM∑
k=1

ωMk,iσ(SM,k).

Here, the output neuron i in layer j sj,i is defined by

s1,i = w0
y,iy + w1

b,i, sj,i =

Hj−1∑
k=1

ωj−1
k,i σ(sj−1,k) + ωjb,i, j = 1, 2, . . . ,M,

where ωjk,i is the weight from neuron k in layer j− 1 to neuron i in layer j for the network

fΘ(y), and Hj is the number of neurons in layer j and ωjb,i is the bias of neuron i in layer

j.

5. Comparison results between the analytical solution and the numerical solution

In Section 3, we provided an analytical pricing formula (3.1) for the perpetual American

power call option by solving the Kummers equation (3.4), where the early exercise bound-

ary s is obtained by solving (3.2) numerically. In Section 4, we developed a new numerical

method to approximate the differential equation with moving boundary by extending the

artificial neural network approach. In this section, we will demonstrate the comparison

results between the analytical solution and the numerical solution.

Goard and Mazur [5] used the data of the VIX index value between years of 1990 and

2009 to estimate the parameters the continuous-time model. In the empirical results, the

parameters are estimated as β = 3.1637 and βm = 0.6154 (see [5, Table 5.1]) for the

MRSRP model. Moreover, the risk-free interest rate and strike are given as r = 0.05 and

K = 0.5, respectively. To satisfy 2βm
σ2 > 1, we assume σ2 = 1.

To compare the analytical solution and the numerical solution, the graphs for the price

of perpetual American power call options are demonstrated. The programs are coded by

Python [11] on Google Colab environment. The solution of the early exercise boundary

s is solved by using the “fsolve” instruction, where the starting estimate for the roots

is given as K + 1. The network is constructed by 1 input layer, 1 output layer and 1

hidden layer with 10 neurons in the hidden layer. For the neural network approach, the

deep learning algorithm, Adam [8], is used to minimize the unconstrained optimization

problem.

The L2-losses between NN and the solution of equation and the boundary condition are

2.31e−4, 5.19e−5 and 2.34e−5 for 10000 iterations, 20000 iterations and 30000 iterations.

The L2-losses for 20000 iterations and 30000 iterations are same as e − 5 and do not

reduce so much from 20000 iterations to 30000 iterations. The comparison results between
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the analytical solution and the numerical soltion (20000 iterations) are demonstrated in

Figure 5.1 and Figure 5.2 for 10000 iterations and 20000 iterations, respectively.

Figure 5.1: The comparison results between analytic solution and the numerical solution

(10000 iterations).

Figure 5.2: The comparison results between analytic solution and the numerical solution

(20000 iterations).
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