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Abstract. In algebraic combinatorics, the first step of the classification of interesting

objects is usually to find all their feasible parameters. The feasible parameters are

often integral solutions of some complicated Diophantine equations, which cannot

be solved by known methods. In this paper, we develop a method to solve such

Diophantine equations in 3 variables. We demonstrate it by giving a classification of

finite subsets that are spherical 2-distance sets and spherical {4, 2, 1}-designs at the

same time.

1. Introduction

1.1. Diophantine equations and classification problems

The feasible parameters of interesting algebraic combinatorial objects are often solutions of

some complicated Diophantine equations. Since the Hilbert’s tenth problem has a negative

answer, it is not practical to solve a Diophantine equation using only the information of

the equation itself. However, due to the combinatorial nature of the feasible parameters,

we usually have some additional integer conditions and positivity conditions, for example,

some rational functions in the feasible parameters are integers or positive. Describing all

integral solutions of a Diophantine equation with these additional conditions can be easier

sometimes.

In this paper, we develop a method to solve Diophantine equations in 3 variables

under such additional conditions. We demonstrate it by giving a classification of spherical

2-distance {4, 2, 1}-designs in Theorem 1.1. We first construct a related Diophantine

equation, and find as many integral conditions and positivity conditions as possible. Then,

we solve it using our method. At the end, for each solution, we give a description of the

spherical 2-distance {4, 2, 1}-designs having the solution as feasible parameters.
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1.2. Spherical 2-distance {4, 2, 1}-designs

The study of spherical designs and spherical codes can be tracked from Delsarte–Goethals–

Seidel [13]. They proved that t ≤ 2s for any spherical s-distance t-design. It is also shown

that if t ≥ 2s− 2, then a spherical t-designs carries a structure of an s-class Q-polynomial

association scheme. The classification of spherical s-distance t-designs with t ≥ 2s−1 is an

interesting problem. It is known that t = 2s if and only if X is a tight spherical 2s-design.

When X is antipodal, t = 2s− 1 if and only if X is a tight spherical (2s− 1)-design. The

classification of tight spherical designs is still an open problem [1]. There are many works

done for spherical 2-distance 3-designs [9, 11, 12]. There are too many sporadic feasible

parameters for such subsets, and for almost all feasible parameters, the existence of the

corresponding 2-distance 3-designs is unknown.

Introduced by Bannai–Okuda–Tagami [6], spherical T -designs for a set of integers T

are generalizations of spherical t-designs. Their definition will be given in Section 2.1.

Barg et al. studied in [8] a finite subset on the unit sphere which is a 2-distance set and

a spherical {2}-design (i.e., tight frame) at the same time. It is proved in [8, Theorem 1]

that such a finite subset is either a spherical embedding of a strongly regular graph, or a

shifted spherical embedding of a strongly regular graph, or an equiangular tight frame.

The main result of this paper is a classification of finite sets X which are spherical

2-distance sets and spherical {4, 2, 1}-designs at the same time. It is known in [13] that

since X is a spherical 2-distance {2, 1}-design, X is a spherical embedding of a strongly

regular graph. Moreover, X being a spherical {4}-design allows us to classify all the

possible strongly regular graphs involved and give the following classification result.

Theorem 1.1. Let X ⊂ Sn−1 be a finite subset where n ≥ 2. Suppose that X is a spherical

2-distance {4, 2, 1}-design. Then, one of the following holds:

(i) X is a tight spherical 4-design on Sn−1;

(ii) the disjoint union X ∪ (−X) is a tight spherical 5-design on Sn−1.

We first analyze the behavior of spherical embeddings of strongly regular graphs in

Section 2.3, and construct a related Diophantine equation in three variables. Then, we

employ our method to solve it in Theorem 4.1. The final proof of Theorem 1.1 is given

in Section 3. Note that the proof of Theorem 4.1 does not rely on any results in previous

sections. We put it in Section 4 since we want to isolate the part of the proof involving

our new method to solve the Diophantine equation.

Remark 1.2. (i) In Theorem 1.1(ii), X can be regarded as a half of a tight spherical 5-

design. However, it is unknown if there exists a good way to choose a half of a given tight

spherical 5-design to get an X. More precisely, it might be a difficult problem to choose a
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point from each antipodal pair of points in a given tight spherical 5-design to get a subset

that is a spherical 2-distance {4, 2, 1}-design. Partly motivated by this result, we studied

in [7] when a half of an antipodal spherical t-design becomes a spherical 1-design.

(ii) In Theorem 1.1, tight spherical 4-designs and tight spherical 5-designs appear. The

classification of tight spherical designs has been studied for several decades [2,3,5,13,14],

but tight spherical t-designs for t ∈ {4, 5, 7} are not classified yet.

1.3. Spherical 3-distance 5-designs

Many people have conjectured, but not written down, the classification of 3-distance

5-designs. Based on numerical experiments, we have Conjecture 1.3. We believe that

our proof of Theorem 1.1 can be generalized and provide a possible method to attack

Conjecture 1.3.

Conjecture 1.3. Let X ⊂ Sn−1 be a finite subset where n ≥ 2. If X is a spherical

3-distance 5-design, then one of the following holds:

(i) n = 2 and X is the vertices of a regular hexagon or a regular heptagon;

(ii) X is a tight spherical 5-design on Sn−1;

(iii) X is a section of a tight spherical 7-design on Sn−1.

In case (iii), there are four distinct inner product values {−1, 0,±α} between distinct

points in the tight spherical 7-design. A section means the collection of points that have

the same inner product value α with a fixed point in the design.

2. Preliminaries

2.1. Spherical T -design

Let Sn−1 := {(x1, . . . , xn) ∈ Rn | x2
1 + · · · + x2

n = 1} be the real unit sphere in the n-

dimensional Euclidean space Rn. A finite subset X of the unit sphere is an s-distance set

if there are exactly s distinct distances (equivalently, inner products) between two distinct

points in X, namely the set

A(X) := {〈x, y〉 | x, y ∈ X,x 6= y}

has cardinality s, where 〈 · , · 〉 is the usual Euclidean inner product.

Let T be a set of some positive integers. A finite subset X ⊂ Sn−1 is called a spherical

design of harmonic index T , or simply spherical T -design, on Sn−1 if∑
x∈X

f(x) = 0
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holds for every homogeneous harmonic polynomial f of degree t with t ∈ T . It is well-

known that X is a spherical T -design on Sn−1 if and only if

(2.1)
∑
x,y∈X

Qn,t(〈x, y〉) = 0 for every t ∈ T ,

where Qn,t(ξ) is the Gegenbauer polynomial of degree t in one variable ξ. In this paper,

Qn,t(ξ) is normalized so that Qn,t(1) =
(
n+t−1
n−1

)
−
(
n+t−3
n−1

)
. This value equals the dimension

of the vector space of all homogeneous harmonic polynomials of degree t in n variables.

A spherical t-design is a spherical {t, t − 1, . . . , 1}-design. The study of spherical T -

designs started from Bannai–Okuda–Tagami [6]. Later Okuda–Yu [17] proved the nonex-

istence of tight spherical {4}-designs. Some further discussion of spherical T -designs can

be found in [20].

2.2. Strongly regular graphs

In this section, we review the notion of strongly regular graphs.

Definition 2.1. Let Γ be a regular graph with v vertices and valency k. Then Γ is called

strongly regular if every two adjacent vertices have λ common neighbors and every two

non-adjacent vertices have µ common neighbors. The tuple (v, k, λ, µ) is called the type

of the strongly regular graph Γ. The numbers v, k, λ, µ are called the parameters of the

strongly regular graph Γ.

Let Γ be a strongly regular graph of type (v, k, λ, µ). The graph Γ has three eigenvalues,

one trivial eigenvalue k with multiplicity 1, two nontrivial eigenvalues

r =
1

2

(
λ− µ+

√
(λ− µ)2 + 4(k − µ)

)
≥ 0 and s =

1

2

(
λ− µ−

√
(λ− µ)2 + 4(k − µ)

)
< 0

with multiplicities

mr =
1

2

(
v − 1− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

)
and ms =

1

2

(
v − 1 +

2k + (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

)
,

respectively. Note that the eigenvalues k, r and s may not be distinct.

We call a strongly regular graph primitive if it is connected and its complement graph

is connected as well. If Γ is primitive, we always have 1 ≤ k ≤ v−2, µ ≥ 1, s < 0 < r < k,

mr ≥ 1 and ms ≥ 1.

An strongly regular graphs is called imprimitive if it is not primitive. There are exactly

two families of imprimitive strongly regular graphs, which are given in Example 2.2.

Example 2.2. Let m and k be positive integers.
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(i) Let mKk+1 be the disjoint union of m copies of the complete graph Kk+1. It is an

imprimitive strongly regular graphs with (r, s,mr,ms) = (k,−1,m − 1, km), where

ms > 0.

(ii) Let mKk+1 be the complement graph of mKk+1. It is an imprimitive strongly regular

graphs with (r, s,mr,ms) = (−k − 1, 0,m− 1, km), where ms > 0.

Brouwer–Cohen–Neumaier in [10, Theorem 1.3.1] derived the following properties of

the parameters of a primitive strongly regular graphs:
k = µ− rs,

v = 1
µ(k − r)(k − s),

λ = r + s+ µ.

If 2k + (v − 1)(µ − λ) = 0, then Γ is called a conference graph. These are precisely

the strongly regular graphs of type (v, (v− 1)/2, (v− 5)/4, (v− 1)/4) which have the same

parameters as their complementary graphs. If Γ is not a conference graph, then r and s

are distinct integers with non-equal multiplicities mr and ms, respectively.

In this paper, we want to study the spherical embeddings of Γ with respect to r and

with respect to s. We will apply the same arguments to these two embeddings. Let x

and y denote the nontrivial eigenvalues of a strongly regular graph of type (v, k, λ, µ),

and denote by mx and my the multiplicities of x and y, respectively. In other words,

{x, y} = {r, s}, but there is not a particular choice of x and y.

For a primitive strongly regular graphs, we have the following properties:

(2.2)


k = µ− xy,

v = 1
µ(k − x)(k − y),

λ = x+ y + µ.

Moreover, x and y are distinct real numbers satisfying xy < 0 and x, y 6= k. Substituting

(2.2) into (mx,my) = (mr,ms) when x > y and into (mx,my) = (ms,mr) when x < y,

we obtain the following expressions for mx and my when the strongly regular graphs is

primitive:

(2.3) mx =
(µ− xy)(µ− xy − y)(y + 1)

µ(y − x)
and my =

(µ− xy)(µ− xy − x)(x+ 1)

µ(x− y)
.

We identify Γ with a symmetric association scheme X =
(
{vertices of Γ}, {Ri}0≤i≤2

)
of

class 2. More precisely, let the adjacency matrices of R0, R1 and R2 be I, A and J−I−A,

respectively, where A is the adjacency matrix of Γ, I is the identity matrix and J is the
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all one matrix. The strongly regular graphs Γ is primitive if and only if its corresponding

association scheme X is primitive.

Let Vy be the eigenspace of A with respect to the eigenvalue y and Ey the matrix

representation of the orthogonal projection Rv → Vy. Denote the rank my of Ey by n

conventionally.

The spherical embedding of Γ with respect to eigenvalue y into the sphere Sn−1 is the

map

ιy : {vertices of Γ} → Sn−1, u 7→
√
v

n
Eyψu,

where ψu ∈ Rv is the characteristic vector of the vertex u. Let

ιy(Γ) := {ιy(u) | u is a vertex of Γ}.

We will also call ιy(Γ) the spherical embedding of Γ with respect to the eigenvalue y. Note

that this embedding exists only when my ≥ 1.

Example 2.3. Let m and k be positive integers, and let Γ be either the imprimitive

strongly regular graphs mKk+1 or the imprimitive strongly regular graphs mKk+1. The

parameters of Γ are given in Example 2.2. For the eigenvalue r, it is easy to check that

the spherical embedding ιr(Γ) either does not exist when m = 1, or is a 1-distance set

when m ≥ 2. For the eigenvalue s, by checking (2.1), it is easy to show that the spherical

embedding ιs(Γ) is not a spherical {4}-design.

2.3. Spherical embeddings of strongly regular graphs

From now on, we assume that Γ is a primitive strongly regular graph. Recall that the

second eigenmatrix Q of X (see [4]) has rows indexed by classes {0, 1, 2} of X and has

columns indexed by eigenvalues {k, x, y} of Γ. For any two vertices u and w in Γ, the

inner product of ιy(u) and ιy(w) is calculated below:

〈ιy(u), ιy(w)〉 =


1 if u = w,

Qy(1)
n if (u,w) ∈ R1,

Qy(2)
n if (u,w) ∈ R2.

Then, A(ιy(Γ)) = {Qy(1)/n,Qy(2)/n}, where Qy(j) is the (j, y)-entry of the second eigen-

matrix Q. Let Pj(y) be the (y, j)-entry of the first eigenmatrix, equivalently, Pj(y) denotes

the eigenvalue of Rj on Vy. Let kj be the valency of Rj . According to the relation between

the first eigenmatrix and the second eigenmatrix, we have

(2.4) A(ιy(Γ)) =

{
P1(y)

k1
,
P2(y)

k2

}
=

{
y

k
,
−y − 1

v − k − 1

}
.
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Proposition 2.4. [13, Theorem 4.8] Let X be an s-distance set on the unit sphere Sn−1.

Then |X| ≤
(
n+s−1
n−1

)
+
(
n+s−2
n−1

)
.

This implies that v = |ιy(Γ)| ≤ n(n+3)/2. Moreover, Delsarte–Goethals–Seidel proved

in [13] that the spherical embedding of a strongly regular graph is a spherical 2-design.

Then by (2.1) we can express the condition that the spherical embedding of primitive Γ

is a spherical {4}-design as F = 0 where

(2.5) F := Qn,4(1) + kQn,4

(y
k

)
+ (v − k − 1)Qn,4

(
−y − 1

v − k − 1

)
and Qn,4(ξ) = n(n+6)

24

(
(n2 + 6n + 8)ξ4 − 6(n + 2)ξ2 + 3

)
. Recall that n = my. Rewriting

F in terms of x, y, µ using (2.2) and (2.3), when µ 6= 0 we get

F = F0(x, y, µ)F1(x, y, µ)F2(x, y, µ)F3(x, y, µ),

where

F0(x, y, µ) :=
(µ− xy − x)(µ− xy − y)2

24µ4(x+ 1)2(x− y)4(µ− xy)2
,(2.6)

F1(x, y, µ) := (x+ 1)µ2 −
(
2(x2 + x+ 3)y + x(x− 5)

)
µ+ x2(x+ 1)y(y + 1),(2.7)

F2(x, y, µ) := (x+ 1)µ2 −
(
2(x2 + x+ 2)y + x(x− 3)

)
µ+ x2(x+ 1)y(y + 1),(2.8)

F3(x, y, µ)

:= (x+ 1)
(
− y + x(x2 + 3x+ 3)

)
µ3

−
(
(3x2 + 8x+ 3)y2 + xy(3x4 + 10x3 + 6x2 − 7x− 2) + x3(x+ 2)(x+ 3)

)
µ2

+ (x+ 1)y
(
(3x2 − 2x− 2)y2 + x(3x4 + 5x3 − 4x2 + x+ 1)y + x4(2x+ 5)

)
µ

+ x2(x+ 1)2y2(y + 1)(y − x3).

(2.9)

Proposition 2.5. Let Γ be a primitive strongly regular graphs. If the spherical embedding

of Γ with respect to the eigenvalue y is a spherical {4, 2, 1}-design, then Fi(x, y, µ) = 0 for

some i ∈ {0, 1, 2, 3}.

Proof. Since the spherical embedding of a strongly regular graph will be a spherical 2-

distance set and a spherical 2-design, so we only need to check the spherical {4}-design

condition which is equivalent to F = 0 for F in (2.5), namely, Fi(x, y, µ) = 0 for some

i ∈ {0, 1, 2, 3}.

Let Γ be the complement graph of Γ. Then Γ is again a strongly regular graph of type

(v, v − k − 1, v − 2− 2k + µ, v − 2k + λ) whose eigenvalues are v − k − 1, −x− 1, −y − 1.

Hence, condition (2.1) implies the following result.



8 Eiichi Bannai, Etsuko Bannai, Ziqing Xiang, Wei-Hsuan Yu and Yan Zhu

Lemma 2.6. Let Γ be a primitive strongly regular graphs, and let T be a set of positive

integers. The spherical embedding ιy(Γ) is a spherical T -design if and only if the spherical

embedding ι−y−1(Γ) is a spherical T -design.

Proof. One can check that

A(ι−y−1(Γ)) =

{
−y − 1

v − k − 1
,
y

k

}
.

Then ι−y−1(Γ) is a spherical T -design if and only if

Qn,t(1) + (v − k − 1)Qn,t

(
−y − 1

v − k − 1

)
+ kQn,t

(y
k

)
= 0 for all t ∈ T .

Note that the equality above is also the condition for ιy(Γ) being a spherical T -design.

Thus, the result follows.

3. The classification of spherical 2-distance {4, 2, 1}-designs

The purpose of this section is to prove Theorem 1.1. An important step is to analyze the

integer zeros of the Fi(x, y, µ)’s in (2.6)–(2.9).

Proposition 3.1. If xy < 0, µ > 0, µ− xy− x 6= 0 and µ− xy− y 6= 0, then the rational

functions F0(x, y, µ), F1(x, y, µ) and F2(x, y, µ) have no integer zeros.

Proof. It is straightforward to see that F0(x, y, µ) have no integer zeros. When x ≥ 1 and

y ≤ −1, we have

F1(x, y, µ) ≥ −
(
2(x2 + x+ 3)y + x(x− 5)

)
µ ≥ (x+ 6)(x+ 1)µ > 0,

F2(x, y, µ) ≥ −
(
2(x2 + x+ 2)y + x(x− 3)

)
µ ≥ (x+ 4)(x+ 1)µ > 0,

and when x ≤ −1 and y ≥ 1

F1(x, y, µ) ≤ −
(
2(x2 + x+ 3)y + x(x− 5)

)
µ ≤ −3(x2 − x+ 2)µ < 0,

F2(x, y, µ) ≤ −
(
2(x2 + x+ 2)y + x(x− 3)

)
µ ≤ −(3x2 − x+ 4)µ < 0.

This completes the proof.

The integer zeros of F3(x, y, µ) are much harder to find. We list in Table 3.1 all

the integer zeros (x, y, µ), together with some related parameters, for 1 ≤ x ≤ 5 and

−1000 ≤ y ≤ −1.
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x 1 1 1 2 2 3 3 4 4 5 5

y −1 −5 −5 −28 −28 −81 −81 −176 −176 −325 −325

n = my 2 6 7 22 23 46 47 78 79 118 119

v 3 27 28 275 276 1127 1128 3159 3160 7139 7140

k 2 10 15 112 140 486 567 1408 1584 3250 3575

λ 1 1 6 30 58 165 246 532 708 1305 1630

µ 1 5 10 56 84 243 324 704 880 1625 1950

Table 3.1: Small integer zeros of F3(x, y, µ) with positive x. Related parameters are

obtained by (2.2) and (2.3).

We observe from Table 3.1 that, except the first column (where n = 2), all integer

zeros belong to two infinite parametric families in Table 3.2. This observation motivates

us to give the following conjecture.

Conjecture 3.2. All integer zeros of F3(x, y, µ) with x > 0, y < 0 and µ > 0 belong to

Table 3.2.

x 1 t t

y −1 −t2(2t+ 3) −t2(2t+ 3)

n = my 2 4t2 + 4t− 2 4t2 + 4t− 1

v 3 (2t+ 1)2(2t2 + 2t− 1) 2t(t+ 1)(4t2 + 4t− 1)

k 2 2t3(2t+ 3) t2(2t+ 1)(2t+ 3)

λ 1 t(2t− 1)(t2 + t− 1) t(2t3 + 3t2 + 1)

µ 1 t3(2t+ 3) t2(t+ 1)(2t+ 3)

Table 3.2: Conjectural integer zeros of F3(x, y, µ). Related parameters are obtained by

(2.2) and (2.3).

We will prove a partial result of this conjecture in Theorem 4.1, where we assume

v ≤ n(n + 3)/2 in addition. The proof of Theorem 4.1 will be postponed to Section 4,

since it is a standalone result and it is extremely technical.

Proof of Theorem 1.1. Since X is a spherical 2-distance 2-design, X carries the structure

of a symmetric association scheme of class 2. Then, X is the spherical embedding of a

strongly regular graph Γ with respect to some eigenvalue y of Γ into the sphere Sn−1 for

some positive integer n, namely X = ιy(Γ). If Γ is imprimitive, then by Example 2.3, either
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X does not exist, or X is a spherical 1-distance set, or X is not a spherical {4}-design.

Therefore, Γ is primitive.

Let (v, k, λ, µ) be the type of Γ, where v, k and µ are all integers, and let k, x and y

be the three eigenvalues of Γ. Since Γ is primitive, we have xy < 0, µ ≥ 1, mx 6= 0, which

implies that µ− xy − y 6= 0 by (2.3), and my 6= 0, which implies that µ− xy − x 6= 0 by

(2.3).

Since X is a spherical 2-distance set, we have an upper bound v = |X| ≤ n(n+ 3)/2.

Since X is a spherical {4}-design, we have the lower bound |X| ≥ (n+ 1)(n+ 2)/6. If

Γ is a conference graph, then 2n+ 1 = |X| ≥ (n+ 1)(n+ 2)/6, which implies that n ≤ 9.

We list all the types of conference graphs with 2 ≤ n ≤ 9 in Table 3.3.

v 5 9 13 17

k 2 4 1 2

λ 0 1 2 3

µ 1 2 3 4

Table 3.3: Types of conference graphs with 5 ≤ v ≤ 19.

We can check that among the four types of conference graphs in Table 3.3, only the

spherical embedding of the conference graph of type (5, 2, 0, 1) is a spherical {4}-design.

Moreover, its spherical embedding is a pentagon on S1, which is a tight spherical 4-design.

From now on, we assume that Γ is not a conference graph, hence both x and y are integers.

Now let us summarize all numerical conditions on parameters we get.

• x, y, µ, n and v are all integers.

• xy < 0 and µ ≥ 1.

• µ− xy − x 6= 0 and µ− xy − y 6= 0.

• v ≤ n(n+ 3)/2.

Case 1: y ≤ −1. By Proposition 2.5, we know that Fi(x, y, µ) = 0 for at least

one i ∈ {0, 1, 2, 3}. Proposition 3.1 shows that there are no such integer solutions when

i ∈ {0, 1, 2}, and Theorem 4.1 shows that all integer solutions of F3(x, y, µ) = 0 are:

(i) (1,−1, 1);

(ii) (t,−t2(2t+ 3), t3(2t+ 3)) for positive integers t;

(iii) (t,−t2(2t+ 3), t2(2t+ 3)(t+ 1)) for positive integers t.
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Therefore, (x, y, µ) belongs to one of the three types of solutions above.

Case 1.1: (x, y, µ) is a type (i) solution. In this case, n = 2 and X is a regular triangle

on S1, which is not a spherical 2-distance set.

Case 1.2: (x, y, µ) is a type (ii) solution. Using (2.2) and (2.3), we write parameters

n, v, k and λ in t, as shown in Table 3.2. Then, (2.4) becomes

A(X) =

{
− 1

2t
,

1

2(t+ 2)

}
.

By writing every parameter in terms of t, one can check that we have

Qn,3(1) + kQn,3

(
− 1

2t

)
+ (v − k − 1)Qn,3

(
1

2(t+ 2)

)
= 0,

which means that X is a spherical {3}-design, in addition to the assumption that X is

a spherical {4, 2, 1}-design. Therefore, X is a spherical 4-design. Moreover, it is easy to

check that |X| = v = n(n + 3)/2, which implies that X is a tight spherical 4-design on

Sn−1.

Case 1.3: (x, y, µ) is a type (iii) solution. Similarly, using (2.2) and (2.3), we write

related parameters in t, as shown in Table 3.2, and by (2.4),

A(X) =

{
± 1

2t+ 1

}
.

Since t is positive, −1 /∈ A(X), hence X and −X are disjoint sets. The disjoint union

X ′ := X∪(−X) of spherical {4, 2, 1}-designs X and −X is also a spherical {4, 2, 1}-design.

Since X ′ is antipodal, X ′ is a spherical {5, 3, 1}-design. Therefore, X ′ is a spherical 5-

design on Sn−1. It is easy to check that |X| = v = n(n+ 1)/2, which implies that X ′ is a

tight spherical 5-design on Sn−1.

Case 2: y ≥ 0. Let Γ be the complement graph of Γ, and let Y := ι−y−1(Γ). The

spherical embedding Y is a spherical 2-distance set since Γ is a primitive strongly regular

graphs, and Y is also a spherical {4, 2, 1}-design by Lemma 2.6. Moreover, its eigenvalue

−y − 1 is negative. Applying the result in Case 1 to Y , we know that either Y is a tight

spherical 4-design, or Y ∪(−Y ) is a tight spherical 5-design. Applying Lemma 2.6 to Γ, we

have that either X is a tight spherical 4-design, or X ∪ (−X) is a tight spherical 5-design.

Therefore, the proof of Theorem 1.1 completes.

4. Integer zeros of F3

Let f be a generic polynomial in 3 variables with integer coefficients. We generalize the

strategy of [18] to find all integer zeros of f in a specific region satisfying some additional

integer conditions and positivity conditions. The equation f = 0 gives a surface in a
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three-dimensional space. We first analyze the asymptotic behavior of all real points on

the surface. Then, we construct a good surface z = 0 such that (1) z takes integer

values under the additional integer conditions, and (2) it is sufficiently close to surface

f = 0 under the additional positivity conditions for large variables. Consequently, all large

integer points on the surface f = 0 are on the new surface z = 0 as well. Thus, we reduce

the problem of finding integer points on the two-dimensional surface f = 0 to the problem

of finding integer points on a one dimensional curve, the intersection of f = 0 and z = 0.

Then, we repeat this procedure and reduce the dimension of the problem, until we find

all the large solutions. The small solutions are found by a computer search.

In this section, we apply this method to the Diophantine equation F3 = 0. Theorem 4.1

gives a partial result of Conjecture 3.2 and is used in the proof of Theorem 1.1 in Section 3.

Note that the proof of Theorem 4.1 does not use any results in all previous sections. The

proof of Theorem 4.1 relies on computer calculations heavily. We first explain in Section 4.1

how we use computers in the proof, and then give the proof of Theorem 4.1 in Section 4.2.

4.1. Computer calculations

In this paper, we only ask computers to do two kinds of calculations:

(i) prove polynomial inequality for “large” real variables;

(ii) solve polynomial equations for “small” integer variables.

There are well-established algorithms to do (i), for instance cylindrical algebraic decom-

position, and (ii) only requires enumeration of finitely many “small” possible tuples. In

theory, both (i) and (ii) can be done by hand. In practice, since we human do not have as

much computational power as computers do, we can only do (i) for “very large” real vari-

ables, say analysis of asymptotic behavior, and do (ii) for “very small” integer variables.

Note that Hilbert’s 10-th problem shows that there are no algorithms to solve gen-

eral Diophantine equations. We do not ask computers to find out all integer solutions

F3(x, y, µ) = 0 for us directly. We only use computers as an extended calculator.

Before giving the proof of Theorem 4.1, we demonstrate explicitly how we use com-

puters for a much simpler polynomial F1(x, y, µ). Recall that

F1(x, y, µ) = (x+ 1)µ2 −
(
2(x2 + x+ 3)y + x(x− 5)

)
µ+ x2(x+ 1)y(y + 1),

and let us consider the problem of finding all integer solutions of F1(x, y, µ) = 0 with

xy ≤ −1, µ ≥ 1.

We first use computers to do the following three things.

(iii) Prove that F1(x, y, µ) > 0 if x ≥ 1, y ≤ −1 and µ ≥ 1.



Classification of Spherical 2-distance {4, 2, 1}-designs by Solving Diophantine Equations 13

(iv) Prove that F1(x, y, µ) < 0 if x ≤ −1, y ≥ 1 and µ ≥ 1.

(v) For each integral tuple (x, y, µ) that is not in the above two cases, test if F1(x, y, µ) =

0.

In Mathematica, the command “Simplify[Expression, Assumption]” will return “True”

if the expression hold under the assumption. We use the command

Simplify
[
(x+1)µ2−(2(x2+x+3)y+x(x−5))µ+x2(x+1)y(y+1) > 0, x ≥ 1&&y ≤ −1&&µ ≥ 1

]
to do (iii), and use the command

Simplify
[
(x+1)µ2−(2(x2+x+3)y+x(x−5))µ+x2(x+1)y(y+1) < 0, x ≤ −1&&y ≥ 1&&µ ≥ 1

]
to do (iv). There are only finitely many (in fact, zero) tuples in (v), hence we can simply

ask computers to enumerate all the tuples. We find no integer zeros in this case.

We then analyze the results obtained by computers. All integer tuples (x, y, µ) satisfy-

ing the assumption are covered by (iii), (iv) and (v). If the tuple is considered in either (iii)

or (iv), then the computer calculation shows that either F1(x, y, µ) > 0, or F1(x, y, µ) < 0,

hence (x, y, µ) is not a zero. If the tuple is considered in (v), then it can not be a zero

since the computer calculation finds no integer zeros in (v). Therefore, we can conclude

that F1(x, y, µ) has no integer zeros with xy ≤ −1 and µ ≥ 1.

4.2. Analysis of F3

All variables and numbers in this section are assumed to be real, unless stated explicitly

otherwise. Many arguments in the proof of Theorem 4.1 require us to distinguish variables

and numbers. So, we put subscripts, say 0, for numbers. For instance, x and y(1) are real

variables, and x0 and y
(1)
0 are real numbers.

In this section, we regard x, y and µ as variables, and use a different but equivalent

definition for n and v. Let

n :=
(x+ 1)(µ− xy)(µ− xy − x)

µ(−y + x)
∈ Q(x, y, µ),(4.1)

v := n+ 1− yn+ µ− xy
x

∈ Q(x, y, µ).(4.2)

For an arbitrary variable t in this section, we set t0 to be the specialization of t to x =

x0 and possibly y = y0, µ = µ0, etc. For instance n0 := n|x=x0,y=y0,µ=µ0 and v0 :=

v|x=x0,y=y0,µ=µ0 .

Theorem 4.1. Consider the region

D := {(x0, y0, µ0) ∈ R3 | x0 ≥ 1, y0 ≤ −1, µ0 ≥ 1, v0 ≤ n0(n0 + 3)/2}.
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Then, all integer solutions (x0, y0, µ0) of F3(x, y, µ) = 0 in D such that n0 and v0 are

integers are given in Table 4.1.

x0 1 t0 t0

y0 −1 −t20(2t0 + 3) −t20(2t0 + 3)

µ0 1 t30(2t0 + 3) t20(t0 + 1)(2t0 + 3)

Table 4.1: One special solution and two parametric solutions, where t0 is a positive integer.

Proof. In this proof, all computer calculations are done in Mathematica. The complete

Mathematica code used is available in [19].

Step 1. Use computers to prove that if x ≥ 1,

(4.3) y ∈ (−∞,−(2x3 + 3x2 + 3x+ 2)] ∪ [−(2x3 + 3x2 − 3x− 3),−1],

and µ ≥ 1, then either v > n(n+ 3)/2 or F3(x, y, µ) > 0.

Step 2. Let a be defined by

(4.4) µ = −(x+ a)y.

We substitute (4.4) into F3(x, y, µ) ∈ Z[x, y, µ] and set

G1(a;x, y) := F3(x, y, µ)/y2 ∈ Z[a][x, y].

Use computers to prove that:

Step 2(a): G1(a;x, 0) < 0 if x ≥ 2 and a ∈ (−x,+∞).

Step 2(b): G1(a;x,−1) > 0 if x ≥ 2 and a ∈ (−x,+∞).

Step 2(c): G1(a;x,−(2x3 + 3x2 + 3x+ 2)) > 0 if x ≥ 2 and a ∈ (−x,−1] ∪ [3,+∞).

In this step, let a0 and x0 be some real numbers such that x0 ≥ 2 and a0 ∈ (−x0,+∞).

Then, G1(a0;x0, y) ∈ R[y] is a degree ≤ 2 polynomial in y.

By Step 2(a) and Step 2(b), the polynomial G1(a0;x0, y) ∈ R[y] has a solution

(4.5) y1 ∈ (−1, 0).

When the coefficient of y2 in G1(a0;x0, y) ∈ R[y] is positive, by Step 2(a), G1(a0;x0, y) ∈
R[y] has a solution

(4.6) y2 ∈ (0,+∞).

When the coefficient of y2 in G1(a0;x0, y) ∈ R[y] is negative and a0 ∈ (−x,−1]∪ [3,+∞),

by Step 2(c), G1(a0;x0, y) ∈ R[y] has a solution

(4.7) y2 ∈ (−∞,−(2x3
0 + 3x2

0 + 3x0 + 2)).
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Therefore, when the coefficient of y2 in G1(a0;x0, y) ∈ R[y] is nonzero and a0 ∈ (−x,−1]∪
[3,+∞), the degree 2 polynomial G1(a0;x0, y) ∈ R[y] has at most two solutions and we

have found two different solutions, one in (4.5) and the other in either (4.6) or (4.7), hence

all solutions of G1(a0;x0, y) ∈ R[y] are y1 and y2.

When the coefficient of y2 in G1(a0;x0, y) ∈ R[y] is zero, G1(a0;x0, y) ∈ R[y] has at

most one (in fact, exactly one) solution and we have found one solution in (4.5), hence y1

is the unique solution.

Therefore, if a0 ∈ (−x,−1] ∪ [3,+∞), then all solutions of G1(a0;x0, y) ∈ R[y] are in

(4.8) (−∞,−(2x3
0 + 3x2

0 + 3x0 + 2)) ∪ (−1, 0) ∪ (0,+∞),

and if a0 ∈ [−1, 3], then there exists at most one solution in (−∞,−1).

Step 3. In this step, let (x0, y0, µ0) be a tuple inD such that x0 ≥ 90 and F3(x0, y0, µ0) =

0. By (4.3) in Step 1,

(4.9) y0 ∈ (−(2x3
0 + 3x2

0 + 3x0 + 2),−(2x3
0 + 3x2

0 − 3x0 − 3)).

Let a0 be defined using x0, y0, µ0 and (4.4). Since µ0 ≥ 1, a0 ∈ (−x0,+∞). If a0 ∈
(−x0,−1] ∪ [3,+∞), then by (4.8) in Step 2,

(4.10) y0 ∈ (−∞,−(2x3
0 + 3x2

0 + 3x0 + 2)) ∪ (−1, 0) ∪ (0,+∞).

Clearly, (4.9) and (4.10) contradicts with each other, which implies that a0 ∈ [−1, 3].

Let b be defined by

−y = 2x3 + 3x2 +
3(a− 1)a

2
x− 3(a− 1)2a

2

+
3(a− 1)a(3a2 − 4a+ 2)

4
x−1 − 3(a− 1)a2(4a2 − 6a+ 3)

4
x−2

+
3(a− 1)a(11a4 − 20a3 + 16a2 − 9a+ 5)

8
x−3 + bx−4.

(4.11)

We substitute (4.11) into G1(a;x, y) ∈ Z[a](x, y) and set

G2(a, b;x) := G1(a;x, y) ∈ Q[a, b][x, x−1].

Use computers to prove that:

Step 3(a): G2(a,−3994;x) > 0 if x ≥ 90 and a ∈ [−1, 3].

Step 3(b): G2(a, 64;x) < 0 if x ≥ 90 and a ∈ [−1, 3].

Consider the polynomial G2(a0, b;x0) ∈ R[b]. By Step 3(a) and Step 3(b), the polyno-

mial G2(a0, b;x0) ∈ R[b] has a solution b3 in [−3994, 64]. Let b0 be defined using a0, x0 and

y0 by (4.11). Clearly, b0 is also a solution of G2(a0, b;x0) ∈ R[b]. Since G2(a0, b;x0) ∈ R[b]
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is of degree 2, we cannot conclude immediately that b0 ∈ [−3994, 64], and we need to use

the uniqueness of the solutions of G1(a0;x0, y) ∈ R[y] to prove it.

Let y3 be defined using a0, x0 and b3 by (4.11). Then y3 is a solution of G1(a0;x0, y) ∈
R[y]. Using the bound on a0, x0 and b3, we get y3 ∈ (−∞,−1). Recall from (4.9) that

y0 ∈ (−∞,−1) is a solution of G1(a0;x0, y) ∈ R[y]. Step 2 proves that G1(a0;x0, y) ∈ R[y]

has at most one solution in (−∞,−1) and we have found two solutions y0, y3 ∈ (−∞,−1),

hence y3 = y0. Therefore, b0 = b3 ∈ [−3994, 64].

Step 4. Let

(4.12) m2 := n− (4x2 + 4x− 2),

where m is a complex variable such that Rem ≥ 0 and m2 is real. We substitute (4.4)

and (4.11) into (4.12) and set

G3(a, b;x) := m2 ∈ Q[a, b](x).

Consider a new complex variable m̃ such that Re m̃ ≥ 0 and m̃2 is real, and let c be

defined by

m̃2 = a2 − (a− 1)a2x−1 + (a− 1)(a2 + 1)ax−2 − (a− 1)(2a3 + 2a+ 1)a

2
x−3

+
(a− 1)a(4a4 + 4a2 − a+ 7)

4
x−4 + cx−5.

(4.13)

We use the right side of (4.13) to define G4:

G4(a, c;x) := m̃2 ∈ Q[a, c][x−1].

Note that we will regard m2 and m̃2 as the same after specialization, namely m2
0 = m̃2

0.

The only reason why we introduce m̃2 is that, we want to distinguish the uses of m2 as

G3 and m2 as G4 in Step 5.

Use computers to prove that:

Step 4(a): G3(a, b;x) > G4(a,−1620;x) if x ≥ 90, a ∈ [−1, 3] and b ∈ [−3994, 64].

Step 4(b): G3(a, b;x) < G4(a, 3;x) if x ≥ 90, a ∈ [−1, 3] and b ∈ [−3994, 64].

Step 4(c): G4(a, c;x) < 9 if x ≥ 90, a ∈ [−1, 3] and c ∈ [−1620, 3].

In this step, let (x0, y0, µ0) be a tuple in D such that x0 ≥ 90 and F3(x0, y0, µ0) = 0.

Let a0 be defined using x0, y0 and µ0 by (4.4). Then, by the discussion in Step 3, we get

a0 ∈ [−1, 3]. Let b0 be defined using a0, x0 and y0 by (4.11). The conclusion of Step 3

shows that b0 ∈ [−3994, 64].

Now, consider the equation R 3 G3(a0, b0;x0) = G4(a0, c;x0) ∈ R[c]. It is a linear

equation in c, hence there exists a unique solution c0. Step 4(a) and Step 4(b) prove that

c0 ∈ [−1620, 3].
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Let m̃2
0 be defined using a0, x0 and c0 by (4.13). Then, Step 4(c) means m2

0 = m̃2
0 < 9.

Step 5. Let

(4.14) z := 144m2 −
(

3v + (8y + 4x3 + 6x2 + 3)(2x+ 1)− 3m2(m2 − 7)

2

)2

and

(4.15) z̃ := 144m̃2 −
(

3ṽ + (8y + 4x3 + 6x2 + 3)(2x+ 1)− 3m̃2(m̃2 − 7)

2

)2

,

where

(4.16) ṽ := ñ+ 1− yñ+ µ− xy
x

and ñ := m̃2 + 4x2 + 4x− 2.

We substitute (4.4), (4.11) and (4.13) into (4.15) and set

G5(a, b, c;x) := z̃ ∈ Q[a, b, c][x−1].

Thus, we can express G5 as

G5(a, b, c;x) =

−2∑
i=−20

G5,ix
i,

for some G5,i ∈ Q[a, b, c]. Use computers to do the following things:

Step 5(a): Give a good upper bound on G5,i when a ∈ [−1, 3], b ∈ [−3994, 64] and

c ∈ [−1620, 3].

Step 5(b): Use Step 5(a) to prove that |G5(a, b, c;x)| < 1 if x ≥ 120, a ∈ [−1, 3],

b ∈ [−3994, 64] and c ∈ [−1620, 3].

In this step, let (x0, y0, µ0) be a tuple in D such that x0, y0, µ0, n0, v0 are all integers,

x0 ≥ 120 and F3(x0, y0, µ0) = 0. By (4.14), we know that z0 is an integer.

Consider an additional equation m2
0 = m̃2

0, which implies that ñ0 = n0 by (4.1) and

(4.16), ṽ0 = v0 by (4.2) and (4.16) and z̃0 = z0 by (4.14) and (4.15). Step 4 shows that

(4.4) defines an a0 ∈ [−1, 3], (4.11) defines a b0 ∈ [−3994, 64] and the equation m2
0 = m̃2

0

defines a c0 ∈ [−1620, 3]. Then, Step 5(a) and Step 5(b) prove that |z̃0| < 1.

Since z0 = z̃0, we know that z0 is an integer and |z0| < 1. Therefore, z0 = 0. According

to (4.14), 144m2
0 = 144m2

0 − z0 is the square of an integer. Thus, m0 is an integer. Since

Rem0 ≥ 0, m0 is a nonnegative integer. Step 4 shows that m2
0 < 9, then we have

m0 ∈ {0, 1, 2}.
Step 6. In Step 6 and Step 7, we assume that m = m0 for some m0 ∈ {0, 1, 2}, and

the goal of these two steps is to find out suitable solutions of the system of equations

F3(x, y, µ) = 0 and m = m0.
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Consider the expression

(4.17) µ(y − x)(m2 −m2
0).

We substitute (4.1) and (4.12) into (4.17) and set

G6(m0;x, y;µ) := µ(y − x)(m2 −m2
0) ∈ Z[m0][x, y][µ].

Regarding polynomials G6(m0;x, y, µ) ∈ Z[m0][x, y][µ] and F3(x, y, µ) ∈ Z[x, y][µ] as poly-

nomials in a single variable µ, we apply the extended Euclidean algorithm to them and

get

F3(x, y, µ)p(m0;x, y) +G6(m0;x, y;µ)q(m0;x, y)

= x2(x+ 1)y2(y + 1)3(y − x)2F4(m0;x, y)
(4.18)

for some nonzero minimal polynomials p(m0;x, y), q(m0;x, y), F4(m0;x, y) ∈ Z[m0][x, y].

Moreover, the choice for F4(m0;x, y) is unique up to sign. We use the convention that

F4(m0;x, y) is the unique nonzero minimal polynomial satisfying (4.18) such that the

coefficient of x13 in F4(m0;x, y) is positive.

Step 7. In this step, we find all large solutions of F4(m0;x, y) = 0 in a certain region,

for m0 ∈ {0, 1, 2}. The polynomial F4(m0;x, y) is of degree 3 in y. Let

y(1) := −
(

2x3 + 3x2 +
3m0(m0 + 1)

2
x+

3m0(m0 + 1)

4

)
,

y(2) := −
(

2x3 + 3x2 +
3m0(m0 − 1)

2
x+

3m0(m0 − 1)

4

)
,

y(3) := x.

Note that when x ≥ 3 and m0 = 0, we have

(4.19) y(1) < y(2) +
1

x
< y(2) +

1

2
< y(3) − 1 < y(3) < y(3) + 1

and when x ≥ 1 and m0 ∈ {1, 2}, we have

(4.20) y(1)− 1

2
< y(1) < y(1) +

1

2
< y(2)− 1

2
< y(2) < y(2) +

1

2
< y(3)− 1 < y(3) < y(3) + 1.

Use computers to prove that:

Step 7(a): F4(m0;x, y(1)) = 0 if m0 = 0.

Step 7(b): F4(m0;x, y(1) − 1/2) > 0 if x ≥ 90 and m0 ∈ [1, 2].

Step 7(c): F4(m0;x, y(1) + 1/2) < 0 if x ≥ 90 and m0 ∈ [1, 2].

Step 7(d): F4(m0;x, y(2) + 1/x) < 0 if x ≥ 90 and m0 = 0.

Step 7(e): F4(m0;x, y(2) − 1/2) < 0 if x ≥ 90 and m0 ∈ [1, 2].
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Step 7(f): F4(m0;x, y(2) + 1/2) > 0 if x ≥ 90 and m0 ∈ [0, 2].

Step 7(g): F4(m0;x, y(3) − 1) > 0 if x ≥ 1 and m0 ∈ [0, 2].

Step 7(h): F4(m0;x, y(3) + 1) < 0 if x ≥ 1 and m0 ∈ [0, 2].

Let x0 ≥ 90 be an integer. Consider the polynomial F4(m0;x0, y) in single variable y

of degree 3.

When m0 = 0, Step 7(a) gives a solution y
(1)
0 ∈ (y

(1)
0 − 1/2, y

(1)
0 + 1/2), Step 7(d) and

Step 7(f) gives a solution in (y
(2)
0 +1/x, y

(2)
0 +1/2) ⊂ (y

(2)
0 −1/2, y

(2)
0 +1/2), Step 7(g) and

Step 7(h) gives a solution in (y
(3)
0 − 1, y

(3)
0 + 1), and these three solutions are all different

by (4.19). Therefore, when m0 = 0, all solutions of F4(m0;x0, y) are in

(4.21) (y
(1)
0 − 1/2, y

(1)
0 + 1/2) ∪ (y

(2)
0 − 1/2, y

(2)
0 + 1/2) ∪ (y

(3)
0 − 1, y

(3)
0 + 1).

When m0 ∈ {1, 2}, Step 7(b) and Step 7(c) give a solution in (y
(1)
0 − 1/2, y

(1)
0 + 1/2),

Step 7(e) and Step 7(f) give a solution in (y
(2)
0 − 1/2, y

(2)
0 + 1/2), Step 7(g) and Step 7(h)

give a solution in (y
(3)
0 − 1, y

(3)
0 + 1), and these three solutions are all different by (4.20).

Therefore, when m0 ∈ {1, 2}, all solutions of F4(m0;x0, y) are also in (4.21).

Now, let y0 ≤ −1 be an integer such that F4(m0;x0, y0) = 0. By the discussion above,

we know that y0 is in

(4.22) (y
(1)
0 − 1/2, y

(1)
0 + 1/2) ∪ (y

(2)
0 − 1/2, y

(2)
0 + 1/2) ∪ (y

(3)
0 − 1, y

(3)
0 + 1).

Since m0 ∈ {0, 1, 2}, all of y
(1)
0 , y

(2)
0 and y

(3)
0 are in 1

2Z. Therefore, (4.22) contains a unique

negative integer −x2
0(2x0 + 3) when m0 ∈ {0, 1} and no integers when m0 = 2.

Therefore, for m0 ∈ {0, 1, 2}, all integer solutions (x0, y0) of F4(m0;x, y) = 0 such that

x0 ≥ 90 and y0 ≤ −1 are (t0,−t20(2t0 + 3)) for positive integer t0.

Step 8. Use computers to prove that, for all integer x0 ∈ [1, 120] and all negative

integer y0 ∈ [−(2x3
0 + 3x2

0 + 3x0 + 2),−(2x3
0 + 3x2

0 − 3x0 − 3)] \ {−x2
0(2x0 + 3)}, the

polynomial F3(x0, y0, µ) in µ has a positive integer solution if and only if x0 = 1 and

y0 = −1. Moreover, F3(1,−1, µ) has a unique positive integer solution µ0 = 1.

Step 9. It is easy to check all tuples in Table 4.1 are solutions of F3(x, y, µ).

Let (x0, y0, µ0) be a tuple in D such that n0 and v0 are integers and F3(x0, y0, µ0) = 0.

By (4.3) in Step 1, y0 ∈ [−(2x3
0+3x2

0+3x0+2),−(2x3
0+3x2

0−3x0−3)]. Then, by Step 8,

either x0 ≥ 120, or (x0, y0, µ0) = (1,−1, 1) which is in Table 4.1, or y0 = −x2
0(2x0 + 3).

For the last case, there are exactly three solutions of F3(x0, y0, µ) = 0 in µ: −x0y0 which is

in Table 4.1, −(x0 + 1)y0 which is also in Table 4.1, and −2x4
0−x3

0 +x2
0 which is negative.

Therefore, Table 4.1 contains all solutions when x0 ≤ 120. Now, assume that x0 ≥ 120.

By Step 5, m0 ∈ {0, 1, 2}. Then, Step 6 shows that F4(m0;x0, y0) = 0. Step 7 solves

F4(m0;x0, y0) = 0 and gives y0 = −x2
0(2x0 + 3). By the discussion above, all solutions

with y0 = −x2
0(2x0 + 3) are in Table 4.1.

Therefore, all solutions are found and the proof of Theorem 4.1 is finished.
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Remarks from Nozaki

After we finish the manuscript, we receive a remark from Hiroshi Nozaki who suggests

us that there exists a short approach to Theorem 1.1. Let X be a spherical 2-distance

{4, 2, 1}-design on Sn−1. If X is a {3}-design, then X is a spherical 2-distance 4-design,

hence by [13] it is a tight spherical 4-design. If X is not a spherical {3}-design, then

X is a spherical 2-distance 2-design but not a 3-design. Therefore, in the latter case,

by [15] or [16], we have |X| ≤ n(n + 1)/2. Consider the multiset X ′ := X ∪ (−X), then

|X ′| ≤ n(n+1). Since X ′ is antipodal, X ′ is a {5, 3}-design with possibly repeated points.

In conjunction with {4, 2, 1}-design assumption, X ′ is a spherical 5-design, which has the

lower bound |X ′| ≥ n(n+ 1) by [13]. Therefore, X ′ is a tight spherical 5-design.

Although above discussion covers Theorem 1.1, we want to emphasize that our method

is important since there are a lot of classification problems which can be reduced to the

problems of solving some Diophantine equations. The prototype of our method had been

used to prove the nonexistence of nontrivial tight combinatorial 8-design [18]. In an

ongoing project, we have obtained some partial results on complex spherical 4-distance

T -design by solving Diophantine equations. Our ultimate goal is to get the classification

of spherical s-distance (2s− 1)-designs for s ≥ 3 by this method.
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