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Nonresonance and Resonance Problems for Nonlocal Elliptic Equations with

Respect to the Fučik Spectrum

Sarika Goyal

Abstract. In this article, we consider the following problem(−∆)su = αu+ − βu− + f(u) + h in Ω,

u = 0 on Rn \ Ω,

where Ω ⊂ Rn is a bounded domain with Lipschitz boundary, n > 2s, 0 < s < 1,

(α, β) ∈ R2, f : R → R is a bounded and continuous function and h ∈ L2(Ω). We

prove the existence results in two cases: first, the nonresonance case where (α, β) is

not an element of the Fučik spectrum. Second, the resonance case where (α, β) is an

element of the Fučik spectrum. Our existence results follows as an application of the

saddle point theorem. It extends some results, well known for Laplace operator, to

the nonlocal operator.

1. Introduction

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary, n > 2s and s ∈ (0, 1). Then

consider the following problem(−∆)su = αu+ − βu− + f(u) + h in Ω,

u = 0 on Rn \ Ω,

where (α, β) ∈ R2, u± = max{±u, 0}, f : R → R is a bounded and continuous function,

h ∈ L2(Ω) and (−∆)s is the fractional Laplacian operator defined as

(−∆)su(x) = −1

2

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy for all x ∈ Rn.

In this article, we study the corresponding problem driven by the nonlocal operator

LK given by

(1.1)

−LKu = αu+ − βu− + f(u) + h in Ω,

u = 0 on Rn \ Ω.
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The nonlocal operator LK is defined as

LKu(x) := −1

2

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(y) dy for all x ∈ Rn,

and the function K : Rn \ {0} → (0,∞) satisfies the following assumptions:

(K1) mK ∈ L1(Rn), where m(x) = min{|x|2, 1},

(K2) There exist λ > 0 and s ∈ (0, 1) such that K(x) ≥ λ|x|−(n+2s),

(K3) K(x) = K(−x) for any x ∈ Rn \ {0}.

In case K(x) = |x|−(n+2s), LK is the fractional Laplace operator (−∆)s. When s = 1,

the fractional Laplacian operator becomes the usual Laplace operator. There has been

done a lot of works related to the solvability of resonance problem with respect to the

Fučik spectrum for the classical Laplace equation, see [7, 8, 13, 14] and references therein.

The Fučik spectrum in the case of Laplacian and p-Laplacian equations with Dirichlet

boundary condition has been studied by many authors [4, 5, 10].

Recently a lot of attention has been paid to the study of fractional and nonlocal

equations of elliptic type due to concrete real world applications in finance, thin obstacle

problem, optimization, quasi-geostrophic flow etc., see [1,2,18]. Dirichlet boundary value

problem in case of fractional Laplacian with polynomial type nonlinearity using variational

methods is studied in [15,16]. Fiscella, Servadei and Valdinoci in [11] studied the resonance

problem with respect to the spectrum for a non local equation.

The Fučik spectrum of the nonlocal operator LK is defined as the set

(1.2) ΣK := {(α, β) ∈ R2 | −LKu = αu+ − βu− in Ω, u = 0 on Rn \ Ω},

where u is a nontrivial solution. For α = β = λ, the Fučik spectrum of (1.2) becomes the

usual spectrum of LK . In this case, u satisfies

(1.3)

−LKu = λu in Ω,

u = 0 on Rn \ Ω.

Let 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · denote the sequence of eigenvalues of (1.3) and {φk}k
denote the sequence of eigenfunctions corresponding to λk. Then it is proved in [16] that

the first eigenvalue λ1 of (1.3) is simple, isolated and can be characterized as follows:

λ1 = inf
u∈X0

{∫
Q

(u(x)− u(y))2K(x− y) dxdy :

∫
Ω
u2 = 1

}
.

The authors also proved that the eigenfunctions corresponding to λ1 is non-negative. Also

such eigenfunction is strictly positive in Ω, thanks to [17]. Moreover, one can observe
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that ΣK clearly contains (λk, λk) for each k ∈ N and ΣK is symmetric with respect to the

diagonal. In [12], it is shown that the two lines R× λ1 and λ1 ×R belongs to ΣK and are

isolated in ΣK . Also a variational characterization of the second eigenvalue λ2 of −LK
is studied in [12]. But here we will characterize a portion of ΣK using the variational

methods. That is, the eigenvalue pair will be obtained as minima or minimax values of

an appropriate functional.

In the homogeneous case where α = β = λ and f ≡ 0, the solvability of (1.1) can be

completely described by the Fredholm Alternative, which says that if λ is not an eigenvalue

of −LK , then the problem has a unique solution for any h, and if λ is an eigenvalue of −LK ,

then the problem (1.1) has a solution if and only if h is orthogonal to the corresponding

eigenspace.

For the nonhomogeneous case where α = β = λ and f 6= 0, Fiscella, Servadei and

Valdinoci in [11], studied the existence results for the following problem−LKu+ q(x)u = λu+ f(u) + h(x) in Ω,

u = 0 on Rn \ Ω,

where f , q and h are sufficiently smooth functions. They showed that if λ is not an

eigenvalue (nonresonance), then it has a solution with no further restriction on f and h,

and if λ is an eigenvalue (resonance), then they need some extra conditions on f and h.

Precisely, denoting by

fl = lim
t→−∞

f(t) and fr = lim
t→∞

f(t),

they assume that fl and fr exist, are finite and such that fl > fr and

fr

∫
Ω
φ−(x) dx− fl

∫
Ω
φ+(x) dx <

∫
Ω
h(x)φ(x) dx < fl

∫
Ω
φ−(x) dx− fr

∫
Ω
φ+(x) dx

for any nontrivial φ in the eigenspace associated with λ. We would remark that these

extra conditions on f and h are exactly the same required in the resonant setting, when

dealing with the classical Laplace operator. Moreover, in the resonant case for fractional

Laplacian, they are able to treat this case only if λ satisfies the following condition:

λ is an eigenvalue of −LK + q such that all the eigenfunctions

corresponding to λ have nodal set with zero Lebesgue measure.
(1.4)

As usual, the nodal set of a function g in Ω is the level set {x ∈ Ω : g(x) = 0}. The

condition (1.4) has been established for the fractional Laplacian in [9]. For instant, in case

of fractional Laplacian (1.4) is true when λ is its first eigenvalue however condition (1.4) is

satisfied by every eigenvalue of the classical Laplace operator. At this point, we note that
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there is a difference in result between Nonlocal operator and Classical Laplcian operator.

Therefore one can not directly extend the results for Laplace equation to nonlocal equation

due to the nonlocal behaviour of the operator and the bounded support of the test function

is not preserved.

In this paper, we studied the problem (1.1) with respect to the Fučik spectrum for

nonlocal equation. Here we use the variational argument which was developed by Castro

and Chang in [4] for the Laplace operator. To the best of our knowledge, no work has

been done related to the solvability of resonance and nonresonance problems with respect

to the Fučik spectrum for the nonlocal equation in (1.1). The results obtained here are

somehow expected but new for the nonlocal operator.

Now for the nonresonance case, we assume that α lies strictly between consecutive

eigenvalues of (−∆)s, call them as λk < λk+1, and we also assume that α ≤ β < β(α),

where β(α) is defined as

β(α) := sup
{
β ≥ α | J̃α,b(y) = Jα,b(y +Mα,b(y)) > 0 for all b ∈ (α, β), y ∈ X2 \ {0}

}
,

where Jα,b is a function defined in (2.2) and {(α, β) : α ≤ β < β(α)} contains no points

in ΣK , according to the Castro-Chang characterization (see Theorem 2 in [4]) which can

be easily generalized in case of fractional Laplace operator and it is stated as follows:

Proposition 1.1. If α ∈ (λk, λk+1), N(l) <∞ (multiplicity of eigenvalue λl) for l ≥ k+1,

and β(α) is defined as above. Then the following hold.

(1) (α, β(α)) is in the Fučik spectrum when β(α) < +∞.

(2) If β ∈ [α, β(α)) then (α, β) is not in the Fučik spectrum.

(3) For β > α, (α, β) is in the Fučik spectrum if and only if the restriction of J̃α,β to

{y ∈ X2 | ‖y‖ = 1} has a critical point on {y ∈ X2 | ‖y‖ = 1, J̃α,β = 0}.

(4) The function β(α) : (λj , λj+1)→ [0,+∞], α→ β(α) is non-increasing and continu-

ous.

Note that if X2\{0} contains a non-negative function then β(α) <∞ for all α ∈ (λk, λk+1).

In the prove of above theorem, one use the following global reduction principle (see [3]).

Proposition 1.2. Let H be a separable real Hilbert space. Let X1, X2 be closed subspaces

such that H = X1 ⊕X2, and J : H → R a functional of class C1. If there exists m > 0

such that

〈∇J(x1 + x2)−∇J(y1 + x2), x1 − y1〉 ≤ −m‖x1 − y1‖2

for all x1, y1 ∈ X1, x2 ∈ X2, then there exists a continuous function M : X2 → X1 such

that
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(1) J(y +M(y)) = max{J(y + x) | x ∈ X1}.

(2) J̃ : Y → R defined by J̃(y) = J(y +M(y)) is of class C1.

(3) x+ y is a critical point of J if and only if x = M(y) and y is a critical point of J̃ .

Now we state the main results.

Theorem 1.3 (Nonresonance case). Assume λk < α < λk+1, α ≤ β < β(α), f : R → R
is a bounded and continuous function, and h ∈ L2(Ω), then the problem (1.1) has at least

one weak solution.

In the resonance case, we still assume that λk < α < λk+1, but now assume that

β = β(α), as above, where (α, β(α)) ∈ ΣK . The solvability condition that we impose is

the following:

Let F (u) :=
∫ u

0 f(t) dt. If {uk} ∈ X0 (see (2.1)), is such that ‖uk‖L2 →∞ and uk
‖uk‖L2

converges in L2(Ω) to some v, a nontrivial Fučik eigenfunction associated with (α, β), then

limk→∞
∫

Ω(F (uk) + huk) dx = −∞. Moreover, this

(1.5) lim
k→∞

∫
Ω

(F (uk) + huk) dx = −∞

is known as the generalization of Landesman-Lazer condition. The following theorem is

the boarder line case comparing to Theorem 1.3.

Theorem 1.4 (Resonance case). Assume λk < α < λk+1, β = β(α), f : R→ R is bounded

and continuous satisfying limk→∞
∫

Ω(F (uk) + huk) dx = −∞, where F is primitive of f

and h ∈ L2(Ω). Then the problem (1.1) has at least one weak solution.

2. Preliminaries

In this section we will recall function spaces which was introduced by Servadei and

Valdinoci in [15,16] and some standard results from Functional analysis and critical point

Theory.

Now due to nonlocalness of the fractional Laplacian, we define the function spaces

introduced by Servadei and Valdinoci in [15] as

X =
{
u | u : Rn → R is measurable, u|Ω ∈ L2, (u(x)− u(y))

√
K(x− y) ∈ L2(Q)

}
,

where Q = R2n \ (CΩ × CΩ) and CΩ := Rn \ Ω. The space X is endowed with the norm

‖u‖X = ‖u‖L2(Ω) +
( ∫

Q |u(x)− u(y)|2K(x− y) dxdy
)1/2

. Then we define

(2.1) X0 = {u ∈ X : u = 0 a.e. in Rn \ Ω}
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equipped with the norm

‖u‖ =

(∫
Q
|u(x)− u(y)|2K(x− y) dxdy

)1/2

,

is a Hilbert spaces. Note that the norm ‖ · ‖ on the space X0 involves the interaction

between Ω and Rn \ Ω. For more details on these function spaces and the embedding

theorems, we refer to [6, 15].

We also recall the space L2(Ω) := {u : Ω → R : u is measurable,
∫

Ω u
2 dx < ∞} en-

dowed with the norm ‖u‖L2 =
( ∫

Ω u
2 dx

)1/2
is a Hilbert space.

Definition 2.1. A function u ∈ X0 is a weak solution of (1.1), if for every v ∈ X0, u

satisfies∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy =

∫
Ω

(αu+ − βu− + f(u) + h)v dx.

Now we denote X1 := span[φ1, φ2, . . . , φk]. That is, the linear span of the first k

eigenfunctions, and X2 := X⊥1 = [φk+1, φk+2, . . .]. The sequence {φk}k∈N of eigenfunctions

is an orthonormal basis of L2(Ω) and an orthogonal basis of X0. By definition, the

subspaces X1 and X2 are orthogonal and X0 = X1 ⊕ X2. The Fourier expansion of a

function u ∈ X0 is u =
∑∞

j=1 cjφj . Then note that∫
Q
|u(x)− u(y)|2K(x− y) dxdy =

∞∑
j=1

λjc
2
j and

∫
Ω
u2 dx =

∞∑
j=1

c2
j .

This has helpful consequence such as∫
Q
|u(x)− u(y)|2K(x− y) dxdy ≤ λk

∫
Ω
u2 dx, ∀u ∈ X1,∫

Q
|v(x)− v(y)|2K(x− y) dxdy ≥ λk+1

∫
Ω
v2 dx, ∀ v ∈ X2.

To analyze problem (1.2), we consider the functional

(2.2) Jα,β(u) =
1

2

(∫
Q
|u(x)− u(y)|2K(x− y) dxdy − α

∫
Ω

(u+)2 dx− β
∫

Ω
(u−)2 dx

)
,

which is C1 functional on X0 with

〈J ′α,β(u), v〉 =

∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy − α
∫

Ω
u+v dx+ β

∫
Ω
u−v dx.

One can easily see that the critical points of Jα,β are weak solutions of (1.2). It will be

very useful to think of Jα,β as a C1 functional on R2 ×X0. That is,

J : R2 ×X0 → R, J(α, β, u) := Jα,β(u)
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with the derivative given by

〈J ′(α, β, u), (s, t, v)〉 =

∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy

− α
∫

Ω
u+v + β

∫
Ω
u−v − s

∫
Ω

(u+)2 − t
∫

Ω
(u−)2.

It is clear that ‖DJ‖(R2×X0)∗ is bounded on bounded subsets of R2 × X0, and so J is

uniformly Lipschitz continuous on any bounded subset of R2 ×X0.

To examine problem (1.1), we consider the functional

Eα,β(u) =
1

2

(∫
Q
|u(x)− u(y)|2K(x− y) dxdy − α

∫
Ω

(u+)2 − β
∫

Ω
(u−)2

)
−
∫

Ω
(F (u)+hu),

where F (u) :=
∫ u

0 f(t) dt. Eα,β is also a C1 functional on X0 with

〈E′α,β(u), v〉 =

∫
Q

(u(x)−u(y))(v(x)−v(y))K(x−y) dxdy−
∫

Ω
(αu+−βu−+f(u)+h)v dx.

It is straightforward to see that critical points of Eα,β are weak solutions of (1.1).

We will use the saddle point theorem to prove the existence of critical points. Before

stating the theorem, we first define the Palais-Smale condition (PS).

Definition 2.2. Let J : H → R be a C1 functional on a Banach space H. Then we

say that J satisfies (PS) if for any sequence {uk} ⊂ H such that J(uk) is bounded and

J ′(uk)→ 0 in H∗, there is a converging subsequence of {uk}.

Theorem 2.3 (Saddle Point Theorem). Let J : X0 → R be a C1 functional which satisfies

Palais-Smale (PS) condition. Assume that there are sets X1,X2 ⊂ X0 such that

(i) X1 = γ̃(Sk−1), where γ̃ : Sk−1 → X0 is continuous.

(ii) X2 links with X1, i.e., if B is the unit ball in Rk and γ : B → X0 is a continuous

function such that γ ≡ γ̃ on Sk−1, then γ(B) ∩ X2 6= ∅.

(iii) supx∈X1
J(x) < infy∈X2 J(y).

Then c := infγ∈Γ supx∈B J(γ(x)) is a critical point of J , where Γ = {γ : B → X0 :

γ is continuous and γ ≡ γ̃ on Sk−1}.

3. The variational characterization of Fučik spectrum

In all that follows we assume that λk < α < λk+1 and the points of ΣK that we characterize

will all lie in this vertical strip in the (α, β) plane. We assume that α ≤ β, and note that

opposite case can be treated via symmetric arguments. Our approach to find the critical

points of Jα,β will take advantage of concavity to maximize in the X1 direction, and then

to use weak lower semicontinuity to minimize in the X2 direction.
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3.1. Maximizing in the X1 direction

In this subsection, we will show that the functional Jα,β attains a maximizer in the X1 di-

rection and the properties of the maximizer function. First, we prove the general inequality

that is used to prove the concavity of the functional in X1 direction.

Lemma 3.1. Let (αi, βi) ∈ R2 for i = 1, 2, be points satisfying αi ≤ βi, and let si = βi−αi.
Let ui ∈ X1 and vi ∈ X2 for i = 1, 2. Then there exist a δ = α2/λk − 1 > 0 such that

〈(J ′α2,β2(u2 + v2)− J ′α1,β1(u1 + v1)), (u2 − u1)〉

≤ −δ‖u2 − u1‖2 + |β2 − α2|(‖u2 − u1‖L2 + ‖v2 − v1‖L2)‖v2 − v1‖L2

+ |α2 − α1|‖u1‖L2‖u2 − u1‖L2 + |s2 − s1|‖u1 + v1‖L2‖u2 − u1‖L2 .

(3.1)

Proof. Consider

〈J ′αi,βi
(ui + vi), (u2 − u1)〉

=

∫
Q

((ui + vi)(x)− (ui + vi)(y))((u2 − u1)(x)− (u2 − u1)(y))K(x− y) dxdy

− αi
∫

Ω
(ui + vi)

+(u2 − u1) + βi

∫
Ω

(ui + vi)
−(u2 − u1)

=

∫
Q

((ui + vi)(x)− (ui + vi)(y))((u2 − u1)(x)− (u2 − u1)(y))K(x− y) dxdy

− αi
∫

Ω
(ui + vi)(u2 − u1) + si

∫
Ω

(ui + vi)
−(u2 − u1).

Then using the orthogonality of X1 and X2, we obtain

〈J ′αi,βi
(ui + vi), (u2 − u1)〉

=

∫
Q

(ui(x)− ui(y))((u2 − u1)(x)− (u2 − u1)(y))K(x− y) dxdy

− αi
∫

Ω
ui(u2 − u1) + si

∫
Ω

(ui + vi)
−(u2 − u1).

Subtracting the above expression for i = 1, 2 gives

〈(J ′α2,β2(u2 + v2)− J ′α1,β1(u1 + v1)), (u2 − u1)〉

=

∫
Q
|(u2 − u1)(x)− (u2 − u1)(y)|2K(x− y) dxdy −

∫
Ω

(α2u2 − α1u1)(u2 − u1)

+

∫
Ω

(s2(u2 + v2)− − s1(u1 + v1)−)(u2 − u1)

= ‖u2 − u1‖2 − α2

∫
Ω
|u2 − u1|2 + s2

∫
Ω

((u2 + v2)− − (u1 + v1)−)(u2 − u1)

+ (s2 − s1)

∫
Ω

(u1 + v1)−(u2 − u1)− (α2 − α1)

∫
Ω
u1(u2 − u1).
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Now we analyze each term of the right hand side separately. First, it is clear from the

definition of X1 and the standard characterization of the eigenvalue of (−∆)s that

‖u2 − u1‖2 − α2

∫
Ω
|u2 − u1|2 ≤

(
1− α2

λk

)
‖u2 − u1‖2 = −δ‖u2 − u1‖2.

From the Hölder’s inequality, we obtain∫
Ω
u1(u2 − u1) ≤ ‖u1‖L2‖u2 − u1‖L2 .

Using the relation f = f+−f−, the monotonicity of g(t) = t−, the fact that |g(t1)−g(t2)| ≤
|t2 − t1| and Hölder’s inequality, we obtain

s2

∫
Ω

((u2 + v2)− − (u1 + v1)−)(u2 − u1)

= s2

∫
Ω

((u2 + v2)− − (u1 + v1)−)((u2 + v2)− (u1 + v1))

− s2

∫
Ω

((u2 + v2)− − (u1 + v1)−)(v2 − v1)

= −s2

∫
Ω

[
((u2 + v2)−)2 + ((u1 + v1)−)2 + (u2 + v2)+(u1 + v1)− + (u2 + v2)−(u1 + v1)+

]
− s2

∫
Ω

((u2 + v2)− − (u1 + v1)−)(v2 − v1)

≤ s2

∫
Ω
|(u2 − u1) + (v2 − v1)||v2 − v1|

≤ s2(‖u2 − u1‖L2 + ‖v2 − v1‖L2)‖v2 − v1‖L2 .

Combining the above inequalities together we obtain the desired result.

First, we recall the definition of anticoercivity.

Definition 3.2. A functional J : X0 → R on a Banach space X0 is called coercive if for

every sequence {uk} ⊂ X0, ‖uk‖ → +∞ implies J(uk) → +∞. A functional J is called

anticoercive if −J is coercive.

Lemma 3.3. For every v ∈ X2, the functional Jα,β( · , v) : X1 → R is strictly concave and

anticoercive.

Proof. Taking α = α2 = α1, β = β2 = β1 and v2 = v1 = v, in (3.1), we obtain

〈(J ′α,β(u2 + v)− J ′α,β(u1 + v)), (u2 − u1)〉 ≤ −δ‖u2 − u1‖2,

which implies strict concavity. Then, the anticoercivity of Jα,β now follows from the strict

concavity and the Fundamental Theorem of Calculus.
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Lemma 3.4. For every v ∈ X2, the functional Jα,β( · , v) : X1 → R achieves a unique

maximum.

Proof. Let {uk + v} be a maximizing sequence. Then anticoercivity of Jα,β implies that

the sequence {uk} is bounded in X1. Therefore the sequence {uk} has a weakly convergent

subsequence. Also Jα,β is weakly upper semicontinuous, follows from concavity of Jα,β.

So, Jα,β achieves its maximum. Uniqueness follows easily from the strict concavity.

Thus, the above result makes possible to define the definition.

Definition 3.5. The function Mα,β : X2 → X1 is defined as

Mα,β(v) = max
u∈X1

Jα,β(u, v).

Now we investigate a few useful properties of Mα,β. We start with homogeneity.

Lemma 3.6. If t ≥ 0 and v ∈ X2, then Mα,β(tv) = tMα,β(v).

Proof. Case 1: t > 0. Then by the maximizing property of Mα,β, we have

Jα,β(Mα,β(tv) + tv) ≥ Jα,β(u+ tv) for all u ∈ X1.

Using the homogeneity of Jα,β, we obtain that

Jα,β

(
Mα,β(tv)

t
+ v

)
≥ Jα,β

(u
t

+ v
)

for all u ∈ X1.

Hence

Jα,β

(
Mα,β(tv)

t
+ v

)
≥ Jα,β(u+ v) for all u ∈ X1.

Thus for any t > 0, Mα,β(tv) = tMα,β(v).

Case 2: t = 0. Then it only needs to argue that Mα,β(0) = 0. It is immediate

that Jα,β(0) = 0. It suffices to show that Jα,β(u) < 0 for u ∈ X1 \ {0}. Recall that∫
Q |u(x) − u(y)|2K(x − y) dxdy ≤ λk

∫
Ω u

2 dx for all u ∈ X1 and that λk < α < β. It

follows that

Jα,β(u) =
1

2

(∫
Q
|u(x)− u(y)|2K(x− y)− α

∫
Ω

(u+)2 dx− β
∫

Ω
(u−)2 dx

)
≤ 1

2

(
λk

∫
Ω
u2 dx− α

∫
Ω

(u+)2 dx− β
∫

Ω
(u−)2 dx

)
≤ 1

2

(
λk

∫
Ω
u2 dx− α

∫
Ω

(u+)2 dx− α
∫

Ω
(u−)2 dx

)
=

1

2
(λk − α)

∫
Ω
|u|2 dx < 0.

This completes the proof.
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Lemma 3.7. If 0 6= v ∈ X2, then Mα,β(v) + v is sign-changing.

Proof. Suppose not. Then we assume w = Mα,β(v) + v � 0 in Ω. Let n represent the

Fourier coefficient of w in the φ1 direction. We note that n > 0 because
∫

Ωwφ1 > 0. Since

we have maximized Jα,β with respect to X1, we must have 〈J ′α,β(w), φ1〉 = 0. Thus

0 =

∫
Q

(w(x)− w(y))(φ1(x)− φ1(y))K(x− y) dxdy − α
∫

Ω
w+φ1 dx+ β

∫
Ω
w−φ1 dx.

But w = w+ and w− ≡ 0, so

0 = n

∫
Q
|φ1(x)− φ1(y)|2K(x− y) dxdy − nα

∫
Ω
φ2

1 dx = n(λ1 − α)

∫
Ω
φ2

1 dx 6= 0,

a contradiction. Hence the result holds.

In order to obtain the continuity property of Mα,β, in the next lemma, we distinguish

between the space X2, which has the X0 topology and Y2, which is the set of points in X2

endowed with the L2(Ω) topology.

Lemma 3.8. Mα,β is locally Lipschitz continuous as a function of R2 × Y2 into X1.

Proof. Putting ui = Mαi,βi(vi) for i = 1, 2 into (3.1), we get

δ‖Mα2,β2(v2)−Mα1,β1(v1)‖2

≤ |β2 − α2|(‖Mα2,β2(v2)−Mα1,β1(v1)‖L2 + ‖v2 − v1‖L2)‖v2 − v1‖L2

+ |α2 − α1|‖Mα1,β1(v1)‖L2‖Mα2,β2(v2)−Mα1,β1(v1)‖L2

+ |s2 − s1|‖Mα1,β1(v1) + v1‖L2‖Mα2,β2(v2)−Mα1,β1(v1)‖L2 .

By Poincare’s inequality, we obtain

δ‖Mα2,β2(v2)−Mα1,β1(v1)‖2

≤ |β2 − α2|
(

1

λ1
‖Mα2,β2(v2)−Mα1,β1(v1)‖+ ‖v2 − v1‖L2

)
‖v2 − v1‖L2

+ |α2 − α1|‖Mα1,β1(v1)‖L2

1

λ1
‖Mα2,β2(v2)−Mα1,β1(v1)‖

+ |s2 − s1|‖Mα1,β1(v1) + v1‖L2

1

λ1
‖Mα2,β2(v2)−Mα1,β1(v1)‖.

Taking v2 = v, v1 = 0, α1 = α2 = α and β1 = β2 = β. Note that Mα,β(0) = 0. Then the

above inequality reduces to

δ‖Mα,β(v)‖2 ≤ |β − α|
(

1

λ1
‖Mα,β(v)‖+ ‖v‖L2

)
‖v‖L2 .
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From this inequality, one can show that ‖Mα,β(v)‖ ≤ C‖v‖L2 for an appropriate C > 0

depending on δ.

We now proceed to the main estimate. For a given v1, we let c1 = ‖Mα1,β1(v1)‖L2 ,

c2 = ‖Mα1,β1(v1) + v1‖L2 and w = ‖Mα2,β2(v2)−Mα1,β1(v1)‖. Then it follows that

δw2 ≤ (|β2 − α2|‖v2 − v1‖L2 + c1|α2 − α1|+ c2|s2 − s1|)
1

λ1
w + |β2 − α2|‖v2 − v1‖2L2 .

Now, take γ := (|β2 − α2|‖v2 − v1‖L2 + c1|α2 − α1| + c2|s2 − s1|). Then observe that

|β2 − α2|‖v2 − v1‖L2 ≤ γ, so

δw2 ≤ γ

λ1
w +

γ2

|β2 − α2|
.

Therefore, there exists a positive constant K such that w ≤ Kγ and the result follows.

Lemma 3.9. For a given α and β, Mα,β : Y2 → X1 is Lipschitz continuous.

Proof. Taking α1 = α2 = α and β1 = β2 = β in the proof of Lemma 3.8, one can easily

see that w ≤ K1γ, where γ = ‖v2 − v1‖, and K1 has no dependence on c1 and c2.

Lemma 3.10. There is a ρ > 0 such that ‖Mα,β(v)‖ ≤ ρ‖v‖L2 for all v ∈ X2.

Proof. It follows from the Lipschitz continuity and the homogeneity properties of Mα,β.

Lemma 3.11. Suppose that {vk} is bounded in X2, and {αk}, {βk} are bounded sequences

in R that satisfy our given restriction on (α, β). Then there exist subsequences, still

denoted by {vk}, {αk} and {βk} such that (αk, βk)→ (α, β) in R2, vk ⇀ v in X2, vk → v

in L2(Ω) and Mα,β(vk)→Mα,β(v) in X1.

Proof. The proof follows from the standard compactness arguments combined with the

continuity established in Lemma 3.10.

Lemma 3.12. If Jα,β has a critical point at w = u+ v, then u = Mα,β(v).

Proof. J ′α,β(w) = 0 since Jα,β has a critical point at w = u + v. Using Lemma 3.4, we

have for each v ∈ X2, Jα,β( · , v) achieves a unique maximum. Thus u = Mα,β(v) =

maxu1∈X1 Jα,β(u1).

Given the last lemma, it makes sense to restrict our search for critical points to the

set X2 := {Mα,β(v) + v : v ∈ X2}. We define J̃α,β : X2 → R as

J̃α,β(v) = Jα,β(Mα,β(v) + v).
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Lemma 3.13. The functional J̃α,β is differentiable and its derivative is continuous, i.e.,

J̃α,β ∈ C1(X2,R).

Proof. Using the maximum property and the continuity of Mα,β, as well as the fact that

Jα,β is C1 on X0, we have the following inequality

J̃α,β(v2)− J̃α,β(v1) = Jα,β(Mα,β(v2) + v2)− Jα,β(Mα,β(v1) + v1)

≤ Jα,β(Mα,β(v2) + v2)− Jα,β(Mα,β(v2) + v1)

= 〈J ′α,β(Mα,β(v2) + v1), (v2 − v1)〉+ o(‖v2 − v1‖)

= 〈J ′α,β(Mα,β(v1) + v1), (v2 − v1)〉+ o(‖v2 − v1‖)

+ 〈(J ′α,β(Mα,β(v2) + v1)− J ′α,β(Mα,β(v1) + v1)), (v2 − v1)〉

= 〈J ′α,β(Mα,β(v1) + v1), (v2 − v1)〉+ o(‖v2 − v1‖).

Similarly we can show

J̃α,β(v2)− J̃α,β(v1) ≥ 〈J ′α,β(Mα,β(v1) + v1), (v2 − v1)〉+ o(‖v2 − v1‖).

Hence the functional J̃α,β is continuously differentiable.

From the above Lemma 3.13, we also note the following identity

(3.2) J̃ ′α,β(v) = J ′α,β(Mα,β(v) + v).

Lemma 3.14. v ∈ X2 is a critical point of J̃α,β if and only if Mα,β(v) + v is a critical

point of Jα,β.

Proof. Assume that Mα,β(v)+v is a critical point of Jα,β. Then 〈J ′α,β(Mα,β(v)+v), w〉 = 0

for all w ∈ X0. In particular 〈J ′α,β(Mα,β(v)+v), w〉 = 0 for all w ∈ X2. Now using equation

(3.2), we have 〈J̃ ′α,β(v), w〉 = 0 for all w ∈ X2, so v is a critical point of J̃α,β.

Conversely, suppose that v is a critical point of J̃α,β. Then as above, 〈J ′α,β(Mα,β(v) +

v), w〉 = 0 for all w ∈ X2. Recall that Mα,β(v) maximizes Jα,β(u + v) for u ∈ X1.

Hence 〈J ′α,β(Mα,β(v) + v), u〉 = 0 for all u ∈ X1. Thus 〈J ′α,β(Mα,β(v) + v), w〉 = 0 for all

w ∈ X0.

Lemma 3.15. J̃α,β(tv) = t2J̃α,β(v) for all t ≥ 0 and for all v ∈ X2.

Proof. Using the homogeneity of Jα,β and Mα,β, we have

J̃α,β(tv) = Jα,β(Mα,β(tv) + tv) = Jα,β(tMα,β(v) + tv)

= t2Jα,β(Mα,β(v) + v) = t2J̃α,β(v),

which completes the proof.
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Now the homogeneity leads to the following lemma.

Lemma 3.16. If v ∈ X2 is a critical point of J̃α,β then J̃α,β(v) = 0.

Proof. Differentiating J̃α,β(tv) = t2J̃α,β(v) with respect to t to get 〈J̃ ′α,β(tv), v〉 = 2tJ̃α,β(v).

Then the result follows by taking t = 1.

As with Jα,β, it is useful to think of J̃α,β as a function on R2 × X2 as J̃α,β(v) :=

J̃(α, β, v). Then we establish the following

Lemma 3.17. J̃(α, β, · ) := J̃α,β(·) is strictly decreasing in α and β.

Proof. Assume that α1 ≤ α2 and β1 ≤ β2, where at least one of the inequality is strict.

Then using the definition of Jα,β, the fact that Mα,β(v) + v is sign changing and the

maximizing property of Mα,β, we obtain

J̃(α2, β2, v) = J(α2, β2,M(α2, β2, v) + v)

< J(α1, β1,M(α2, β2, v) + v)

≤ J(α1, β1,M(α1, β1, v) + v),

which completes the proof.

Lemma 3.18. Given any positive number R, there is a positive number C such that

|J̃(α2, β2, v)− J̃(α1, β1, v)| ≤ C(|α2 − α1|+ |β2 − β1|),

whenever max{|α1|, |α2|, |β1|, |β2|, ‖v‖} ≤ R.

Proof. Combining the Lipschitz continuity of Jα,β and Mα,β in Lemma 3.10, we obtain

the desired result. We also notice that the bound is on ‖v‖ rather than just ‖v‖L2 . This

is because the Lipschitz constant on Jα,β depends on a bound in X0.

3.2. Minimizing in the X2 direction

We note that to find the critical points of Jα,β on X0 has been reduced to find the critical

points of J̃α,β on X2. We know that J̃α,β is homogeneous, so it suffices to look for critical

points on SX2 := {v ∈ X2 : ‖v‖L2 = 1}, a weakly closed set in X0, i.e., if {vk} ⊂ SX2 and

vk ⇀ v weakly in X0, then vk → v strongly in L2 so ‖v‖L2 = 1 and v ∈ SX2 .

Lemma 3.19. J̃α,β achieves a global minimum on SX2.

Proof. It is easy to see that J̃α,β is bounded below on SX2 . Let {vk} ⊂ SX2 be a minimizing

sequence for J̃α,β and let m = infv∈SX2
J̃α,β(v). Then one can easily see that ‖vk‖ is

bounded. So after passing to a subsequence, we have vk ⇀ v0 weakly in X0 and vk → v0
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strongly in L2(Ω) with ‖v0‖L2 = 1. By the continuity and compactness of Mα,β, we

have Mα,β(vk) → Mα,β(v0) in X0. Using these observation as well as the weak lower

semicontinuity of X0 norm, we obtain v0 ∈ SX2 such that J̃α,β(v0) = infv∈SX2
J̃α,β(v).

If v0 is a critical point of J̃α,β restricted to SX2 , then one can not conclude that it is

a critical point of J̃α,β on X2. For this, one must check the direction orthogonal to the

surface SX2 .

Lemma 3.20. v0 ∈ X2 is a nontrivial critical point of J̃α,β if and only if v0 is a critical

point of J̃α,β restricted to SX2 and J̃α,β(v0) = 0.

Proof. This is a standard fact for homogeneous operator, since every nontrivial element

of X2 can be written as tv for some v ∈ SX2 and for some t > 0. Computing derivatives

separately with respect to t and v gives the result. For this, one can follow the proof of

Lemma 3.16.

Lemma 3.21. If u is a nontrivial critical point of Jα,β if and only if u = Mα,β(v0) + v0,

where v0
‖v0‖L2

is a critical point of J̃α,β restricted to SX2 and J̃α,β(v0) = 0.

Proof. It is a direct consequence of Lemma 3.20.

Definition 3.22. m(α, β) := minv∈SX2
J̃α,β(v).

Lemma 3.23. m(α, β) is Lipschitz continuous and is strictly decreasing as a function of

both α and β. Moreover, m(α, α) > 0.

Proof. Let (α1, β1) and (α2, β2) be two points in the plane. Let v1 and v2 be the corre-

sponding global minimizers on SX2 , and let wij = Mαi,βi(vj)+vj for i, j = 1, 2. Then using

the minimizing property of vi and then the maximizing property of Mαj ,βj , we obtain

m(αi, βi) = Jαi,βi(Mαi,βi(vi) + vi) ≤ Jαi,βi(Mαi,βi(vj) + vj)

= Jαj ,βj (Mαi,βi(vj) + vj) +
1

2
(αj − αi)

∫
Ω

(w+
ij)

2 +
1

2
(βj − βi)

∫
Ω

(w−ij)
2

≤ Jαj ,βj (Mαj ,βj (vj) + vj) +
1

2
(αj − αi)

∫
Ω

(w+
ij)

2 +
1

2
(βj − βi)

∫
Ω

(w−ij)
2

= m(αj , βj) +
1

2
(αj − αi)

∫
Ω

(w+
ij)

2 +
1

2
(βj − βi)

∫
Ω

(w−ij)
2.

Since this inequality holds for i = 1, j = 2 and i = 2, j = 1, we have

|m(α2, β2)−m(α1, β1)| ≤ c(|α2 − α1|+ |β2 − β1|),

where c = max{‖w12‖L2 , ‖w21‖L2}.
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Moreover, if α2 ≥ α1 and β2 ≥ β1 where at least one of these inequalities is strict, then

m(α2, β2) < m(α1, β1). This last conclusion uses the fact that wij is sign-changing.

If α = β, then for w ∈ X0 we have

Jα,β(w) = Jα,α(w) =
1

2

(∫
Q
|w(x)− w(y)|2K(x− y) dxdy − α

∫
Ω
w2 dx

)
=

1

2

∞∑
j=1

(λj − α)c2
j ,

where we are applying the Fourier decomposition of w. Write w = u + v using the usual

decomposition of X0. Then the coefficient (λi − α) are strictly negative for j ≤ k, so it

follows that we can maximize in the X1 direction by choosing cj = 0 for j = 1, . . . , k, i.e.,

Mα,β(v) ≡ 0. Thus we have

J̃α,β(v) = Jα,β(v) =
1

2

∞∑
j=k+1

(λj − α)c2
j .

Also the coefficients (λj − α) are strictly positive and increasing for j = k + 1, k + 2, . . ..

Also
∑∞

j=k+1 c
2
j = ‖v‖L2 = 1. Using the Lagrange multipliers, one can show that the

critical points of this sum occur when cj ≡ ±1 for one j and cj = 0 for all other j. The

minimizing choice is when ck+1 = 1 and cj = 0 for j > k + 1. Hence the minimizer is

v = ±φk+1 and m(α, α) = J̃α,β(v) = 1
2(λk+1 − α) > 0.

Lemma 3.24. m(α, λk+1) > 0.

Proof. Let v ∈ SX2 and let β = λk+1. Then using α < λk+1 and v+ is nontrivial, we

obtain

J̃α,β(v) = Jα,β(Mα,β(v) + (v)) ≥ Jα,β(v)

>
1

2

(∫
Q
|v(x)− v(y)|2K(x− y) dxdy − λk+1

∫
Ω
v2 dx

)
≥ 0,

which follows the result.

All of the lemmas above have been leading to the following theorem.

Theorem 3.25. Assume that λk < α < λk+1. Then one of the following is true:

(1) m(α, β) > 0 and (α, β) /∈ ΣK for all β ≥ α.

(2) There is a unique β(α) > λk+1, such that m(α, β(α)) = 0. Moreover, (α, β(α)) ∈
ΣK , but (α, β) /∈ ΣK if α ≤ β < β(α).
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Proof. Case 1. If α ≤ β ≤ λk+1 then 0 < m(α, λk+1) ≤ m(α, β) by Lemmas 3.24 and

3.23. This implies (α, β) /∈ ΣK by Lemma 3.20.

Case 2. If β > λk+1 then there is a β(α) such that m(α, β(α)) = 0. Clearly, one

can easily see that β(α) is unique. If not, there are two β1(α) and β1(α) such that

m(α, βi(α)) = 0 for i = 1, 2. Now 0 = m(α, β1(α)) < m(α, βi(α)) = 0, which gives a

contradiction. Since m(α, β(α)) = 0, we have (α, β(α)) ∈ ΣK by Lemma 3.19. Now, if

α ≤ β < β(α) then 0 = m(α, β(α)) < m(α, β) which implies (α, β) /∈ ΣK .

Lemma 3.26. The curve (α, β(α)) is Lipschitz continuous, strictly decreasing, and con-

tains the point (λk+1, λk+1).

Proof. Consider two points (α1, β1) and (α2, β2) on ΣK , characterized as above, with

α2 > α1. Let vi be a minimizer of Jαi,βi(Mαi,βi(v)+v) such that ‖vi‖L2 = 1. In particular,

we know that Jαi,βi(Mαi,βi(vi) + vi) = 0 and that Jαi,βi(Mαi,βi(v) + v) ≥ 0 for all v ∈ X2.

Let wi = Mαi,βi(vi) + vi, then we have

0 = 2Jα1,β1(w1)

=

∫
Q
|w1(x)− w1(y)|2K(x− y) dxdy − α1

∫
Ω

(w+
1 )2 dx− β1

∫
Ω

(w−1 )2 dx

>

∫
Q
|w1(x)− w1(y)|2K(x− y) dxdy − α2

∫
Ω

(w+
1 )2 dx− β1

∫
Ω

(w−1 )2 dx,

where we obtain strict inequality using the fact that α2 > α1 and that w1 is sign changing

so that w+
1 is nontrivial. It follows that m(α2, β1) < 0. Since m(α, β) is strictly decreasing

in β and m(α2, β2) = 0, it must be the case that β2 < β1, i.e., β(α) is strictly decreasing.

Now consider

2Jα2,β1(w2) =

∫
Q
|w2(x)− w2(y)|2K(x− y) dxdy − α2

∫
Ω

(w+
2 )2 − β1

∫
Ω

(w−2 )2

= (β2 − β1)

∫
Ω

(w−2 )2.

It follows that m(α2, β1) ≤ 1
2(β2 − β1)

∫
Ω(w−2 )2 < 0. Thus

|β2 − β1| ≤ 2
1∫

Ω(w−2 )2
|m(α2, β1)| = 2

1∫
Ω(w−2 )2

|m(α2, β1)−m(α2, β2)|.

The Lipschitz estimate for β(α) follows from the Lipschitz estimate for m(α, β).

4. Nonresonance and resonance case for problem (1.1)

4.1. The nonresonance case

In this section we assume that (α, β) ∈ R2 such that λk < α < λk+1 and α ≤ β < β(α).

By the characterization of the Fučik spectrum in Theorem 3.25 and Lemma 3.26, we
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know that (α, β) /∈ ΣK . Then one should expect that (1.1) is solvable without further

restrictions on either f or h, by analogy with the Fredholm Alternative for the linear case.

This is indeed the case.

For notational convenience let E = Eα,β and J = Jα,β. Notice that

(4.1) E(u) = J(u)−
∫

Ω
(F (u) + hu).

We will see that the geometry of J dominates the geometry of E, so that the saddle

geometry is easily proved in this case.

Lemma 4.1. There is a positive constant K such that |
∫

Ω(F (u) + hu)| ≤ K‖u‖L2 for all

u ∈ X0.

Proof. Since f is bounded, there is an M > 0 such that |f(t)| ≤ M for all t ∈ R. It

immediately follows that |F (t)| ≤M |t| for all t. Thus∣∣∣∣∫
Ω

(F (u) + hu)

∣∣∣∣ ≤ ∫
Ω
|F (u) + hu| ≤

∫
Ω

(M + |h|)|u|

≤
(∫

Ω
(M + |h|)2

)1/2(∫
Ω
u2

)1/2

.

Lemma 4.2. E is anticoercive when restricted to X1.

Proof. Let u ∈ X1, then using α ≤ β,
∫
Q |u(x)− u(y)|2K(x− y) dxdy ≤ λk

∫
Ω u

2 dx for all

u ∈ X1 and Lemma 4.1, we have

E(u) = J(u)−
∫

Ω
(F (u) + hu)

≤
(

1− α

λk

)
‖u‖2 +

(∫
Ω

(M + |h|)2

)1/2(∫
Ω
u2

)1/2

≤
(

1− α

λk

)
‖u‖2 + C‖u‖ → −∞

as ‖u‖ → ∞, since λk < α.

Lemma 4.3. The functional E is bounded below and coercive on X2 := {Mα,β(v) + v :

v ∈ X2}.

Proof. Since β < β(α), we know that infSX2
J̃(v) ≥ c for some c. It follows that for any

v ∈ X2,

J(M(v) + v) = J̃(v) = ‖v‖2L2 J̃

(
v

‖v‖L2

)
≥ c‖v‖2L2 .

Now, for u = M(v) + v we have

E(u) ≥ c‖v‖2L2 −
(∫

Ω
(M + |h|)2

)1/2

‖u‖L2 .
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Recall that ‖Mα,β(v)‖ ≤ c‖v‖L2 for all v ∈ X2. Then it follows that ‖u‖L2 ≤ k‖v‖L2 for

some k > 0 and all v ∈ X2. Thus the inequality for E becomes

E(u) ≥ c‖v‖2L2 − k
(∫

Ω
(M + |h|)2

)1/2

‖v‖L2 .

Hence one can easily conclude that E is bounded below and coercive on X2.

As a result of this estimates above we can choose R > 0 such that

sup
u∈X1,‖u‖=R

E(u) < inf
v∈X2

E(v).

In the next lemma we show that ∂BR(0) := {x ∈ X1 : ‖x‖ = R} and X2 link. Note

that ∂BR(0) is clearly embedding of Sk−1 in X0.

Lemma 4.4. Let γ : BR(0) ⊂ X1 → X0 be a continuous function and write γ(x) =

γX1(x) + γX2(x), where γX1(x) ∈ X1 and γX2(x) ∈ X2. We assume that γ fixes ∂BR, so

γX1(x) = x and γX2(x) = 0 for all x ∈ ∂BR(0), then γ(BR(0)) ∩ X2 6= ∅.

Proof. We must show that there is an x ∈ BR(0) such that γX1(x) = M(γX2(x)), so it

is reasonable to study the solutions of the equation G(x) = 0 where G : BR(0) → X1:

G(x) = γX1(x) −M(γX2(x)). It is clear that G is continuous. Also, if x ∈ ∂BR(0), then

G(x) = x 6= 0 and so the Brouwer degree deg(G,BR(0), 0) is well defined. Consider the

homotopy h(t, x) = tG(x) + (1− t)x, where t ∈ [0, 1] and x ∈ BR(0). For x ∈ ∂BR(0) we

have h(t, x) = tx + (1 − t)x = x 6= 0, so deg(G,BR(0), 0) = deg(I,BR(0), 0) = 1 where I

represents the identity map. Hence G(x) = 0 has a solution in BR(0).

Lemma 4.5. Assume K : Rn \ {0} → (0,∞) satisfies assumptions (K1)–(K3), f : R→ R
is bounded and continuous, and h ∈ L2(Ω). Let c ∈ R and let {uk}k∈N be a sequence in

X0 such that

(4.2) E(uk) ≤ c

and

(4.3) sup{|〈E′(uk), φ〉 : φ ∈ X0, ‖φ‖ = 1|} → 0

as k →∞. Then, the sequence {uk}k∈N is bounded in X0. Moreover, there exists u0 ∈ X0

such that, up to a subsequence

‖uk − u0‖ → 0 as k →∞.
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Proof. Let {uk} ⊂ X0 be such that (4.2) and (4.3) hold, i.e., E(uk) is bounded and

E′(uk)→ 0 in X∗0 . Then we show that {uk} is bounded in X0. Suppose by contradiction

that ‖uk‖L2 is unbounded. Then without loss of generality we may assume that ‖uk‖L2 is

increasing to ∞. Consider vk := uk
‖uk‖L2

. Then,

E(uk)

‖uk‖2L2

=
1

2

∫
Q
|vk(x)− vk(y)|2K(x− y) dxdy − α

2

∫
Ω

(v+
k )2 − β

2

∫
Ω

(v−k )2

− 1

‖uk‖2L2

∫
Ω

(F (uk) + huk).

Now equation (4.2) implies that E(uk)
‖uk‖2L2

→ 0. Also α
2

∫
Ω(v+

k )2+ β
2

∫
Ω(v−k )2+ 1

‖uk‖2L2

∫
Ω(F (uk)

+ huk) is bounded. Then it follows that {vk} is bounded in X0, a reflexive space (being

a Hilbert space), so up to a subsequence, there exists v0 ∈ X0 such that vk ⇀ v0 weakly

in X0, vk → v0 strongly in L2(Ω) and ‖v0‖L2 = 1. Now for any w ∈ X0, we consider〈
E′(uk)

‖uk‖L2

, w

〉
=

∫
Q

(vk(x)− vk(y))(w(x)− w(y))K(x− y) dxdy − α
∫

Ω
(v+
k )w

+ β

∫
Ω

(v−k )w − 1

‖uk‖L2

(∫
Ω

(f(uk) + h)w

)
.

Using the boundedness of f it is clear that 1
‖uk‖L2

∫
Ω(f(uk) + h)w → 0. Also using the L2

convergence of vk, it is clear that v+
k and v−k converges to v+

0 and v−0 respectively in L2.

So,

−α
∫

Ω
(v+
k )w + β

∫
Ω

(v−k )w → −α
∫

Ω
(v+

0 )w + β

∫
Ω

(v−0 )w.

By the weak convergence of vk in X0, we have for every φ ∈ X0,∫
Q

(vk(x)− vk(y))(φ(x)− φ(y))K(x− y) dxdy

→
∫
Q

(v0(x)− v0(y))(φ(x)− φ(y))K(x− y) dxdy

as k →∞. Thus using the above discussion, we obtain
〈 E′(uk)
‖uk‖L2

, w
〉
→ 0. Hence

0 =

∫
Q

(v0(x)− v0(y))(w(x)− w(y)) dxdy − α
∫

Ω
(v+

0 )w + β

∫
Ω

(v−0 )w ∀w ∈ X0.

Therefore v0 is a nontrivial weak solution of (1.2). This contradicts the fact that (α, β) /∈
ΣK . Hence {uk} is bounded in L2. Now

E(uk) =
1

2
‖uk‖2 −

α

2

∫
Ω

(u+
k )2 − β

2

∫
Ω

(u−k )2 −
∫

Ω
(F (uk) + huk).

We see that E(uk),
∫

Ω(u+
k )2,

∫
Ω(u−k )2 and

∫
Ω(F (uk) +huk) are all bounded, so ‖uk‖ must

be bounded.
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Since {uk}k∈N is a bounded sequence in X0, there exists u0 ∈ X0 such that up to a

subsequence uk converges to u0 weakly in X0, i.e., for every φ ∈ X0,∫
Q

(uk(x)− uk(y))(φ(x)− φ(y))K(x− y) dxdy

→
∫
Q

(u0(x)− u0(y))(φ(x)− φ(y))K(x− y) dxdy

as k → ∞. Moreover, uk → u0 strongly in Lµ(Ω) for any µ ∈ [1, 2∗s) and uk(x) → u0(x)

a.e. in Rn as k →∞. Now,

〈E′(uk), (uk − u0)〉

=

∫
Q

(uk(x)− uk(y))((uk − u0)(x)− (uk − u0)(y))K(x− y) dxdy

− α
∫

Ω
(u+
k )(uk − u0) + β

∫
Ω

(u−k )(uk − u0)−
∫

Ω
(f(uk) + h)(uk − u0).

(4.4)

Also using the L2 boundedness of u+
k , u−k , and f(uk) + h and the fact that uk → u0

strongly in L2, we obtain

(4.5) − α
∫

Ω
(u+
k )(uk − u0) + β

∫
Ω

(u−k )(uk − u0)−
∫

Ω
(f(uk) + h)(uk − u0)→ 0.

From (4.3), we have 〈E′(uk), (uk − u0)〉 → 0. Thus using this, (4.4) and (4.5), we obtain∫
Q

(uk(x)− uk(y))((uk − u0)(x)− (uk − u0)(y))K(x− y) dxdy → 0 as k →∞.

Hence, using this and the weak convergence of uk, we obtain∫
Q
|uk(x)− uk(y)|2K(x− y) dxdy →

∫
Q
|u0(x)− u0(y)|2K(x− y) dxdy as k →∞.

It follows that uk → u0 strongly in X0.

Proof of Theorem 1.3. By the saddle point theorem we can now conclude the proof.

4.2. The resonance case

In this section, we study the problem (1.1) in the presence of a resonance, namely when

(α, β) ∈ R2 is an element of Fučik spectrum. This kind of problem is harder to solve than

the nonresonant one and we have to impose further conditions on the nonlinearities. We

assume that β = β(α). Many of the argument from the previous section are still applicable.

Two notable exceptions are establishing a lower bound for E on X2 and proving (PS). Since

this case is analogous to the case λ = λk+1 in this Fredholm Alternative, we should expect

that the solutions will only exist if a generalized orthogonality condition is satisfied. Such
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conditions were first studied in 70s and known as Landesman-Lazer conditions [13]. We

will assume (1.5): limk→∞
∫

Ω(F (uk) + huk) dx = −∞, a generalized Landesman-Lazer

condition.

Lemma 4.6. If (1.5) is satisfied, then E define in (4.1) is bounded below on X2.

Proof. Suppose that {uk} ⊂ X2 such that E(uk) → −∞. We write uk = Mα,β(vk) + vk.

Then arguments similar to those in the proof of Lemma 4.3, we see that no subsequence of

{uk} lies in a set of the form {u ∈ X2 : u = Mα,β(v) + v, J̃α,β(v) ≥ c‖v‖2L2}, where c > 0.

Thus J̃α,β
(

vk
‖vk‖L2

)
→ 0 and vk

‖vk‖L2
must be a minimizing sequence of J̃α,β. Similarly, using

the same arguments in the proof of Lemma 3.19 one can note that vk
‖vk‖L2

⇀ v0 weakly

in X0 and vk
‖vk‖L2

→ v0 strongly in L2(Ω). This implies that uk
‖uk‖L2

⇀ φ weakly in X0

and uk
‖uk‖L2

→ φ strongly in L2(Ω), where φ = Mα,β(v) + v is a nontrivial eigenfunction

associated with (α, β). By (1.5), we know that limk→∞
∫

Ω(F (uk) + huk) = −∞ and it

immediately follows that E(uk) → ∞, a contradiction. Hence E is bounded below on

X1.

Lemma 4.7. Assume K : Rn \ {0} → (0,∞) satisfies assumptions (K1)–(K3), f is a

bounded and continuous function and h ∈ L2(Ω). Let {uk}k∈N be a sequence in X0 such

that (4.2) and (4.3) hold. Then, the sequence {uk}k∈N is bounded in X0 if (1.5) is satisfied.

Proof. The first part of the proof is identical the argument in the proof of Lemma 4.5. We

start with the hypothetical sequence {uk} such that (4.2) and (4.3) hold. Suppose ‖uk‖L2

is unbounded. Then argue up to the point, where we have vk ⇀ v0 weakly in X0, vk → v0

strongly in L2(Ω), where ‖v0‖L2 = 1 and v0 is an eigenfunction associated with (α, β).

Of course, in the resonance case this is not yet a contradiction, so a further argument is

needed.

Write uk = wk + vk = w̃k +Mα,β(vk) + vk. Now using the fact that 〈J ′α,β(Mα,β(vk) +

vk), u〉 = 0 for all u ∈ X1 and Lemma 3.1, we have

〈E′(uk), w̃k〉 = 〈J ′α,β(uk), w̃k〉 −
∫

Ω
(f(uk) + h)w̃k

= 〈J ′α,β(w̃k +Mα,β(vk) + vk), w̃k〉 −
∫

Ω
(f(uk) + h)w̃k

= 〈J ′α,β(w̃k +Mα,β(vk) + vk), w̃k〉 − 〈J ′α,β(Mα,β(vk) + vk), w̃k〉

−
∫

Ω
(f(uk) + h)w̃k

≤ −δ‖w̃k‖2L2 −
∫

Ω
(f(uk) + h)w̃k.

It follows that w̃k is bounded. Note that 〈J ′α,β(uk), w̃k〉 must also be bounded.
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Now consider

E(uk) = Jα,β(uk)−
∫

Ω
(F (uk) + huk)

≥ Jα,β(w̃k +Mα,β(vk) + vk)− Jα,β(Mα,β(vk) + vk)−
∫

Ω
(F (uk) + huk),

because Jα,β(Mα,β(vk) + vk) ≥ 0. Let g(t) = Jα,β(Mα,β(vk) + vk + tw̃k). It follows from

the properties of Jα,β that g′(0) = 0 and g′(t) is decreasing. By the Mean value Theorem

g(1)− g(0) = g′(c), for some c ∈ (0, 1). Hence g(1)− g(0) ≥ g′(1). It follows that

Jα,β(w̃k +Mα,β(vk) + vk)− Jα,β(Mα,β(vk) + vk) ≥ 〈J ′α,β(uk), w̃k〉

and thus

E(uk) ≥ 〈J ′α,β(uk), w̃k〉 −
∫

Ω
(F (uk) + huk).

But the first term on the right-hand side is bounded and the second goes to −∞ by (1.5).

This contradicts the assumption that E(uk) is bounded. Hence {uk} is bounded in L2(Ω),

the remaining proof follows exactly as in the proof of Lemma 4.5.

Proof of Theorem 1.4. One can conclude the proof from Lemmas 4.6, 4.7 and saddle point

theorem.
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