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Unified Approach to Spectral Properties of Multipliers

Mikael Lindström, Santeri Miihkinen* and David Norrbo

Abstract. Let Bn be the open unit ball in Cn. We characterize the spectra of pointwise

multipliers Mu acting on Banach spaces of analytic functions on Bn satisfying some

general conditions. These spaces include Bergman-Sobolev spaces Apα,β , Bloch-type

spaces Bα, weighted Hardy spaces Hp
w with Muckenhoupt weights and Hardy-Sobolev

Hilbert spaces H2
β . Moreover, we describe the essential spectra of multipliers in most of

the aforementioned spaces, in particular, in those spaces for which the set of multipliers

is a subset of the ball algebra.

1. Introduction and preliminaries

In a very recent article [10], Cao, He, and Zhu considered the multiplication operator Mu

acting on the Hardy-Sobolev Hilbert space and characterized the spectrum and essential

spectrum of Mu. In the present work, we extend and generalize the results obtained there

from Hardy-Sobolev Hilbert space to the Bergman-Sobolev and Bloch-type spaces of the

open unit ball Bn of Cn and weighted Hardy spaces of the open unit disk D with Mucken-

houpt weights. In particular, our main focus is to allow the multiplier space M(X(Bn))

to be contained in the ball algebra, which holds for example for certain Bergman-Sobolev

spaces and Bloch-type spaces. We formulate our results on spectral properties of Mu

acting on a Banach space X(Bn) of analytic functions in Bn, where X(Bn) satisfies very

general and natural properties regarding its multiplier space and the norm topology. Con-

sequently, we approach the spectral properties of multipliers in a unified manner and key

examples of such spaces include the aforementioned spaces. Aside from obtaining a de-

scription of the spectrum for all spaces satisfying the mentioned properties, we also have

to develop some new techniques to determine the essential spectrum of Mu regarding the

non-Hilbert space case. Other previous work regarding spectral and related properties of

multiplication operators on analytic function spaces includes [3, 5, 8, 9, 14,18,19].

The article is organised as follows. In Section 2, we introduce general Banach spaces

X(Bn) of analytic functions on Bn and give central concrete examples of them. Section 3
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focuses on the spectrum of Mu by first establishing a characterization of invertibility of Mu

and then obtaining the spectrum of Mu and giving admissible examples of spaces on which

Mu can be defined. In Section 4, we begin with a characterization of the essential spectrum

in the high-dimensional case n > 1. Then we consider the case n = 1 by first establishing

a characterization of the Fredholmness of Mu when conditions (I), (IV) and M(X(D)) =

H∞(D) hold. Examples of spaces satisfying the previous conditions are also given. Next,

we consider the difficult case when M(X(D)) ⊂ A(D) (or u ∈ M(X(D)) ∩ A(D)) and

starting off with the space X(D) = Bα(D) for 0 < α ≤ 1 and showing that the condition,

earlier observed to be sufficient for the Fredholmness of Mu, is also necessary. Finally, we

show the necessity of the condition in the case of those Bergman-Sobolev spaces Apα,β(D)

for which M(Apα,β(D)) ⊂ A(D). From these two cases we obtain the essential spectrum of

Mu for several scales of spaces Bα(D) and Apα,β(D) as the main result of Section 4.

To conclude, our main result regarding the spectra of multiplication operators acting

on X(Bn) is Theorem 3.2. The essential spectra of operators Mu acting on certain spaces

X(D) having their multiplier spaces M(X(D)) contained in the disk algebra are described

in Theorem 4.13. In the case of general X(D) with M(X(D)) = H∞(D), the essential

spectra of operators Mu are characterized in Theorem 4.5. In Theorem 4.1, we present

the high-dimensional case n > 1 concerning the essential spectra of operators Mu acting

on general spaces X(Bn).

Now we introduce some definitions and notations. Throughout this article, let Z≥a =

{n ∈ Z : n ≥ a} and Z>a = {n ∈ Z : n > a}, where a ∈ R. Furthermore, let Bn =

{z ∈ Cn : |z| < 1}, n ∈ Z≥1, be the open unit ball in Cn and D = B1. Moreover, let

H(Bn) be the space of all analytic functions f : Bn → C and P(Bn) be the set of all

analytic polynomials p : Bn → C such that p(z) =
∑

k∈J ckz
k, where J ⊂ Zn≥0 is a finite

set, k = (k1, . . . , kn) ∈ Zn≥0, |k| = k1 + · · ·+ kn, zk = zk11 · · · zknn and ck ∈ C for k ∈ J .

We also recall that a bounded linear operator T acting on a Banach space is Fredholm if

it has closed range and both kernel and cokernel of T are finite dimensional. The essential

spectrum σe(T ) of an operator T is defined as σe(T ) = {λ ∈ C : T − λI is not Fredholm},
where I is the identity operator, and the reader may observe that σe(T ) is a subset of the

spectrum σ(T ). See [1] for more details on Fredholm properties of bounded operators.

For any f ∈ H(Bn), the gradient of f is given by

∇f(z) =

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
and will be denoted Df(z) in the case n = 1.

Let β ∈ R and f ∈ H(Bn). The fractional radial derivative Rβ is given by

Rβf(z) =
∞∑
k=1

kβfk(z),
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where f(z) =
∑∞

k=0 fk(z) is the homogeneous expansion of f ∈ H(Bn). Let I : H(Bn) →
H(Bn) be the identity operator. The operator (I +R)β will also be used and is naturally

defined by

(I +R)βf(z) =
∞∑
k=0

(1 + k)βfk(z).

For expressing asymptotic behaviour, the notation ak ∼ bk as k →∞means limk→∞
ak
bk

= 1. Moreover, by a(x) & b(x) (or a(x) . b(x)) we indicate the existence of a constant

C > 0 independent of x such that a(x) ≥ Cb(x) (or a(x) ≤ Cb(x)) for all x in some

implicit set. If both a(x) & b(x) and a(x) . b(x) hold, we write a(x) � b(x). When two

Banach spaces X1 and X2 are isomorphic, we use the notation X1 ' X2.

2. Conditions and examples

We deal with a vector space X(Bn) of analytic functions on Bn and a norm ‖·‖X on it, that

renders X(Bn) a Banach space. As usual, for each z ∈ Bn, the evaluation functional δz is

defined by δz(f) = f(z) for all f ∈ X(Bn). We assume that X(Bn) contains the constant

functions, so then all δz are non-zero. Furthermore, we associate to X(Bn) another Banach

space Y (Bn) ⊂ H(Bn) containing the constant functions and equipped with the norm ‖·‖Y
as will be explained below.

The Banach spaces X(Bn) and Y (Bn) are often assumed to satisfy the first three

conditions below:

(I) The topologies induced by ‖ · ‖X and ‖ · ‖Y are both finer than the compact-open

topology τ0. In particular, for every z ∈ Bn, δz is a bounded linear functional on both

X(Bn) and Y (Bn).

Let

M(X(Bn)) = {u ∈ H(Bn) : uf ∈ X(Bn) for all f ∈ X(Bn)}.

Using condition (I) and the closed graph theorem, it follows that every u ∈ M(X(Bn))

induces a bounded linear operator Mu : X(Bn)→ X(Bn).

(II) For some N ∈ Z≥1 it holds that ‖f‖X � |f(0)|+ ‖RNf‖Y for all f ∈ H(Bn).

Condition (II) describes a relationship between the Banach spaces X(Bn) and Y (Bn)

such that Lemma 3.1 holds. Since the lemma is trivial for spaces X(Bn) with M(X(Bn)) =

H∞(Bn), this condition may be omitted when such spaces are considered. For these spaces

we have Y (Bn) = X(Bn).

(III) H∞(Bn) ⊂M(Y (Bn)).

By condition (I) it is well-known that supz∈Bn |u(z)| ≤ ‖Mu‖ for all u ∈ M(X(Bn)),

so M(X(Bn)) ⊂ H∞(Bn) and M(Y (Bn)) = H∞(Bn), where also condition (III) is used

in the second statement. Since u 7→ Mu is bounded according to the bounded inverse
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theorem, it follows from the boundedness of Mu, that there exists a constant C > 0 such

that ‖Mug‖Y ≤ C‖u‖∞‖g‖Y for all g ∈ Y (Bn) and u ∈M(Y (Bn)).

When considering the case n = 1, we will need the following condition to determine

the essential spectra of the multiplication operator generated by u ∈M(X(D)).

(IV) If f ∈ X(D) has a zero at z0 ∈ D, then f(z)
z−z0 ∈ X(D).

Lemma 2.1. Let f ∈ H(D) and v : D → [0,∞) be a bounded function such that v(z) =

v(|z|) for all z ∈ D. Moreover, let N ∈ Z≥0 be such that

sup
z∈D

v(z)|DNf(z)| <∞.

If z0 ∈ D is a zero of f , then

sup
z∈D

v(z)

∣∣∣∣DN f(z)

z − z0

∣∣∣∣ <∞.
Proof. Let g(z) = f(z)

z−z0 . Since f is analytic with a zero at z0 we have DNg ∈ H(D). Thus,

h(z) = v(z)|DNg(z)| is bounded on D if and only if h is bounded near the boundary. For

z ∈ T =
{
z ∈ D : |z| > 1+|z0|

2

}
, we have the following estimate

(2.1) |DNg(z)| =

∣∣∣∣∣∣
N∑
j=0

(
N

j

)
Djf(z)DN−j(z − z0)−1

∣∣∣∣∣∣ ≤
N∑
j=0

N !|Djf(z)|
(|z| − |z0|)N−j+1

.

Furthermore, for k ≥ 0 we have

|Dkf(z)| ≤
∣∣∣∣∫
Cz

Dk+1f(w) dw

∣∣∣∣+ |Dkf(0)|

≤ |z| sup
|w|=|z|

|Dk+1f(w)|+ |Dkf(0)|

≤ sup
|w|=|z|

|Dk+1f(w)|+ |Dkf(0)|,

where Cz is the line from 0 to z in D.

By induction, it can be shown that

|Dkf(z)| ≤ sup
|y|=|z|

|DNf(y)|+
N−k−1∑
j=0

|Dk+jf(0)|

for 0 ≤ k ≤ N . Moreover, from the fact that supz∈D sup|w|=|z| is interchangable with
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supw∈D and v(z) = v(|z|) we now obtain

v(z)|Dkf(z)| ≤ sup
|y|=|z|

v(z)|DNf(y)|+ v(z)
N−k−1∑
j=0

|Dk+jf(0)|

= sup
|y|=|z|

v(y)|DNf(y)|+ v(z)
N−k−1∑
j=0

|Dk+jf(0)|

≤ sup
z∈D

v(z)|DNf(z)|+ sup
z∈D

v(z)

N−1∑
j=0

|Djf(0)| = Mf,N,v <∞

for all z ∈ D. Especially for z ∈ T , using (2.1), we have

v(z)|DNg(z)| ≤
N∑
k=0

N !v(z)|Dkf(z)|
(|z| − |z0|)N−k+1

≤Mf,N,v

N∑
k=0

N !2N−k+1

(1− |z0|)N−k+1
<∞,

which proves the lemma.

Next, we list a number of spaces satisfying the above conditions (I)–(IV). However, in

Example 2.4 we consider spaces X(Bn) for which M(X(Bn)) = H∞(Bn), implying that

condition (II) is irrelevant.

Example 2.2. For α > 0 the Bloch-type space X(Bn) = Bα(Bn) is the space of all

f ∈ H(Bn) satisfying ‖f‖Bα = |f(0)|+ supz∈Bn(1− |z|2)α|∇f(z)| <∞, see [21]. To these

spaces correspond

Y (Bn) = H∞α (Bn) =

{
f ∈ H(Bn) : ‖f‖H∞α = sup

z∈Bn
(1− |z|2)α|f(z)| <∞

}
,

see [6]. The little Bloch-type space B0,α(Bn) is the subspace of Bα(Bn) satisfying lim|z|→1

(1− |z|2)α|∇f(z)| = 0. It is well-known that these spaces obey (I). Let ‖f‖BRα = |f(0)|+
supz∈Bn(1− |z|2)α|Rf(z)|. According to Theorem 7.1 in [21], it holds that

{f ∈ H(Bn) : ‖f‖Bα <∞} = {f ∈ H(Bn) : ‖f‖BRα <∞}.

Therefore it follows from the bounded inverse theorem that ‖ · ‖Bα � ‖ · ‖BRα and, hence,

both of these spaces satisfy condition (II). Condition (III) holds by definition. We will

consider the space (Bα(D), ‖ · ‖Bα) in the one-dimensional case.

By Theorem 2.1(i) in [17], for 0 < α < 1, u ∈ M(Bα(D)) if and only if u ∈ Bα(D) ∩
H∞(D) = Bα(D) ⊂ A(D), where the inclusion is found in Theorem 7.9 in [21]. When

α = 1, we get from Theorem 2.1(ii) in [17] that u ∈M(Bα(D)) if and only if

sup
z∈D
|u′(z)|(1− |z|2) log

(
e

1− |z|2

)
<∞ and u ∈ H∞(D).
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Therefore u ∈ B0,1(D). Finally by Theorem 2.1(iii) in [17] we have for α > 1 that

u ∈ M(Bα(D)) if and only if u ∈ B1(D) ∩H∞(D) = H∞(D). According to Lemma 2.1 a

function belonging to Bα(D) will remain in Bα(D) after removing a finite number of zeros

z0 through division by z− z0, which proves (IV). The notations B(D) and B0(D) stand for

B1(D) and B0,1(D) respectively.

Example 2.3. Let β ≥ 0, α ≥ −1 and 1 ≤ p < ∞. The holomorphic Sobolev space

Apα,β(Bn) is defined by

Apα,β(Bn) = {f ∈ H(Bn) : ‖f‖Apα,β <∞},

where the norm is defined by

‖f‖Apα,β = ‖(I +R)βf‖Apα =

(∫
Bn
|(I +R)βf(z)|p dAα(z)

)1/p

for α > −1 and

‖f‖Ap−1,β
= ‖(I +R)βf‖Hp =

(∫
∂Bn
|(I +R)βf(z)|p dS(z)

)1/p

.

Furthermore, dAα(z) = Γ(n+α+1)
n!Γ(α+1) (1 − |z|2)α dA(z), where dA(z) is the 2n-dimensional

Lebesgue measure normalized so that
∫
Bn dA(z) = 1, and hence,

∫
Bn dAα(z) = 1 for every

α > −1. The notation dS(z) stands for the surface measure satisfying
∫
∂Bn dS(z) = 1.

The holomorphic Sobolev spaces can be partitioned into the Bergman-Sobolev spaces,

α > −1, and the Hardy-Sobolev spaces, Hp
β(Bn) = Ap−1,β(Bn). In case of β = 0, these

spaces are called the weighted Bergman spaces Apα(Bn) = Apα,0(Bn) with α > −1 and the

Hardy spaces Hp(Bn) = Ap−1,0(Bn).

For p ≥ 1, αj > −1, βj ≥ 0 (j = 1, 2), with α1 − α2 = p(β1 − β2), the following

equivalence holds by Theorem 5.12 in [4] (see also [11]):

(2.2) Apα1,β1
(Bn) ' Apα2,β2

(Bn),

where the isomorphism is given by the identity operator, and hence, the spaces have

equivalent norms. By the same theorem, one also obtains the statement (2.2) for α1 = −1

and p = 2. From this it follows that for β1 <
1+α1
p , where equality may be used in the

case of p = 2, we have Apα1,β1
(Bn) ' Apα1−β1p,0(Bn). The right-hand side is a weighted

Bergman space or H2(Bn), hence, M(Apα,β(Bn)) = H∞(Bn) for β < 1+α
p , where equality

may be used in the case of p = 2. Regarding the case n = 1, if β > 2+α
p , then Apα,β(D) is

an algebra and M(Apα,β(D)) = Apα,β(D), see [5]. In this setting, there is a b < β satisfying

0 < b− 2+α
p < 1, so that

Apα,β(D) ⊂ Apα,b(D) ⊂ Λb− 2+α
p

(D) ⊂ A(D),
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where Λb− 2+α
p

is a Lipschitz space, see [21]. The first inclusion follows from (2.2), the

second inclusion can be found in Theorem 5.5 in [4] and the last one is given by Theorem 7.9

in [21]. Furthermore, by Proposition 2.2 in [11], we have for p ≥ 1, α ≥ −1, and every

positive integer N that

(2.3) ‖f‖Apα,N �
N−1∑
j=0

|Djf(0)|+ ‖DNf‖Apα

for f ∈ H(D). Next, we check the conditions (I)–(IV).

The topology generated by ‖ · ‖Apα,β is finer than the compact-open topology τ0, so

condition (I) holds. Indeed, the statement follows from Lemma 5.6 in [4] with the use

of supremum over an arbitrary compact subset of Bn. Hereafter, we will assume that

β ≥ 1+α
p . For smaller β it was mentioned that the multiplier space is H∞(Bn) which is

considered in Example 2.4, where the the space Apα,β(Bn) can be viewed as a weighted

Bergman space.

In the case N > β − α+1
p ≥ 0, an application of (2.2) gives that

f ∈ Apα,β(Bn) if and only if f ∈ Ap(N−β)p+α,N (Bn) if and only if RNf ∈ Ap(N−β)p+α(Bn).

Therefore, let X(Bn) = Apα,β(Bn) and Y (Bn) = Ap(N−β)p+α(Bn), where N = inf
{
N̂ ∈

Z≥1 : N̂ > β − α+1/2
p

}
. Moreover, for f ∈ H(Bn) we have

(2.4) ‖(I +R)βf‖Apα � |f(0)|+ ‖Rβf‖Apα ,

according to Lemma 2.5. Condition (II) follows by first using the equivalence of the

norms ‖ · ‖Apα,β and ‖ · ‖Ap
(N−β)p+α,N

by (2.2), and then applying (2.4) to the latter norm.

Furthermore, it holds that M(Apα(Bn)) = H∞(Bn), which shows that condition (III) is

satisfied.

Let us check the condition (IV) for Apα,β(D). We assume that f ∈ Apα,β(D) has a zero at

z = z0. Let us show that f
z−z0 ∈ A

p
α,β(D) by establishing that RN

( f
z−z0

)
∈ Ap(N−β)p+α(D).

Let us take |z0| < r < 1. We may assume that |z| ≥ r, since RN
( f
z−z0

)
∈ H(D) is bounded

on rD. We will utilize the following formula given in Proposition 6 in [10]:

RN
(
f(z)

z − z0

)
=

(−1)N

(z − z0)N+1

N∑
k=0

(−1)k
(
N + 1

k

)
(z − z0)kRN ((z − z0)N−kf),

where r ≤ |z| < 1. It suffices to show that RN ((z − z0)f) ∈ Ap(N−β)p+α(D), which implies

that RN ((z − z0)N−kf) ∈ Ap(N−β)p+α(D) for k = 0, 1, . . . , N . Using the general Leibniz

rule we obtain

RN ((z − z0)f) =
N∑
k=0

(
N

k

)
RN−k(z − z0)Rk(f) =

N∑
k=0

(
N

k

)
zRk(f).
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We observe that ‖zRkf‖Ap
(N−β)p+α

≤ ‖Rkf‖Ap
(N−β)p+α

and Rkf ∈ Ap(N−β)p+α(D) if and

only if

(1− |z|2)N−kR(N−k)Rkf = (1− |z|2)N−kRNf ∈ Ap(N−β)p+α(D),

see [21, p. 75]. The last statement holds, since

‖(1− |z|2)N−kRNf‖Ap
(N−β)p+α

≤ ‖RNf‖Ap
(N−β)p+α

<∞,

where we used the fact RNf ∈ Ap(N−β)p+α(D). So we have that Rkf ∈ Ap(N−β)p+α(D) for

k = 0, 1, . . . , N and consequently RN ((z − z0)f) ∈ Ap(N−β)p+α(D). Therefore RN
( f
z−z0

)
∈

Ap(N−β)p+α(D).

It should also be mentioned that the spaces Apα,β(Bn) are reflexive for p > 1, see

Proposition 5.7(iv) in [4].

Example 2.4. We consider all spaces X(Bn) that satisfies (I) and M(X(Bn)) = H∞(Bn).

Furthermore, condition (IV) is also assumed to hold if n = 1. Letting Y (Bn) = X(Bn)

condition (III) is also satisfied and condition (II) is irrelevant, see the remark after condi-

tion (II). These spaces include growth spaces H∞α (D), α > 0, and weighted Hardy spaces

Hp
w(D), p > 1, where w ∈ (Ap), that is, w satisfies the Muckenhoupt (Ap)-condition, see

details in [7]. Considering the weighted Hardy spaces, condition (I) follows from the proof

of Lemma 2.1 in [7]. Notice that if w ∈ (Ap), p > 1, then the critical exponent qw < p.

For f ∈ H(D) we have ‖f‖Hp
w
<∞ if and only if

lim
r→1−

∫ π

−π

∣∣f(reiθ)
∣∣pw(θ) dθ <∞.

Since, for every z0 ∈ D, there exists r < 1 such that 1
z−z0 is bounded on D \ rD, con-

dition (IV) follows. Condition (IV) is proved by similar arguments for many spaces, for

example, weighted Bergman spaces, growth spaces and Hardy spaces.

Lemma 2.5. Let β ≥ 0. If either α > −1 and p ≥ 1, or α = −1 and p = 2, it holds that

‖f‖Apα,β � |f(0)|+ ‖Rβf‖Apα , f ∈ H(Bn).

Moreover, the space Apα,β(Bn) endowed with the norm defined as ‖f‖p,α,β = |f(0)| +

‖Rβf‖Apα is a Banach space.

Proof. Let N be the smallest integer in the set Z>β+1 and γ = p(N−β)+α > −1. By (2.2)

and Lemma 1 in [10] we have ‖f‖Apα,β � ‖f‖Apγ,N and ‖f‖p,α,β � ‖f‖p,γ,N respectively.

The norm equivalences are also well known to experts in the case α = −1 and p = 2.

Therefore (
Apα,β(Bn), ‖ · ‖p,α,β

)



Unified Approach to Spectral Properties of Multipliers 1479

is a Banach space, since this is true for(
Apα,β(Bn), ‖ · ‖p,γ′,N

)
for all γ′ > −1, see [20]. It now suffices to show that ‖f‖Apγ,N � ‖f‖p,γ,N . Using Jensen’s

inequality we have

|(I +R)Nf(z)| =

∣∣∣∣∣∣
N∑
j=0

(
N

j

)
Rjf(z)

∣∣∣∣∣∣ ≤ 2N
N∑
j=0

1

2N

(
N

j

)
|Rjf(z)|

≤ 2N

 N∑
j=0

1

2N

(
N

j

)
|Rjf(z)|p

1/p

.

Furthermore,

‖f‖Apγ,N =

(∫
Bn
|(I +R)Nf(z)|p dAγ(z)

)1/p

≤

2N(p−1)
N∑
j=0

(
N

j

)∫
Bn
|Rjf(z)|p dAγ(z)

1/p

�

 N∑
j=0

∫
Bn
|RNf(z)|p dAp(N−j)+γ(z)

1/p

.

(∫
Bn
|RNf(z)|p dAγ(z)

)1/p

+ |f(0)| = ‖f‖p,γ,N .

Our approach to prove the converse is very similar. It holds that∫
Bn
|RNf(z)|p dAγ(z) =

∫
Bn
|(I +R− I)Nf(z)|p dAγ(z)

≤ 2N(p−1)
N∑
j=0

(
N

j

)∫
Bn
|(I +R)jf(z)|p dAγ(z)

�
N∑
j=0

∫
Bn
|(I +R)Nf(z)|p dAp(N−j)+γ(z)

.
∫
Bn
|(I +R)Nf(z)|p dAγ(z).

From this and Lemma 5.6 in [4], it follows that there exists a constantM = M(n,N, p, γ) >

0 such that

‖RNf‖Apγ + |f(0)| ≤M‖(I +R)Nf‖Apγ + |f(0)| ≤ 2M‖(I +R)Nf‖Apγ ,

which finishes the proof.
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3. The spectrum of Mu

Next, we will characterize the spectra of multiplication operators acting on X(Bn) in the

case that there exists a space Y (Bn) such that conditions (I)–(III) are satisfied. Condi-

tion (II) is crucial in the following lemma. The corresponding results for the Hardy-Sobolev

Hilbert spaces were obtained in [10].

Lemma 3.1. Assume that (I)–(III) are satisfied and let u ∈ M(X(Bn)). The following

statements are equivalent:

(a) 1/u ∈M(X(Bn)),

(b) 1/u ∈ H∞(Bn),

(c) Mu is invertible.

Proof. Assuming 1/u ∈ M(X(Bn)) we obtain immediately, by the remark after condi-

tion (III), that 1/u ∈ H∞(Bn). To prove the converse implication we will use the formula

(3.1) RN
(
f

u

)
=

(−1)N

uN+1

N∑
k=0

(−1)k
(
N + 1

k

)
ukRN

(
uN−kf

)
, f ∈ H(Bn),

which can be found in Corollary 5 in [10]. The proof of the formula uses the derivative

D, but the formula remains valid for all linear operators S that admit the law S(fg) =

fSg + gSf , f, g ∈ H(D), and for which the formula is valid for N = 1. Moreover, the

dimension n is irrelevant for the proof, and therefore we may replace D with R and also

consider the formula in higher dimensions. Notice that (3.1) is invalid for N = 0.

If 1/u ∈ H∞(Bn), then u is uniformly bounded from below, that is, there exists

a 0 < c < 1 such that infz∈Bn |u(z)| ≥ c and hence formula (3.1) is applicable. By

condition (II) we have that f ∈ X(Bn) if and only if RNf ∈ Y (Bn).

One should also notice that uk ∈ M(X(Bn)) and (1/u)k ∈ H∞(Bn) for all k ∈ Z≥0.

For f ∈ X(Bn) we obtain that ukf ∈ X(Bn) for all k ∈ Z≥0, and therefore,∥∥∥∥fu
∥∥∥∥
X

�
∥∥∥∥RN (fu

)∥∥∥∥
Y

+

∣∣∣∣f(0)

u(0)

∣∣∣∣
≤

N∑
k=0

(
N + 1

k

)∥∥∥∥∥
(

1

u

)N+1−k
RN
(
uN−kf

)∥∥∥∥∥
Y

+

∣∣∣∣f(0)

u(0)

∣∣∣∣
.

N∑
k=0

∥∥∥∥∥
(

1

u

)N+1−k
∥∥∥∥∥
∞

∥∥∥RN(uN−kf)∥∥∥
Y

+

∣∣∣∣f(0)

u(0)

∣∣∣∣
≤
(

1

c

)N+1 N∑
k=0

∥∥RN(uN−kf)∥∥
Y

+

∣∣∣∣f(0)

u(0)

∣∣∣∣ . N∑
k=0

∥∥uN−kf∥∥
X

+

∣∣∣∣f(0)

u(0)

∣∣∣∣ <∞,
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where the remark after condition (III) gives the second inequality. Hence, we have shown

that the two statements (a) and (b) are equivalent. If 1/u ∈ M(X(Bn)), then clearly

f 7→ f
u is the inverse of Mu. Conversely, if Mu is invertible, then M1/u must be the unique

bounded inverse, so 1/u ∈M(X(Bn)).

Theorem 3.2. Assume that (I)–(III) are satisfied and let Mu : X(Bn) → X(Bn) be a

multiplication operator generated by u ∈ M(X(Bn)). The spectrum of Mu is given by

σ(Mu) = u(Bn).

Proof. Let λ ∈ C. Clearly u−λ ∈M(X(Bn)). If λ ∈ u(Bn), then |u(z)−λ| is not bounded

from below so Mu − λI = Mu−λ is not invertible by Lemma 3.1. Using again Lemma 3.1,

it follows that for any λ ∈ C \u(Bn) the operator Mu−λI is invertible since |u(z)−λ|, in

this case, is bounded from below. Hence, the spectrum is given by σ(Mu) = u(Bn).

Remark 3.3. The above result implies that r(Mu) = ‖u‖∞ ≤ ‖Mu‖. Moreover, since the

spectrum σ(Mu) = u(Bn) is connected, when u is continuous, any nonzero spectral radius

would imply an uncountable number of points in the spectrum, from which it follows that

the operator is not compact. Consequently, Mu is never compact if u 6= 0.

Corollary 3.4. Let X(Bn) be any of the following spaces

(a) Apα,β(Bn), p ≥ 1, β ≥ 0, and α > −1;

(b) Bα(Bn), α > 0;

(c) H2
β(Bn), β ≥ 0;

(d) Hp
w(D), p > 1, w ∈ (Ap).

Then the spectrum of a multiplication operator Mu : X(Bn)→ X(Bn) is given by σ(Mu) =

u(Bn).

4. The essential spectrum of Mu

Examining the essential spectrum of a multiplication operator when the domain is Bn,

n > 1, the result concerning H2
β, obtained by Cao, He and Zhu, can be made quite

general, see Theorem 4.1. In the case n = 1, we have obtained a sufficient condition

for Fredholmness in Lemma 4.4, where all four conditions (I)–(IV) were assumed. For

the spaces mentioned in our main result, namely Theorem 4.13, this condition is also

necessary for Fredholmness, see Lemmas 4.9 and 4.12, but for this to be proved, space-

specific properties were used. An asymptotic approximation for the behaviour of the norm

of the peak functions is necessary for the result concerning Bergman-Sobolev spaces. The
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estimate given in Lemma 11 in [10] is insufficient for our purposes, not only because it

only considers p = 2, but also because it is not a sharp lower bound. The necessity of an

asymptotic approximation instead of a non-sharp lower bound of the behaviour is clear

when an arbitrary p ∈ (1,∞) is considered in Lemma 4.12.

Theorem 4.1. Assume that condition (I) is satisfied and n > 1. Furthermore, let u ∈
M(X(Bn)) and Pj : Bn → C, Pj(z) = zj for every j = 1, . . . , n. Suppose that Pj ∈
M(X(Bn)) for every j. Then σe(Mu) =

⋂
0<r<1 u(Bn \ rBn) = u(Bn) = σ(Mu).

Proof. Let λ ∈ u(Bn). Since n > 1, the function u(z) − λ has infinitely many distinct

zeros, and therefore, there must exist an infinite subset {αk}∞k=1, αk = (αk,1, . . . , αk,n),

of these zeros such that for some j = 1, . . . , n we have αk,j 6= αl,j whenever k 6= l. We

first show, by induction, that (δαk)∞k=1 are linearly independent in KerM∗u−λ. Clearly all

δαk ∈ KerM∗u−λ. Suppose that
m∑
k=1

ckδαk = 0

for some m ∈ Z≥1. If m = 1, it follows that c1 = 0. Assume that m ≥ 2. For arbitrary

f ∈ X(Bn) we have by assumption that Pjf ∈ X(Bn), so

m∑
k=1

ckαk,jδαk(f) = 0 and

m∑
k=1

ckδαk(f) = 0.

Hence

m∑
k=2

ck(αk,j − α1,j)δαk(f) =
m∑
k=1

ck(αk,j − α1,j)δαk(f) = 0 for all f ∈ X(Bn),

and therefore, by the induction hypothesis, ck(αk,j − α1,j) = 0 for all k = 2, . . . ,m.

This implies that ck = 0 for k = 2, . . . ,m, and consequently c1 = 0. Then KerM∗u−λ is

infinite dimensional so that M∗u−λ, and equivalently Mu−λ, is not Fredholm. It follows

that u(Bn) ⊂ σe(Mu) and, moreover, that⋂
0<r<1

u(Bn \ rBn) ⊂ u(Bn) ⊂ σe(Mu) ⊂ σ(Mu).

For the converse conclusion, let λ /∈
⋂

0<r<1 u(Bn \ rBn). Hence, there are r ∈ (0, 1) and

δ > 0 such that |λ−u(z)| ≥ δ for all r < |z| < 1. Then v(z) = (u(z)−λ)−1 is holomorphic

and bounded on Bn \ rBn. As in [10], using Hartogs’ extension theorem and the identity

theorem, we can extend v to a function ṽ ∈ H(Bn) such that ṽ(z) = (u(z) − λ)−1 for

all z ∈ Bn, and therefore ṽ ∈ H∞(Bn). Now Mu−λ is invertible by Lemma 3.1, so

λ /∈ σ(Mu).
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Remark 4.2. Following the proof of Theorem 4.1 it is clear that (δαk)∞k=1 are linearly

independent when n = 1.

Now we proceed to the case n = 1.

The following result is based on ideas due to Axler [3] that was carried on in [8]. It

holds for all spaces X(D) such that M(X(D)) = H∞(D).

Lemma 4.3. Assume that condition (I) is satisfied and let u ∈ M(X(D)) = H∞(D). If

Mu : X(D) → X(D) is Fredholm, then there are r ∈ (0, 1) and δ > 0 such that |u(z)| ≥ δ

for all r ≤ |z| < 1.

Proof. Assume we can find a sequence (zn)∞n=1 ⊂ D with |zn| → 1 and |u(zn)| → 0 when

n→∞. Then we can assume that (zn)n is an interpolating sequence in H∞(D) by going

to a subsequence if necessary. Therefore, (see, e.g., [2, Ch. 7.3]) there is a constant M > 0

such that for each N ∈ N there is a function uN ∈ H∞(D) with

uN (zn) =

u(zn) if n ≥ N,

0 if n < N

and ‖uN‖∞ ≤M supn≥N |u(zn)|. Let

ZN = {f ∈ X(D) : δzn(f) = 0 for all n ≥ N},

which is a closed subspace of X(D). From Remark 4.2 we know that the δzn ∈ X(D)∗

are linearly independent, which implies that Z⊥N is infinite-dimensional. Since δzn(u −
uN ) = 0 for all n ≥ N , we get Mu−uN (X(D)) ⊂ ZN . Now (X(D)/ZN )∗ = Z⊥N , so

X(D)/ZN is infinite-dimensional. Hence X(D)/Mu−uN (X(D)) is also infinite-dimensional,

and Mu−uN : X(D) → X(D) is not Fredholm. As M(X(D)) = H∞(D) and the set of

non-Fredholm operators is closed, it follows from

‖Mu−uN −Mu‖ = ‖MuN ‖ ≤ C‖uN‖∞ ≤ CM sup
n≥N
|u(zn)| → 0 as N →∞,

that Mu is not Fredholm.

Lemma 4.4. Assume that (I)–(IV) are satisfied and let u ∈ M(X(D)). If there are

r ∈ (0, 1) and δ > 0 such that |u(z)| ≥ δ for all r ≤ |z| < 1, then Mu : X(D) → X(D) is

Fredholm.

Proof. By assumption we have that u can have only finitely many zeros α1, . . . , αn inside

D with multiplicities m1, . . . ,mn respectively. Then for all z ∈ D,

u(z) = v(z)(z − α1)m1 · · · (z − αn)mn = v(z)p(z),
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where v ∈ H(D) and 1/v ∈ H∞(D).

Let us now define the point evaluation maps for derivatives by δ
(k)
z (f) = f (k)(z) for

all z ∈ D and all k ∈ Z≥0. By assumption (I), it holds that δ
(k)
z ∈ X(D)∗ for all k and z.

Clearly,

Mu(X(D)) ⊂
n⋂
i=1

mi−1⋂
k=0

Ker δ(k)
αi .

Let f ∈
⋂n
i=1

⋂mi−1
k=0 Ker δ

(k)
αi , so f (k)(αi) = 0 for all i = 1, . . . , n and all k = 0, . . . ,mi − 1.

Then f
u ∈ H(D). Now assumption (IV) implies that v ∈ M(X(D)). Indeed, if g ∈ X(D),

then ug ∈ X(D) and by assumption (IV) it follows that vg = ug
p ∈ X(D). Therefore,

1/v ∈M(X(D)) by Lemma 3.1, so that f
u = f/p

v ∈ X(D) by assumption (IV). As a result,

f = ufu ∈Mu(X(D)), and thus

Mu(X(D)) =

n⋂
i=1

mi−1⋂
k=0

Ker δ(k)
αi .

Consequently, Mu has closed range, and since Mu : X(D)→ X(D) is always injective, the

dimension of the kernel of Mu is finite. Since ⊥(span{δ(k)
αi }) = Ker δ

(k)
αi , it follows that the

w∗-closed one-dimensional space span{δ(k)
αi } = (Ker δ

(k)
αi )⊥, see [16, Theorem 11 on p. 341].

Therefore, by [16, Theorem 13 on p. 342], we have

Mu(X(D))⊥ =
n∑
i=1

mi−1∑
k=0

(Ker δ(k)
αi )⊥ =

n∑
i=1

mi−1∑
k=0

span{δ(k)
αi },

and hence, the dimension of the co-kernel of Mu is finite, and Mu is Fredholm.

Theorem 4.5. Assume that (I), (III) and (IV) are satisfied and M(X(D)) = H∞(D).

Let Mu : X(D) → X(D) be a multiplication operator generated by u ∈ M(X(D)). The

essential spectrum of Mu is given by σe(Mu) =
⋂

0<r<1 u(D \ rD).

Proof. We have that λ ∈ u(D \ rD) for all r ∈ (0, 1) if and only if for all r ∈ (0, 1) there is

a sequence (zn)∞n=1 ⊂ D such that |zn| ≥ r for all n ∈ N and |u(zn)−λ| → 0 when n→∞.

Since Mu − λI = Mu−λ, we can now apply Lemmas 4.3 and 4.4 to conclude that the last

statement equivalently means that Mu−λI is not Fredholm, that is λ ∈ σe(Mu). The use

of Lemma 4.4 is justified by the remark after condition (II).

In Example 2.2–2.4 they were stated that the multiplier spaces for Apα,β(D) with p ≥ 1,

α > −1, β < 1+α
p ; Hp

w(D) with p > 1, w ∈ (Ap) and Bα(D) with α > 1 are H∞(D). Thus,

we obtain the following results.

Corollary 4.6. In each of the following three cases:
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(a) p ≥ 1, α > −1 and β < 1+α
p with u ∈M(Apα,β(D));

(b) α > 1 with u ∈M(Bα(D));

(c) p > 1, w ∈ (Ap) with u ∈M(Hp
w(D)),

the essential spectrum of Mu is given by

σe(Mu) =
⋂

0<r<1

u(D \ rD).

It was shown in Theorem 4.1 that in higher dimensions, n > 1, the essential spectra of

multiplication operators coincide with their spectra for many spaces. This is seldom true

for n = 1. In Corollaries 3.4 and 4.6 and Theorem 4.13, we list some spaces, on which

multiplier operators have the spectrum given by u(Bn) and the essential spectrum given

by
⋂

0<r<1 u(Bn \ rBn). Although the sets may differ, their spectral and essential spectral

radii coincide according to the following remark.

Remark 4.7. (a) Let n ∈ Z≥1. Since the decreasing sequence
(
u(Bn \

(
1− 1

k

)
Bn
))∞
k=2

consists of compact and connected sets, the intersection
⋂

0<r<1 u(Bn \ rBn) is compact

and connected.

(b) For n ∈ Z≥1 and u ∈ H∞(Bn) we have

sup

{
|λ| : λ ∈

⋂
0<r<1

u(Bn \ rBn)

}
= ‖u‖∞ = sup

λ∈u(Bn)

|λ|.

Moreover, both suprema are attained. Clearly

‖u‖∞ = sup
z∈Bn

|u(z)| = sup
λ∈u(Bn)

|λ| = sup
λ∈u(Bn)

|λ| ≥ sup

{
|λ| : λ ∈

⋂
0<r<1

u(Bn \ rBn)

}
.

Furthermore, since u ∈ H∞ there is a sequence (zj)
∞
j=1 such that zj ∈ Bn \ rjBn and

limj→∞ |u(zj)| = ‖u‖∞, where rj = 1 − j−1. The sequence (u(zj))
∞
j=1 is bounded, and

therefore, by Bolzano-Weierstrass theorem, there is a convergent subsequence (λk)
∞
k=1,

where λk = u(zjk) ∈ u(Bn \ rjkBn). Since the sets Uk = u(Bn \ rjkBn) are compact and

Uk+1 ⊂ Uk, k = 1, 2, . . ., it holds that limk→∞ λk = λ ∈ Uj for every j, and hence, we have

λ ∈
⋂

0<r<1 u(Bn \ rBn) and |λ| = ‖u‖∞.

For ξ ∈ ∂D and k ∈ Z≥1, let fξ,k : D→ D be a peak function defined by

fξ,k(z) =

(
1 + ξz

2

)k
.

For α > 0 it is well-known that B0,α(D)∗ ' A1
0(D) and A1

0(D)∗ ' Bα(D) via an integral

pairing, see [21].
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Lemma 4.8. Let 0 < α ≤ 1, ξ ∈ D, and gξ,k(z) =
(1+ξz

2

)k∥∥(1+ξz
2

)k∥∥−1

Bα be the normalized

peak function. Then we have g
(m)
ξ,k → 0, m ∈ Z≥0 uniformly on every set Aδ = {z ∈ D :

|z − ξ| ≥ δ}, δ > 0, and gξ,k → 0 weakly in Bα(D) as k →∞.

Proof. For the Bloch-type spaces Bα(D), it can be shown that∥∥∥∥∥
(

1 + ξz

2

)k∥∥∥∥∥
Bα

� k1−α.

The property g
(m)
ξ,k → 0, m ∈ Z≥0, uniformly on the sets Aδ as k →∞ is a consequence of

the definition of gξ,k. Moreover, the sequence (gξ,k)
∞
k=1 is a weak∗ null sequence by using

Lemma 3.1 in [12]. Since (gξ,k)k ⊂ P(D) ⊂ B0,α(D), we conclude that gξ,k → 0 weakly

when k →∞.

Lemma 4.9. Let us assume that either u ∈M(B(D)) ∩A(D) or u ∈M(Bα(D)) = Bα(D)

with 0 < α < 1. If Mu : Bα(D) → Bα(D) is Fredholm, then there are r ∈ (0, 1) and δ > 0

such that |u(z)| ≥ δ for all r ≤ |z| < 1.

Proof. Suppose there is a sequence (zk)
∞
k=1 ⊂ D such that |zk| → 1 and |u(zk)| → 0 when

k → ∞. Then, by going to a subsequence if necessary, we can assume that zk → ξ ∈ ∂D
when k →∞. Since u is continuous up to the boundary in both cases, u(ξ) = 0. Now by

Lemma 4.8 it holds that gξ,k → 0, g′ξ,k → 0 uniformly on every set Aδ = {z ∈ D : |z− ξ| ≥
δ}, δ > 0, and gξ,k → 0 weakly as k →∞. We consider the two cases: (i) when α = 1 and

(ii) when 0 < α < 1.

(i) It holds that supk∈Z≥1
‖gξ,k‖∞ < ∞. Since u ∈ M(B(D)), we know that u ∈

B0(D) ∩ H∞(D). Let Bδ = {z ∈ D : |z − ξ| < δ}, so D = Aδ ∪ Bδ. Let ε > 0 be given,

and choose δ > 0 such that |u(z)| < ε and |u′(z)|(1− |z|2) < ε for z ∈ Bδ. The following

estimates hold,

‖Mu(gξ,k)‖B ≤ Ik,Aδ + IIk,Bδ + |gξ,k(0)u(0)|,

where

Ik,Aδ = sup
z∈Aδ

|u(z)||g′ξ,k(z)|(1− |z|2) + sup
z∈Aδ

|u′(z)||gξ,k(z)|(1− |z|2),

IIk,Bδ = sup
z∈Bδ

|u(z)||g′ξ,k(z)|(1− |z|2) + sup
z∈Bδ

|u′(z)||gξ,k(z)|(1− |z|2).

Consequently, we get that limk→∞ Ik,Aδ = 0 and limk→∞ IIk,Bδ ≤ 2ε. We also have

|gξ,k(0)| � 2−k. Thus ‖Mu(gξ,k)‖B → 0 when k → ∞, which means by Lemma 4.3.15

in [13] that 0 ∈ σe(Mu). Therefore Mu is not Fredholm.

(ii) The result follows similarily from showing that ‖ugξ,k‖Bα → 0 as k → ∞. Take

ε > 0 and choose δ > 0 such that |u(z)| < ε on Bδ. It is clear that Ik,Aδ → 0 as k → ∞.



Unified Approach to Spectral Properties of Multipliers 1487

From the definition of gξ,k we have ‖gξ,k‖∞ � kα−1, so ‖gξ,k‖∞ → 0 as k → ∞, hence,

IIk,Bδ < 2ε for k large enough.

Let us now consider the space X(D) = Apα,β(D) with 1 < p <∞. The following lemma

will be used to obtain an estimate for the Bergman-Sobolev norm of the peak function.

Lemma 4.10. Let L,M ≥ 0. Then

Γ(K + L)

Γ(K)
∼ KL and

Γ(2K + L)

Γ(K + L)Γ(K +M)
∼ 22K+L−1

√
π

K1/2−M

as K →∞.

Proof. According to Stirling’s approximation, Γ(x) ∼
√

2π
x

(
x
e

)x
as x→∞, we have

Γ(K + L)

KLΓ(K)
∼
√

K

K + L
eK−(K+L) (K + L)K+L

KLKK

=

(
1 +

L

K

)−1/2

e−L
(

1 +
L

K

)K (
1 +

L

K

)L
→ 1

as K →∞. Moreover,

√
πKM−1/2Γ(2K + L)

2L+2K−1Γ(K + L)Γ(K +M)

∼
√
πKM−1/2

2L+2K−1

√
(K + L)(K +M)

2π(2K + L)

eM (2K + L)2K+L

(K + L)K+L(K +M)K+M

= eM

√(
1 + L

K

)(
1 + M

K

)(
1 + L

2K

) (
1 + L

2K

)2K+L(
1 + L

K

)K+L(
1 + M

K

)K+M
→ 1

as K →∞.

In the following important lemma a fairly good approximation of the behaviour of the

Bergman-Sobolev norm of the peak functions is obtained. The proof also gives an exact

asymptotic formula for ‖Djfξ,k‖Apα as k →∞ in the case of p ∈ Z≥1, namely,

‖Djfξ,k‖pApα ∼
Γ(α+ 2)22α+5/2−jp

√
πpα+3/2

(k + 1)jp−(α+3/2).

Furthermore, some properties for the normalized peak function are given in order to prove

Lemma 4.12, from which a part of the main result follows. Observe that, as already

mentioned in the beginning of Section 4, the following lemma is a necessary refinement of

Lemma 11 in [10] and, as a sharp estimate, it is also of independent interest.
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Lemma 4.11. Let p ≥ 1, α > −1 or p = 2, α = −1. If β ≥ 0, then

‖fξ,k‖pApα,β � (k + 1)−α+βp−3/2

for k ∈ Z large enough. Consequently, if β > 2+α
p and ξ ∈ ∂D, then the functions gξ,k =

fξ,k/‖fξ,k‖Apα,β ∈ P(D) have the properties that ‖gξ,k‖Apα,β = 1; gξ,k → 0; Rmgξ,k → 0,

m ∈ Z≥1, uniformly on every set Aδ = {z ∈ D : |z − ξ| ≥ δ}, δ > 0, and for p > 1 it also

holds that gξ,k → 0 weakly in Apα,β as k →∞.

Proof. Let N be a positive integer satisfying N > β − 1/2+α
p . By (2.2) and (2.3) we have

that

‖fξ,k‖Apα,β � ‖fξ,k‖Ap(N−β)p+α,N �
N−1∑
l=0

|Dlfξ,k(0)|+ ‖DNfξ,k‖Ap
(N−β)p+α

� ‖DNfξ,k‖Ap
(N−β)p+α

.

The last equivalence follows from

0 ≤ |Dlfξ,k(0)| ≤ |DNfξ,k(0)| ≤ ‖DNfξ,k‖Ap
(N−β)p+α

for l ≤ N . To finish the proof, it will be shown that for γ > −1 and j ∈ Z≥0 we have

‖Djfξ,k‖pApγ � (k + 1)jp−(γ+3/2),

from which the lemma follows by letting γ = (N − β)p+ α and j = N .

Let q be the smallest integer greater than or equal to p and k ≥ j. We have

‖Djfξ,k‖pApγ
γ + 1

=

∫
D
|Djfξ,k(z)|p(1− |z|2)γ dA(z)

=

(
k!

(k − j)!

)p ∫
D

(∣∣1 + ξz
∣∣(k−j)

2k

)p
(1− |z|2)γ dA(z)

(∗)
≥
(

k!

(k − j)!

)p ∫
D

(∣∣1 + ξz
∣∣(k−j)

2k

)q
(1− |z|2)γ dA(z)

(∗∗)
≥
(

k!

(k − j)!

)p ∫
D

1

2jq

∣∣1 + ξz
∣∣2K

22K
(1− |z|2)γ dA(z) = Uk,ξ,j,γ .

The (∗) indicates that choosing q to be the greatest integer smaller than p we similarily

obtain the opposite strict inequality. The function K : Z≥j → Z≥0 is defined as K =

Kj(k) = (k−j)q
2 if k − j is even. In this case

(∗∗)
≥ is an equality. If k − j is odd, then K

is defined by K = (k+1−j)q
2 or K = (k−1−j)q

2 depending on which inequality we want to

obtain. In the latter case
(∗∗)
≥ is replaced by ≤.
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We continue the proof by evaluating the integral with respect to the angle. It is

enough to examine the expression for ξ = 1. Now consider the functions gr ∈ L2([0, 2π)),

gr(t) = (1 + reit)K =
∑K

n=0

(
K
n

)
rneitn for r ≥ 0. From Parseval’s equality we obtain∫ 2π

0
|1 + reit|2K dt = 2π

K∑
n=0

(
K

n

)2

r2n,

for every 0 ≤ r < 1 and thus,

Uk,ξ,j,γ =

(
k!

(k − j)!

)p 2

2(jq+2K)

∫ 1

0

K∑
n=0

(
K

n

)2

r2n(1− r2)γr dr

=

(
k!

(k − j)!

)p 1

2(jq+2K)

K∑
n=0

(
K

n

)2 ∫ 1

0
r2n(1− r2)γ2r dr

=

(
k!

(k − j)!

)p 1

2(jq+2K)

K∑
n=0

(
K

n

)2 ∫ 1

0
rn(1− r)γ dr.

Moreover,

Uk,ξ,j,γ =

(
k!

(k − j)!

)p 1

2(jq+2K)

K∑
n=0

(
K

n

)2

β(n+ 1, γ + 1)

=

(
k!

(k − j)!

)p 1

2(jq+2K)

K∑
n=0

(
K

n

)2 Γ(γ + 1)Γ(n+ 1)

Γ(n+ γ + 2)

=

(
Γ(k − j + 1 + j)

Γ(k − j + 1)

)p 1

2(jq+2K)

Γ(γ + 1)

Γ(K + γ + 2)

Γ(2K + γ + 2)

Γ(K + γ + 2)

∼ kjpΓ(γ + 1)

2(jq+2K)
K−γ−3/2 2γ+1+2K

√
π

∼ Γ(γ + 1)kjp(kq)−γ−3/2 22γ+5/2−jq
√
π

=
Γ(γ + 1)22γ+5/2−jq
√
πqγ+3/2

kjp−(γ+3/2)

as k →∞, where the first asymptotic approximation is given by Lemma 4.10 and (k−c)a ∼
ka as k → ∞ for every c ∈ R. The third equality follows from the Chu-Vandermonde

identity, see [15, p. 32] with the parameters n = K, b = −K and c = γ + 2.

To prove that (gξ,k)
∞
k=1 is a weak null sequence, let BApα,β(D) denote the closed unit ball

of the Bergman-Sobolev space Apα,β(D), p > 1. Let τp denote the topology of pointwise

convergence. Notice that (BApα,β(D), τp) is a Hausdorff space and that BApα,β(D) is weakly

compact, since the space is reflexive. Since δz ∈ Apα,β(D)∗ by condition (I), the identity

map

id: (BApα,β(D), w)→ (BApα,β(D), τp)
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is continuous, and hence, it represents a homeomorphism between the spaces (BApα,β(D), w)

and (BApα,β(D), τp). Since id−1 : (BApα,β(D), τp) → (BApα,β(D), w) is continuous, we conclude

that gξ,k → 0 weakly, when k →∞.

Lemma 4.12. Let α > −1, p > 1 or α = −1, p = 2 and assume β > 2+α
p . If Mu : Apα,β →

Apα,β is Fredholm, then there exist δ > 0 and r ∈ (0, 1) such that |u(z)| ≥ δ for all

r ≤ |z| < 1.

Proof. The proof will be carried out by contraposition. Since u belongs to the disk algebra

it is continuous up to the boundary of D. Assume there is a point ξ ∈ ∂D such that

u(ξ) = 0. This assumption is equivalent to u not being bounded from below arbitrarily

close to the boundary, since u is continuous. It will be shown that

‖ugξ,k‖Ap
p(N−β)+α,N

→ 0 as k →∞,

which by (2.2) implies that

(4.1) ‖ugξ,k‖Apα,β → 0 as k →∞,

where N is the positive integer satisfying

0 < N − β +
1/2 + α

p
≤ 1,

and gξ,k is the function defined in Lemma 4.11. The lemma follows from Lemma 4.11,

(4.1) and Lemma 4.3.15 in [13].

To prove the null sequence statement, we will make use of (2.4). First, notice that by

Lemma 4.11 we obtain

|u(0)gξ,k(0)| .
|u(0)fξ,k(0)|

(k + 1)
−α
p

+β− 3
2p

→ 0

as k →∞. Using the general Leibniz formula we have

RN (ugξ,k) =

N∑
j=0

(
N

j

)
RjuRN−jgξ,k,

from which it follows that

‖RN (ugξ,k)‖Ap
p(N−β)+α

≤
N∑
j=0

(
N

j

)
‖RjuRN−jgξ,k‖Ap

p(N−β)+α
.

Therefore, it suffices to show that

Ik,j =

∫
D
|RjuRN−jgξ,k|p dAp(N−β)+α
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approaches zero for j = 0, 1, . . . , N as k tends to infinity. To prove the assertion for the

case j = 0, we take ε > 0 and choose δ > 0 such that |u(z)|p < ε for all

z ∈ Bδ = {z ∈ D : |z − ξ| < δ}.

We can now choose a K > 0 such that∫
Aδ

|RNgξ,k(z)|p dAp(N−β)+α(z) < ε,

which implies ∫
Aδ

|u(z)RNgξ,k(z)|p dAp(N−β)+α(z) < ‖u‖p∞ε

for k > K, where Lemma 4.11 has been used and Aδ = {z ∈ D : |z − ξ| ≥ δ}. Thus, for

k > K

Ik,0 <
(
‖u‖p∞ + ‖RNgξ,k‖pAp

p(N−β)+α

)
ε ≤

(
‖u‖p∞ +M‖gξ,k‖pApα,β

)
ε

where (2.2) gives the second inequality for some M > 0. Since u ∈ Apα,β(D) ⊂ H∞(D) and

‖gξ,k‖Apα,β = 1 for every k, the result follows. To assure the result in the case j ≥ 1, we

will use the following approximation:

Ik,j ≤
(k + 1)p(N−j)

‖fξ,k‖pApα,β

∫
D
|Rju(z)|p

∣∣∣∣1 + ξz

2

∣∣∣∣(k−(N−j))p

dAp(N−β)+α(z).

From Lemma 4.11 it follows that

Ik,j .
(k + 1)p(N−j)

(k + 1)−α+βp−3/2

∫
D
|Rju(z)|p

∣∣∣∣1 + ξz

2

∣∣∣∣(k−(N−j))p

(1− |z|2)p(N−β)+α dA(z)

= (k + 1)
p
(
N−β+

α+3/2
p
−j
) ∫

D
|Rju(z)|p

∣∣∣∣1 + ξz

2

∣∣∣∣(k−(N−j))p

(1− |z|2)p(N−β)+α dA(z).

For integers j ∈ [2, N ] the result Ik,j → 0 as k → ∞ is obtained from the following

three facts:

u ∈ Apα,β ' A
p
p(N−β)+α,N ⊂ A

p
p(N−β)+α,j ,

‖fξ,k‖∞ ≤ 1 ∀ k ∈ Z≥1,

p

(
N − β +

3/2 + α

p
− j
)
≤ 1 + p− pj < 0.

For j = 1 we make an additional partition. We will, once at a time, assume that

N − β + 3/2+α
p − 1 is strictly less than zero, equal to zero or strictly larger than zero. In

the first case we can apply the procedure used for j ≥ 2. In the second case we may utilize

the Lebesgue dominated convergence theorem to functions∣∣∣∣1 + ξz

2

∣∣∣∣(k−(N−j))p

≤ 1
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for all z ∈ D and k ∈ Z≥N to obtain the result.

The only thing that remains to show is that Ik,1 → 0 as k →∞ whenN−β+ 3/2+α
p −1 >

0. This condition implies that

N > β − 3/2 + α

p
+ 1 > 1,

so that N ≥ 2.

To prove that (Ik,1)∞k=1 is a null sequence we will use Lemma 5.4 in [4] and Lemma 4.11.

Lemma 5.4 in [4] gives us three different approximations for the behaviour of |Du(z)|,
depending on values of some parameters. Hence, it suffices to prove the null convergence

for all of these approximations, one at a time. Notice that q = α + 1 when comparing

notations with [4]. First, assume β < 2+α
p + 1. Then we have

Ik,1 . ‖u‖p
Apα,β

∫
D
|RN−1gξ,k|p(1− |z|2)

−p( 2+α
p

+1−β)
dAp(N−β)+α(z)

.
‖u‖p

Apα,β

‖fξ,k‖pApα,β

∫
D
|RN−1fξ,k|p dAp(N−1)−2(z)

=
‖u‖p

Apα,β

‖fξ,k‖pApα,β
‖fξ,k‖pAp

p(N−1)−2,N−1

� ‖u‖p
Apα,β

(k + 1)2+α−βp,

therefore (Ik,1)k is a null sequence in this case. If β ≥ 2+α
p + 1, then a worse upper bound

than the one stated in Lemma 5.4 is given by C‖u‖p
Apα,β

1
(1−|z|2)r

for some positive constant

C and any r > 0. In this case we have, for 0 < r < 1/2, that

Ik,1 . ‖u‖p
Apα,β

∫
D
|RN−1gξ,k|p(1− |z|2)−r dAp(N−β)+α(z)

.
‖u‖p

Apα,β

‖fξ,k‖pApα,β

∫
D
|RN−1fξ,k|p dAp(N−β)+α−r(z)

=
‖u‖p

Apα,β

‖fξ,k‖pApα,β
‖fξ,k‖pAp

p(N−β)+α−r,N−1

� ‖u‖p
Apα,β

(k + 1)r−p,

which completes the proof.

We are now ready to present the main result.

Theorem 4.13. Let X(D) be any of the following spaces:

(a) Bα(D), 0 < α < 1, with u ∈M(Bα(D)) = Bα(D) ⊂ A(D);

(b) B(D) with u ∈M(B(D)) ∩A(D);
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(c) Apα,β(D) with u ∈ M(Apα,β(D)) = Apα,β(D) ⊂ A(D), where p > 1, α > −1 and

β > 2+α
p ;

(d) H2
β(D) with u ∈M(H2

β(D)) = H2
β(D) ⊂ A(D), where β > 1/2.

Then the essential spectrum of Mu : X(D)→ X(D) is given by

σe(Mu) =
⋂

0<r<1

u(D \ rD) = u(∂D).

Proof. As in the proof of Theorem 4.5, now using Lemmas 4.4, 4.9 and 4.12, we obtain

σe(Mu) =
⋂

0<r<1 u(D \ rD) whenever u ∈M(X(D))∩A(D) and X(D) is any of the spaces

listed above. To prove the last equality, we utilize the continuity of u on D, which implies

the first equality below⋂
0<r<1

u(D \ rD) =
⋂

0<r<1

u(D \ rD) =
⋂

0<r<1

u(D \ rD) ⊃ u(∂D).

To show the opposite inclusion, take z ∈
⋂

0<r<1 u(D \ rD). Now there is a sequence

(yn)∞n=1, 1 − 1
n ≤ |yn| ≤ 1 such that u(yn) = z. Since (yn)∞n=1 is bounded there is a

convergent subsequence (ynk)∞k=1 such that ynk → y ∈ ∂D as k →∞. Since u is continuous

on D we have

z = lim
k→∞

u(ynk) = u(y),

so z ∈ u(∂D), which proves the theorem.

Acknowledgments

The first two authors were supported in part by the Academy of Finland project 296718.

The third author acknowledges support from the Magnus Ehrnrooth Foundation.

References

[1] Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate

Studies in Mathematics 50, American Mathematical Society, Providence, RI, 2002.

[2] M. Andersson, Topics in Complex Analysis, Universitext, Springer-Verlag, New York,

1997.

[3] S. Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336

(1982), 26-44.

[4] F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes

Math. (Rozprawy Mat.) 276 (1989), 60 pp.



1494 Mikael Lindström, Santeri Miihkinen and David Norrbo

[5] , On multipliers for Hardy-Sobolev spaces, Proc. Amer. Math. Soc. 136 (2008),

no. 6, 2125–2133.

[6] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic

functions, J. Austral. Math. Soc. Ser. A 54 (1993), no. 1, 70-79.

[7] A. Boivin, P. M. Gauthier and C. Zhu, Weighted Hardy spaces for the unit disc:

approximation properties, in: Complex and Harmonic Analysis, 129–155, DEStech

Publ., Lancaster, PA, 2007.
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2003.

[17] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-

type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191–215.



Unified Approach to Spectral Properties of Multipliers 1495
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