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Averaging Operators Along a Certain Type of Surfaces with Hypersingularity

Jin Bong Lee*, Jongho Lee and Chan Woo Yang

Abstract. In this paper we obtain almost sharp decay estimates for L2 operator norm

of strongly singular oscillatory integral operators in Rn+1 for n ≥ 2; we prove some

necessary condition for L2 estimates. Also, we prove that the operators are bounded

on Lp for some p 6= 2 and the range of p depends on the hypersingularity of the

operators.

1. Introduction

The origin of the hypersingular integral operators along curves is the Hilbert transform

along curves:

HCf(x) = p. v.

∫
R
f(x− C(s)) ds

s
, x ∈ Rn

with an appropriate curve C(s) = (s, c(s)) in Rn. It is a very well-known fact due to

E. M. Stein and S. Wainger [5] that the Hilbert transform along curves is bounded operator

on Lp with 1 < p < ∞, when one takes the well-curved C as an appropriate curve.

That is, one chooses C(s) = (s, c(s)) with a smooth c in Rn−1, and c(0) = 0 so that〈{dkC(s)
dsk

∣∣
s=0

}
k=1,2,3,...

〉
= Rn.

One easily notices that above operator does not contain any oscillating terms. It is

S. Chandarana [1] who first tried to control this operator with an additional oscillating

term, e−2πi|s|−β

|s|α , since with the singular term such as 1
|s|α the operator is not bounded on

L2. In his paper, the hypersingular integral is defined as

Tα,βf(x, y) = p. v.

∫
[−1,1]

f(x− s, y − c(s))e−2πi|s|−β ds

s|s|α
, α, β > 0

with c(s) = |s|k or c(s) = |s|k sgn(s) and k ≥ 2. Then Tα,β is bounded on (i) L2 if and

only if β ≥ 3α, and (ii) Lp with 1 + 3α(β+1)
β(β+1)+(β−3α) < p < 1 + β(β+1)+(β−3α)

3α(β+1) if β > 3α.

In the same direction, N. Laghi and N. Lyall [3] extended this result to well-curved C
which was considered by E. M. Stein and S. Wainger. That is, with Tα,β = TC , they proved
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that if C(s) is well-curved, then (i) TC is bounded on L2(Rd) if and only if α ≤ β/(d+ 1),

and (ii) with α = 0 and β > 0, TC : L logL(Rd)→ L1,∞(Rd).
Recently, X. Wu and X. Yu [6] studied the case when C(s) = Γθ(s) is a homoge-

neous curve given by Γθ(s) = (θ1|s|p1 , . . . , θd|s|pd) or Γθ(s) = sgn(s)(θ1|s|p1 , . . . , θd|s|pd)
for θ = (θ1, . . . , θd) ∈ Rd. They proved that the corresponding operator, Td,α,βf(x) =

p. v.
∫ 1
−1 f(x − Γθ(s))

e−2πi|t|−β

s|s|α ds, is bounded on the α-modulation spaces such as the in-

homogeneous Besov spaces.

Now, returning to the work of S. Chandarana [1], we consider a natural question of

varying C(s) so that it is no longer a curve but a surface with some curvature conditions.

So, it is natural to change the dimension (n ≥ 2) and a domain ([−1, 1]→ Rn). Also, we

simply set Γ(t) = (t, |t|k), where t = (t1, . . . , tn) and k ≥ 1 so that it represents the case

of hypersurface, co-dimesion 1. That is, we are interested in operators of the form

(1.1) Rf(x) =

∫
Rn
f(x− Γ(t))

e−2πi|t|−βΩ(t)

|t|α+n
dt, Γ(t) = (t, |t|k), t = (t1, . . . , tn),

where the kernel Ω(t)/|t|n satisfies the following conditions:

(1) it is homogeneous of degree −n;

(2) it is the class C∞(Rn − {0});

(3)
∫
|t|=1 Ω(t) dσ(t) = 0.

Our main results are

Theorem 1.1. For n ≥ 2,

(1) R is bounded on L2(Rn+1) if β > 2α > 0. Conversely, R is not bounded on L2(Rn+1)

if β < 2α. The case β = 2α is still open.

(2) R is bounded of Lp(Rn+1) for α/β < 1/p < (β − α)/β if β > 2α.

Note that the statement of Theorem 1.1 holds uniformly for the class of the kernels of

the operator R. That is, the necessary condition asserts that one can find a certain kernel

of which the associated operator is not bounded on L2 when β < 2α.

Outline of proof: We will prove the L2 estimate in the following steps. First, we de-

compose the Fourier multiplier of R so that the corresponding phase function has bounded

below partial derivatives. Second, we obtain decay estimates on each decomposed com-

ponent of the Fourier multiplier by making use of the Van der Corput lemma and the

stationary phase method. Then, by interpolation with a simple size estimate, we get the

Lp estimate. For the converse statement of the main theorem, we use the Bessel function
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to simplify the multiplier of R and figure out that the multiplier blows up along a certain

curve.

Throughout this paper, the symbol . implies that the inequality holds with some

harmless constant multiplied on the right-hand side, and |Sn−2| denotes the measure of

the (n− 2)-dimensional sphere embedded in n-dimensional Euclidean space Rn.

2. Preliminaries

In this section, we introduce some well-known properties of oscillatory integrals used in

our proofs. We will use these properties as lemmas.

Lemma 2.1 (Van der Corput’s lemma). [4, Corollary, p. 334] Suppose φ is real-valued,

smooth in (a, b), and |φ(k)(x)| ≥ C > 0 for all x ∈ (a, b). Then∣∣∣∣∫ b

a
eiλφ(x)ψ(x) dx

∣∣∣∣ ≤ ckλ−1/k

[
|ψ(b)|+

∫ b

a
|ψ′(x)| dx

]
for ψ ∈ C∞0 ((a, b)) when (i) k ≥ 2, or (ii) k = 1 and φ′(x) is monotonic. Note that ck is

independent of φ, ψ, and λ.

Lemma 2.2 (Asymptotic integrals). [4, Proposition 3, p. 334] Suppose k ≥ 2 and φ(x0) =

· · · = φ(k−1)(x0) = 0 6= φ(k)(x0). Then∫
eiλφ(x)ψ(x) dx ∼ λ−1/k as λ→∞

when ψ is supported in a sufficiently small neighborhood of x0.

We also use some properties of the Bessel function,

(2.1) Jm(r) =
1

2π

∫ 2π

0
eir sin(θ)e−imθ dθ =

(r/2)m

Γ(m+ 1/2)π1/2

∫ 1

−1
eirt(1− t2)m−1/2 dt.

The last equality holds when m > −1/2.

Lemma 2.3 (Recursion relation and asymptotic behavior of the Bessel function).

(1) d
dr [r−mJm(r)] = −r−mJm+1(r),

(2) Jm(r) = O(r−1/2) as r →∞,

(3) Jm(r) ∼ rm as r → 0 for Re(m) > −1/2.

For (1), (2) see E. M. Stein [4, (14), (15), (16), p. 338]. Also, for (3) see L. Grafakos [2,

B.6, p. 429].
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3. L2 estimates

The multiplier m of the operator R can be written as

m(ξ) =

∫
Rn
e−2πi(|t|−β+ξ′·t+ξn+1|t|k) Ω(t)

|t|n+α
dt,

where ξ′ = (ξ1, . . . , ξn). By using the spherical coordinate, the multiplier can be rewritten

as

m(ξ) =

∫
Sn−2

∫ π

0

∫ ∞
0

e−2πi(r−β+|ξ′|r cos(θ)+ξn+1rk)r−α−1Ω(θ, σ)(sin(θ))n−2 drdθdσ,

where θ denotes the angle between t and ξ′. Then, in the r variable, we decompose the

multiplier as

ml(ξ) =

∫
Sn−2

∫ π

0

∫ ∞
0

e−2πig(r,θ)η(2lr)r−α−1Ω(θ, σ)(sin(θ))n−2 drdθdσ,

where g(r, θ) = r−β + |ξ′|r cos(θ) + ξn+1r
k, and η(r) is a smooth function compactly

supported in [1/2, 2]. Next, make the change of variables r 7→ 2−lr to write

ml(ξ) = 2αl
∫
Sn−2

∫ π

0

∫ ∞
0

e−2πig(2−lr,θ)η(r)r−α−1Ω(θ, σ)(sin(θ))n−2 drdθdσ.

With a slight abuse of notation, set

g(2−lr, θ) = g(r, θ) = 2βlr−β + 2−klξn+1r
k + 2−l|ξ′|r cos(θ).

Simple computations give

g′r(r, θ) = −β2βlr−β−1 + k2−klξn+1r
k−1 + 2−l|ξ′| cos(θ),(3.1)

g′θ(r, θ) = −2−l|ξ′|r sin(θ),(3.2)

g′′rr(r, θ) = β(β + 1)2βlr−β−2 + k(k − 1)2−klξn+1r
k−2,

g′′θθ(r, θ) = −2−l|ξ′|r cos(θ),(3.3)

λ = max
{

2βl, 2−kl|ξn+1|, 2−l|ξ′|
}
.(3.4)

Lemma 3.1. Let ε = β2−k−β−3.

(1) For all (r, θ) ∈ [1/2, 2]× [0, π],

max
{
|g′r(r, θ)|, |g′θ(r, θ)|, |g′′rr(r, θ)|, |g′′θθ(r, θ)|

}
≥ ελ.

(2) If |g′r(r0, θ0)| ≥ ελ for some (r0, θ0) ∈ [1/2, 2] × [0, π], then |g′r(r, θ)| ≥ ε
2λ for all

(r, θ) satisfying

|r − r0| ≤
2−2(β+k+4)

(β + 1)3 + k3
= ε1 and |θ − θ0| ≤ β2−k−β−7 = ε2.

The same assertion holds for each g′θ, g
′′
rr, g

′′
θθ.
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Proof. To prove the first assertion, suppose that there exists (r, θ) ∈ [1/2, 2]× [0, π] such

that

(3.5) max
{
|g′r(r, θ)|, |g′θ(r, θ)|, |g′′rr(r, θ)|, |g′′θθ(r, θ)|

}
< ελ.

Combining (3.5) with (3.2) and (3.3) to obtain

2−22−2l|ξ′|2 ≤ 2−2l|ξ′|2r2(sin2(θ) + cos2(θ)) = |g′θ(r, θ)|2 + |g′′θθ(r, θ)|2 ≤ 2ε2λ2

which yields

(3.6) 2−l|ξ′| ≤ 2
√

2ελ < λ.

Combining (3.5) with (3.1) and (3.3) to obtain

(3.7)
∣∣− β2βlr−β + k2−klξn+1r

k
∣∣ = |rg′r(r, θ) + g′′θθ(r, θ)| ≤ 3ελ.

Make use of (3.5) again to obtain

(3.8)
∣∣β(β + 1)2βlr−β + k(k − 1)2−klξn+1r

k
∣∣ = |r2g′′rr(r, θ)| ≤ 4ελ.

Using (3.7) and (3.8) we obtain

2−kl|ξn+1| ≤
(7 + 3β)εr−k

k(k + β)
λ ≤ (7 + 3β)ε2k

k(k + β)
λ < λ,(3.9)

2βl ≤ (1 + 3k)εrβ

β(k + β)
λ ≤ (1 + 3k)ε2β

β(k + β)
λ < λ.(3.10)

By combining (3.4), (3.6), (3.9), and (3.10) we immediately obtain a contradiction. This

completes the proof of the first assertion of the lemma.

To prove the second assertion of the lemma, thanks to the mean value theorem one

can write

|g′r(r, θ)| ≥ |g′r(r0, θ0)| − |g′r(r, θ)− g′r(r0, θ0)|

≥ ελ− |β(β + 1)2βlr−β−2
1 ||r − r0| − |k(k − 1)2−klξn+1r

k−2
1 ||r − r0|

− |2−lξn+1|| sin(θ1)||θ − θ0|

≥ ελ− λβ(β + 1)2β+2|r − r0| − λk(k − 1)2k−2|r − r0| − λ|θ − θ0|

≥ ελ− 2−3ελ− 2−3ελ− 2−3ελ ≥ ε

2
λ.

The cases g′θ, g
′′
rr, and g′′θθ can be treated in a similar way.

Let ε1 and ε2 be as in Lemma 3.1. Define an index set I by

I =

{
(j1, j2) ∈ ε1Z× ε2Z :

1

4
≤ j1 ≤ 4 and 0 ≤ j2 ≤ 2π

}
.
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Decompose the multiplier ml as

ml(ξ) =
∑
j∈I

ml,j(ξ)

where for j = (j1, j2),

(3.11) ml,j(ξ) = 2αl
∫
Sn−2

∫ π

0

∫ ∞
0

eig(r,θ)r−α−1χj(r, θ)η(r)Ω(θ, σ)(sin(θ))n−2 drdθdσ

with

χj(r, θ) = χ1

(
4(r − j1)

3ε1

)
χ1

(
4(θ − j2)

3ε2

)
,

where suppχ1 ⊂ [−1, 1], χ1 ≡ 1 on [−1/2, 1/2]. Therefore, χj is a smooth function equal

to 1 in
[
j1− ε1

4 , j1 + ε1
4

]
×
[
j2− ε2

4 , j2 + ε2
4

]
and compactly supported in

[
j1− 3ε1

4 , j1 + 3ε1
4

]
×[

j2 − 3ε2
4 , j2 + 3ε2

4

]
; hence, the collection {χj}j forms a partition of unity in the support

of η.

Let Rj be the support of χj , and divide the index set I into four subsets Ir, Iθ, Irr,
and Iθθ defined by

Ir =
{
j = (j1, j2) ∈ I : |g′r(r, θ)| ≥

ε

2
λ for all (r, θ) ∈ Rj

}
,

Iθ =
{
j = (j1, j2) ∈ I : |g′θ(r, θ)| ≥

ε

2
λ for all (r, θ) ∈ Rj

}
,

Irr =
{
j = (j1, j2) ∈ I : |g′rr(r, θ)| ≥

ε

2
λ for all (r, θ) ∈ Rj

}
,

Iθθ =
{
j = (j1, j2) ∈ I : |g′θθ(r, θ)| ≥

ε

2
λ for all (r, θ) ∈ Rj

}
.

Thanks to Lemma 3.1 it is clear that

I = Ir ∪ Iθ ∪ Irr ∪ Iθθ

and without loss of generality we may assume that they are mutually disjoint. One may

therefore write

ml(ξ) =
∑
j∈Ir

ml,j(ξ) +
∑
j∈Iθ

ml,j(ξ) +
∑
j∈Irr

ml,j(ξ) +
∑
j∈Iθθ

ml,j(ξ).

Now we separately consider four cases: (i) j ∈ Ir; (ii) j ∈ Iθ; (iii) j ∈ Irr; (iv) j ∈ Iθθ.
(i) j ∈ Ir: In this case, we use integration by parts of (3.11) with respect to r to

obtain

ml,j(ξ) = 2αl
∫
Sn−2

∫ π

0

∫ ∞
0

e−2πig(r,θ) ∂

∂r

[
−1

ig′r(r, θ)
r−α−1χj(r, θ)η(r)

]
Ω(θ, σ)

× (sin(θ))n−2 drdθdσ,
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which gives

|ml,j(ξ)| ≤ 2αl|Sn−2|‖Ω‖L∞2α+1λ−1 = C(n, α)2αlλ−1,

hence

|ml,j(ξ)| . 2αlλ−1.

There is also a trivial bound:

|ml,j(ξ)| . 2αl.

In view of the definition of λ in (3.4), one has

(3.12) |ml,j(ξ)| .

2(α−β)l ≤ 2(α−β/2)l if l ≥ 0,

2αl if l < 0.

(ii) j ∈ Iθ: In this case we use integration by parts of (3.11) with respect to θ to

obtain

ml,j(ξ) = 2αl
∫
Sn−2

∫ π

0

∫ ∞
0

e−2πig(r,θ)r−α−1η(r)

× ∂

∂θ

[
−1

ig′θ(r, θ)
χj(r, θ)Ω(θ, σ)(sin(θ))n−2

]
drdθdσ,

which gives

|ml,j(ξ)| ≤ 2αl|σn−2|‖Ω‖L∞2α+1λ−1 = C(n, α)2αlλ−1,

hence again

|ml,j(ξ)| . 2αlλ−1.

Make use of the similar argument as above to obtain that if j ∈ Iθ, then

(3.13) |ml,j(ξ)| .

2(α−β)l ≤ 2(α−β/2)l if l ≥ 0,

2αl if l < 0.

(iii) j ∈ Irr: In this case we apply the van der Corput lemma of the second order in

the r variable to obtain

|ml,j(ξ)| . 2αlλ−1/2.

Make use of the similar argument as above to obtain that if j ∈ Irr, then

(3.14) |ml,j(ξ)| .

2(α−β/2)l if l ≥ 0,

2αl if l < 0.

(iv) j ∈ Iθθ: In this case we apply the van der Corput lemma of the second order in

the θ variable to obtain

|ml,j(ξ)| . 2αlλ−1/2.
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Make use of the similar argument as above to obtain that if j ∈ Iθθ, then

(3.15) |ml,j(ξ)| .

2(α−β)l if l ≥ 0,

2αl if l < 0.

By combining (3.12)–(3.15) one finally obtains

|ml(ξ)|

≤
∑
j∈Ir

|ml,j(ξ)|+
∑
j∈Iθ

|ml,j(ξ)|+
∑
j∈Irr

|ml,j(ξ)|+
∑
j∈Iθθ

|ml,j(ξ)| .

2(α−β/2)l if l ≥ 0,

2αl if l < 0,

which yields

(3.16) ‖Rl‖L2→L2 .

2(α−β/2)l if l ≥ 0,

2αl if l < 0.

One also has a size estimate

(3.17) ‖Rl‖L1→L1 . 2αl.

By interpolating (3.16) and (3.17) we obtain

(3.18) ‖Rl‖Lp→Lp .

2(α−β+β/p)l if l ≥ 0,

2αl if l < 0.

The right-hand side of (3.18) is summable when α > 0 and 1/p < (β − α)/β. By using

the duality argument, for β > 2α > 0 and α/β < 1/p < (β − α)/β we have

(3.19) ‖Rf‖Lp(Rn+1) .α,β ‖f‖Lp(Rn+1).

Since we have an L2 estimate for R, by controlling the multiplier m, one can obtain

the following Sobolev estimate. Consider two cases: (i) |ξ3| ≥ |ξ′| and (ii) |ξ3| < |ξ′|.
(i) |ξ3| ≥ |ξ′|:∑

l∈Z
|ml(ξ)| ≤

∑
l∈Z

∑
j∈Ir∪Iθ

|ml,j(ξ)|+
∑
l∈Z

∑
j∈Irr∪Iθθ

|ml,j(ξ)|

.
∑

j∈Ir∪Iθ

∑
l∈Z

2αlλ−1 +
∑

j∈Irr∪Iθθ

∑
l∈Z

2αlλ−1/2

.
∑
l∈Z

2αl max
{

2βl, 2−nl|ξ3|
}−1

+
∑
l∈Z

2αl max
{

2βl, 2−nl|ξ3|
}−1/2

.
∑

2l≥|ξ3|1/(β+n)
2αl2−βl +

∑
2l≤|ξ3|1/(β+n)

2αl2nl|ξ3|−1

+
∑

2l≥|ξ3|1/(β+n)
2αl2−

β
2
l +

∑
2l≤|ξ3|1/(β+n)

2αl2
n
2
l|ξ3|−1/2

. |ξ3|−
β/2−α
n+β ≈ |ξ|−

β/2−α
n+β .
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(ii) |ξ3| < |ξ′|:∑
l∈Z
|ml(ξ)| ≤

∑
l∈Z

∑
j∈Ir∪Iθ

|ml,j(ξ)|+
∑
l∈Z

∑
j∈Irr∪Iθθ

|ml,j(ξ)|

.
∑

j∈Ir∪Iθ

∑
l∈Z

2αlλ−1 +
∑

j∈Irr∪Iθθ

∑
l∈Z

2αlλ−1/2

.
∑
l∈Z

2αl max
{

2βl, 2−l|ξ′|
}−1

+
∑
l∈Z

2αl max
{

2βl, 2−l|ξ′|
}−1/2

.
∑

2l≥|ξ′|1/(β+1)

2αl2−βl +
∑

2l≤|ξ′|1/(β+1)

2αl2l|ξ′|−1

+
∑

2l≥|ξ′|1/(β+1)

2αl2−
β
2
l +

∑
2l≤|ξ′|1/(β+1)

2αl2
1
2
l|ξ′|−1/2

. |ξ′|−
β/2−α
1+β ≈ |ξ|−

β/2−α
1+β .

Therefore,

Corollary 3.2. If β > 2α > 0, then R is bounded from L2 to L2
s for all s ≤ β/2−α

n+β .

For Lp Sobolev estimate, define

Rzf(x) := (〈ξ〉zmf̂)∨(x), 〈ξ〉 = (1 + |ξ|2)1/2.

Note that for Re(z) = 0 Rz = R, which has Lp range of (3.19). Then, {Rz} is an analytic

family of linear operators of admissible growth defined in the strip S :=
{
z ∈ C | 0 ≤

Re(z) ≤ s1 = β/2−α
n+β

}
. Therefore, using interpolation of analytic families of operators

(L. Grafakos [2, 1.3.3]), one has

Corollary 3.3. If β > 2α > 0 and α
β + s(n+β)

β < 1
p <

β−α
β − s(n+β)

β , then R is bounded

from Lp to Lps for all s ≤ s1 = β/2−α
n+β .

4. Necessity of L2 estimates

Consider the case of l > 0, since for l ≤ 0 our multiplier m only depends on α > 0. In

addition, assume that Ω(t)
|t|n = tn

|t|n+1 with vector ξ′ = (0, . . . , ξn) fixed. Without loss of

generality, one takes the corresponding part of the multiplier m as

m+(ξ) :=

∫
Sn−2

∫ π

0

∫ 1

0
e−2πi[r|ξ′| cos(θ)+ξn+1rk+r−β ] cos(θ)(sin(θ))n−2r−α−1 drdθdσ.

Now, switch the order of the integrals so that one can extract the term independent of θ

from the original integrand as follows:∫ 1

0
e−2πi[ξn+1rk+r−β ]r−α−1

∫
Sn−2

∫ π

0
e−2πir|ξ′| cos(θ) cos(θ)(sin(θ))n−2 dθdσdr,
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and set

G(r|ξ′|) := |Sn−2|
∫ π

0
e−2πir|ξ′| cos(θ) cos(θ)(sin(θ))n−2 dθ.

So,

m+(ξ) =

∫ 1

0
e−2πi[ξn+1rk+r−β ]r−α−1G(r|ξ′|) dr.

Then, use integration by parts, change of variables 2πr|ξ′| = x, − cos(θ) = t, and (2.1) so

that G(r|ξ′|) can be written as

G(r|ξ′|) = |Sn−2|

[
e−2πir|ξ′| cos(θ)(sin θ)n−1

n− 1

∣∣∣∣θ=π
θ=0

− 2πir|ξ′|
n− 1

∫ π

0
e−2πir|ξ′| cos θ(sin θ)n dθ

]

= |Sn−2| ix

1− n

∫ 1

−1
eixt(1− t2)(n−1)/2 dt.

Now, with |Sn−2| = 2πn/2

Γ(n/2−1/2)π1/2 and the last equality of (2.1), one has

G(r|ξ′|) =
−2πi

(r|ξ′|)n/2−1
Jn/2(2πr|ξ′|).

So,

(4.1) |m+(ξ)| = 2π

∣∣∣∣∫ 1

0
e−2πiφ1(r)Jn/2(2πr|ξ′|)

(r|ξ′|)n/2−1

1

rα+1
dr

∣∣∣∣ ,
where φ1(r) = ξn+1r

k + r−β.

Actually,

φ′1(r) = ξn+1kr
k−1 − βr−β−1,

φ′′1(r) = ξn+1k(k − 1)rk−2 + β(β + 1)r−β−2 > 0, ∀ r ∈ (0, τ).(4.2)

With (4.2) and φ1(r) tends to ∞ as r → 0, note that the r0 =
( β
ξn+1k

) 1
β+k is the only

critical point of φ1(r).

Then, write (4.1) as ∫ 1

0
=

∫ a

0
+

∫ b

a
+

∫ 1

b
= III + I + II,

where a = 1
2r0, and b = 3

2r0; it is no harm since τ →∞.

Now, choose ξ so that |ξ′| = τ
2π and ξn+1 = β

k τ
β+k for τ > 0, so that

r0 = τ−1,(4.3)

Jn/2(2πr|ξ′|)
(r|ξ′|)n/2−1

= C(n)
Jn/2(τr)

(τr)n/2−1
,

φ1(r) =
β

k
τβ+krk + r−β.(4.4)
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Case I: Since r0 tends to 0 as τ →∞, use change of variable r → r0s which is equivalent

to s = τ−1r so that∫ b

a
= ταe2πiτ−βφ1(r0)

∫ 3/2

1/2
e−2πiτβ [τ−β(φ1(r0s)−φ1(r0))]Jn/2(s)

sn/2
1

sα
ds,

and we set Φ(s) = τ−β(φ1(r0s)− φ1(r0)) and note that

Φ(1) = 0, Φ′(1) = 0,

Φ′′(1) = τ−βφ′′1(τ−1)τ−2 = τ−β−2[β(k − 1)τβ+2 + β(β + 1)τβ+2] = β(β + k) > 0

by (4.2), (4.3), (4.4). Then, since
Jn/2(s)

sn/2
1
sα is smooth in [1/2, 3/2], one can show, using

Lemma 2.2 with λ = τβ, that the estimate of I is given by

(4.5) |I| ∼ τα−β/2 as τ →∞,

which is bounded if β ≥ 2α.

Case II: In case II, we set r → τ−1r so that

II = τα
∫ τ

3/2
e−2πiφ1(τ−1r)Jn/2(r)

rn/2
1

rα
dr,

and φ1(τ−1r) = τβ
(β
k r

k + r−β
)
. Let φ2 = β

k r
k + r−β then φ′2(r) increases monotonically

so that |φ′2(r)| ≥ |φ′2(b)| = β
[(

3
2

)k−1 −
(

2
3

)β+1]
> 0, ∀ r ∈ [3/2, τ ]. So, if ψ(r) =

Jn/2(r)

rn/2
1
rα ,

then

|II| ≤ C(n, β, k)τα−β

[
|ψ(τ)|+

∫ τ

3/2
|ψ′(t)| dt

]
by Lemma 2.1 with λ = τβ. Since |ψ(τ)| → 0 as τ →∞, one has

≤ C ′(n, β, k)τα−β
∫ τ

3/2
|ψ′(t)| dt.

Also, since |ψ′(r)| =
∣∣Jn/2+1(r)

rn/2+α
+

Jn/2(r)

rn/2+α+1

∣∣, it follows that

|ψ′(r)| .
∣∣∣∣ 1

rn/2+1/2+α

∣∣∣∣+

∣∣∣∣ 1

rn/2+1/2+α+1

∣∣∣∣
by Lemma 2.3. Then, with n ≥ 2,

(4.6) |II| . C(n, β, k, α)τα−β as τ →∞,

which is bounded if β ≥ α.

Case III: As in case I, II, by the change of variable, r → τ−1r, so that

III = τα
∫ 1/2

0
e−2πiτβφ2(r)ψ(r) dr,
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where we have |φ′2(r)| ≥ β(2β+1 − 21−k) for r ∈ [0, 1/2]. Then integration by parts gives

|III| ≤ τα
[∣∣F (r)ψ(r)|r=1/2

r=0

∣∣+

∣∣∣∣∣
∫ 1/2

0
F (r)

d

dr
ψ(r) dr

∣∣∣∣∣
]

= τα
[
|III1|+ |III2|

]
,

F (r) =

∫ r

0
e−2πiτβφ2(t) dt, r ≤ 1

2
.

Since |F (r)| ≤ C(β, k)τ−β by Lemma 2.1 with λ = τβ, and Jm(r) ∼ rm as r → 0 for

Re(m) > −1/2,

τα|III1| ≤ τα|F (1/2)||ψ(1/2)|

≤ Cβ,kτατ−β|Jn/2(1/2)|2α+n/2 ∼ τα−β,

which is bounded if β > α. For III2, note that |φ′2(r)| ≥ 1
2βr

−β−1 if r ∈
[
0, (1

2)
1

β+k
]

and if

k ≥ 1, then (1
2)

1
β+k > 1

2 ; that is, |F (r)| ≤ C(β, k)τ−βrβ+1 in [0, 1/2]. Then, by Lemma 2.3,

|III2| ≤
∫ 1/2

0
|F (r)|

[
r−n/2|Jn/2+1(r)| 1

rα
+
|Jn/2(r)|
rn/2

α

rα+1

]
dr

≤ C ′β,kτ−β
∫ 1/2

0

|Jn/2+1(r)|
rn/2

r1+β−α +
|Jn/2(r)|
rn/2

αrβ−α dr

∼ τ−β
[∫ 1/2

0
r2+β−α dr +

∫ 1/2

0
rβ−α dr

]
as τ →∞.

Both integrals are bounded if 2 + β − α > −1 and β − α > −1 respectively; hence the

entire term is bounded if β > α− 1. Thus,

(4.7) τα|III2| ≤ Cα,β,kτα−β as τ →∞,

which is bounded if β ≥ α.

By (4.5)–(4.7), it follows that II and III decay faster than I does as τ → ∞. Thus

one can conclude that

|m+(ξ)| ∼ τα−β/2 as τ →∞

along ξ =
(
ξ′, βk (2π|ξ′|)β+k

)
with |ξ′| = τ

2π ; note that the direction of ξ′ is fixed. Hence we

have the following

Theorem 4.1. Suppose that ξ′ = τu for τ > 0 and let a fixed u ∈ Sn−1. Then along ξ =(
ξ′, βk (2π|ξ′|)β+k

)
, the Fourier multiplier, m(ξ), of R associated to the kernel Ω(t)

|t|n = tn
|t|n+1

satisfies that |m(ξ)| ∼α,β,k τ−(β/2−α) as τ →∞.

This proves that the operator class {R} has a necessary condition, β ≥ 2α > 0, for L2

boundedness. In other words, if β < 2α, then there exists an operator R of the form (1.1)

which is not bounded on L2.
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