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A Survey on the Lace Expansion for the Nearest-neighbor Models on the

BCC Lattice
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Abstract. The aim of this survey is to explain, in a self-contained and relatively

beginner-friendly manner, the lace expansion for the nearest-neighbor models of self-

avoiding walk and percolation that converges in all dimensions above 6 and 9, re-

spectively. To achieve this, we consider a d-dimensional version of the body-centered

cubic (BCC) lattice, on which it is extremely easy to enumerate various random-walk

quantities. Also, we choose a particular set of bootstrapping functions, by which a

notoriously complicated part of the lace-expansion analysis becomes rather transpar-

ent.

1. Introduction

The lace expansion is one of the few mathematically rigorous methods to prove critical

behavior for various statistical-mechanical models in high dimensions. It can show that

the two-point function for the relevant model, up to the critical point, is bounded by the

Green function for the underlying random walk in high dimensions. During the course of

learning this method, it also provides good exercises in various mathematical skills from

graph theory and algebraic identities to Fourier analysis and probability theory.

First, we explain some background, some historical facts and the purposes of this

survey.

1.1. Background

Cooperation of infinitely many particles results in various intriguing and challenging prob-

lems. One of those is to understand phase transitions and critical behavior of statistical-

mechanical models, such as percolation and the ferromagnetic Ising model. Percolation,

for example, exhibits a phase transition when the bond-occupation parameter p crosses

its critical value pc. If p is far below pc, each cluster of occupied vertices is so small that

we may use standard probabilistic techniques for i.i.d. random variables to predict what
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happens in the subcritical phase. If p is far above pc, on the other hand, vacant vertices

can only form tiny islands and most of the other vertices are connected to form a single

gigantic cluster. However, when p is close to pc, the cluster of connected vertices from

the origin may be extremely large but porous in a nontrivial way, and therefore naive

perturbation methods fail. A similar phenomenon occurs for self-avoiding walk (SAW),

a century-old statistical-mechanical model for linear polymers. Consider a locally finite,

amenable and transitive graph as space. A standard example is the d-dimensional integer

lattice Zd. The main observable to be investigated is the SAW two-point function, which

is the following generating function with fugacity p ≥ 0:

(1.1) Gp(x) =
∑

ω : o→x
p|ω|

|ω|∏
j=1

D(ωj − ωj−1)
∏

0≤s<t≤|ω|

(1− λδωs,ωt),

where the sum is over the nearest-neighbor paths ω on the lattice from the origin o to x,

|ω| is the number of steps along ω, and D is the 1-step distribution of nearest-neighbor

simple random walk (RW): D(x) = (2d)−1δ|x|,1 on Zd. The parameter λ ∈ [0, 1] is the

intensity of self-avoidance; the model with λ = 1 is called strictly SAW, while the setting

with λ ∈ (0, 1) is called weakly SAW. The two-point function with λ = 0 is equivalent to

the RW Green function Sp(x) ≡ ∑∞n=0 p
nD∗n(x), where D∗n is the n-fold convolution of

D. The critical point (= the radius of convergence) for RW is p = 1. For SAW, because of

subadditivity, there is a critical point pc ≥ 1 such that the susceptibility χp ≡
∑

xGp(x)

is finite if and only if p < pc and diverges as p ↑ pc (see, e.g., [18]).

The way χp diverges is intriguing, as it shows power-law behavior as (pc − p)−γ with

the critical exponent γ. It is considered to be universal in the sense that the value of γ

depends only on d and is insensitive to λ ∈ (0, 1] and the details of the lattice structure.

For example, the value of γ for strictly SAW on Z2 is believed to be 43/32 and equal to that

for weakly SAW on the 2-dimensional triangular lattice. This is not the case for the critical

point pc, as its value may vary depending on λ ∈ (0, 1] and the detail lattice structure.

Other statistical-mechanical models that exhibit divergence of the susceptibility are also

characterized by the critical exponent γ, and many physicists as well as mathematicians

have been trying hard to identify the value of γ and classify the models into different

universality classes since the last century.

1.2. The mean-field theory for SAW

Because of the nonlocal self-avoidance constraint
∏

0≤s<t≤|ω|(1 − λδωs,ωt) in (1.1), SAW

does not enjoy the Markovian property, which holds only when λ = 0. If there is a way to

average out the self-avoidance effect and absorb it into the fugacity p, then Gp(x) may be

approximated by the RW Green function Sµ(x) with a mean-field fugacity µ = µ(Zd, λ, p),
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and therefore χp may be approximated by
∑

x Sµ(x) = (1 − µ)−1. Thus, µ(pc) = 1. If µ

is left-differentiable at pc, then this implies χp � (pc− p)−1 (i.e., χp is bounded above and

below by positive multiples of (pc − p)−1) as p ↑ pc. In this respect, the mean-field value

for the critical exponent γ is 1.

However, realizing the above idea is highly nontrivial. As a first step, one may want

to use perturbation theory from the mean-field model (i.e., λ = 0). The expansion of the

self-avoidance constraint in powers of λ > 0 yields

(1.2)
∏

0≤s<t≤|ω|

(1− λδωs,ωt) =
∑

Γ∈G[0,|ω|]

(−λ)|Γ|
∏
{s,t}∈Γ

δωs,ωt ,

where Γ, which is called a graph, is a set of pairs of indices on [0, |ω|] ≡ {0, 1, . . . , |ω|},
G[0, |ω|] is a set of such graphs, and |Γ| is the cardinality of Γ. The trivial contribution

from Γ ≡ ∅ is the unperturbed solution Sp(x), which is already bad because its radius of

convergence is 1, while pc ≥ 1. The first correction term proportional to λ is

−λ
∑

ω : o→x
p|ω|

|ω|∏
j=1

D(ωj − ωj−1)
∑

0≤s<t≤|ω|

δωs,ωt = −λ(Sp(o)− 1)S∗2p (x).

The higher-order correction terms are more involved, but the radius of convergence of each

term is always p = 1. What is worse, the alternating series of those terms is absolutely

convergent only when p is close to zero, because the sum over Γ ∈ G[0, |ω|] is potentially

huge as long as λ > 0. As a result, this naive expansion cannot be applied near pc in order

to justify the mean-field behavior.

1.3. The infrared bound

For SAW, instead of deriving the exact solution for χp, one may seek bounds on χp or its

derivative. Indeed, it is not so difficult to show that (see, e.g., [18])

χ2
p

1 + λp2
cG
∗2
pc (o)

≤ d(pχp)

dp
≤ χ2

p.

It can be shown that the second inequality implies that χp is always bounded below by

(1 − p/pc)
−1. Moreover, the first inequality implies that χp is also bounded above by a

multiple of (1− p/pc)
−1, hence γ = 1, if

G∗2pc (o) = lim
p↑pc

∫
Td
Ĝp(k)2 ddk

(2π)d
<∞,

where Ĝp(k) is the Fourier transform of the SAW two-point function and Td ≡ [−π, π]d is

the d-dimensional torus of side length 2π in the Fourier space. It is a sufficient condition
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for the mean-field behavior for χp and is called the bubble condition, named after the shape

of the diagram consisting of two line segments. Whether or not the bubble condition holds

depends on the behavior of Ĝp(k) in the infrared regime (i.e., around k = 0).

For percolation, there is a similar condition to the bubble condition under which γ

and other critical exponents take on their mean-field values. It is the cubic integrability of

Ĝp(k) and is called the triangle condition [3]. Again, whether or not the triangle condition

holds depends on the infrared behavior of Ĝp(k).

Usually, there is no a priori bound on Ĝp(k). However, for some spin models with a

strong symmetry condition called reflection positivity (e.g., the ferromagnetic Ising model

with symmetric nearest-neighbor couplings satisfies this condition), the two-point function

enjoys the following infrared bound [12]: for any d > 2, there is a constant K < ∞ such

that

(1.3) ‖(1− D̂)Ĝp‖∞ ≡ sup
k∈Td

(
1− D̂(k)

)
|Ĝp(k)| ≤ K uniformly in p close to pc.

If D is a symmetric, non-degenerate and finite-range distribution with variance σ2, then

1 − D̂(k) ∼ σ2

2d |k|2 as |k| → 0. Suppose that the infrared bound holds for SAW and

percolation. Then

G∗npc (o) ≤
∫
Td

(
K

1− D̂(k)

)n
ddk

(2π)d
�
∫
Td

ddk

|k|2n ,

which implies that the bubble condition holds in all dimensions d > 4 and the triangle

condition holds in all dimensions d > 6.

On the other hand, there is some evidence (from hyperscaling inequalities, numerical

simulations, conformal field theory and so on) to suggest that the critical exponents (if

they exist) cannot take on their mean-field values simultaneously if d < 4 for SAW and

d < 6 for percolation. In this respect, the critical dimension dc is said to be 4 for SAW

and 6 for percolation.

To complete the mean-field picture in high dimensions, it thus remains to show that

the infrared bound (1.3) holds for all dimensions d > dc. Here, the lace expansion comes

into play.

1.4. The lace expansion

In 1985, Brydges and Spencer [6] came up with a fascinating idea. First, they looked at

the naive expansion (1.2). Next, from each Γ ∈ G[0, |ω|], they isolated a connected graph

Γ0 ⊂ Γ of the origin. Then, they extracted a minimally connected graph L ⊂ Γ0 called

a lace, and resummed all the other edges in Γ \ L to partially restore the self-avoidance

constraint. This is what we nowadays call the algebraic lace expansion, named after the
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shape of the aforesaid minimally connected graph. Since then, the algebraic lace expansion

has been successfully applied to other models, such as oriented percolation [20], lattice

trees and lattice animals [14].

Later in 1990s, Hara and Slade (e.g., [16]) came up with a more intuitive derivation

of the lace expansion. To distinguish it from the algebraic lace expansion, we sometimes

call it the inclusion-exclusion lace expansion. This opened up the possibility of applying

the lace expansion to a wider class of models, including (unoriented) percolation [15], the

contact process [21], the Ising model [22] and the (one-component) ϕ4 model [23].

From now on, we simply call the latter the lace expansion. We will show its derivation

for strictly SAW in Section 4.1 and for percolation in Section 5.1.

The result of the lace expansion is formally explained by the following recursion equa-

tion similar to that for the RW Green function: for any p < pc, there are functions Ip and

Jp such that

Gp(x) = Ip(x) + (Jp ∗Gp)(x).

If Ip and Jp satisfy certain regularity conditions, then it is natural to believe that the

global behavior of Gp is also similar to that of the RW Green function and therefore the

infrared bound (1.3) holds.

However, since Ip and Jp are described by an alternating series of the lace-expansion

coefficients {π(n)
p }∞n=0, each of which involves complicated local interaction (n represents

the degree of complexity), it is certainly not true that the aforesaid regularity conditions

always hold. In fact, the regularity conditions require the critical bubble (D∗2∗G∗2pc )(o) for

SAW and the critical triangle (D∗2 ∗G∗3pc )(o) for percolation to be small, not to be merely

finite. This seemingly tautological statement (i.e., the critical bubble/triangle have to be

small in order to prove them to be finite) is taken care of by the so-called bootstrapping

argument, which will be explained later in this survey.

During the course of the bootstrapping argument, we often assume that the number

of neighbors per vertex is sufficiently large. Since each vertex has 2d neighbors on Zd,
it means that d is assumed to be large. For SAW, Hara and Slade [16, 17] succeeded in

showing that d ≥ 5 is large enough to prove mean-field results. For percolation, however,

the situation is not as good as for SAW. The best results so far were obtained by Fitzner

and van der Hofstad [11], in which they proved mean-field results for d ≥ 11 by using

NoBLE, a perturbation method from non-backtracking random walk (= memory-2 SAW).

There is another way to increase the number of neighbors per vertex. Instead of taking

d large, we may enlarge the range L of neighbors. One such example is the spread-out

lattice ZdL, in which two distinct vertices x, y ∈ Zd satisfying ‖x − y‖∞ ≤ L are defined

to be neighbors, hence (2L+ 1)d − 1 neighbors per vertex. By taking L sufficiently large,

all the models for which the lace expansion was obtained are proven to exhibit mean-field
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behavior for all d above the predicted upper-critical dimensions [14,15,18,20–23].

1.5. The purposes of this survey

Since we believe in universality, the mean-field results on the spread-out lattice ZdL, as

long as L < ∞, are believed to hold on Zd as well. This is proven to be true for SAW,

but not yet for percolation. We want to get rid of the artificial parameter L and come

up to a decent nearest-neighbor lattice, on which 7-dimensional percolation is proven to

exhibit the mean-field behavior. In an ongoing project with Lung-Chi Chen and Markus

Heydenreich [7], we analyze the lace expansion for percolation on a d-dimensional version

of the body-centered cubic (BCC) lattice, which has better features than the standard Zd,
as explained in the next section. Thanks to those features, enumeration of RW quantities

relevant to the lace-expansion analysis becomes extremely simple. Also, since those RW

quantities are much smaller1 than the Zd-counterparts, it is easy to get closer to the

predicted upper-critical dimension without introducing too much technical complexity.

One of the purposes of this survey is to explain the current status of the BCC work and

reveal the potential problems to overcome for completion of the mean-field picture in high

dimensions.

Another purpose of this survey is to provide a relatively short, self-contained note

on the lace expansion for the nearest-neighbor models. Currently, the best references on

Zd are [16, 17] for SAW and [10, 11] for percolation. However, they are not necessarily

accessible to beginners, due to their length (36 + 93 pages for SAW and 79 + 92 pages

for percolation) and complexity. This is really unfortunate because, as mentioned earlier,

the lace expansion can provide a good playground for, e.g., graduate students who may

want to apply mathematical concepts and skills they learned to interesting and important

problems. Considering this situation, we will keep the material as simple as possible,

instead of making all-out efforts to go down to the predicted upper-critical dimensions.

That will be the final goal of [7].

2. The models and the main result

First, we provide precise definitions of the BCC lattice, self-avoiding walk and percolation.

Then, we show the main result and explain its proof assuming key propositions.

1A d-dimensional version of the face-centered cubic (FCC) lattice has d2d−1 neighbors per vertex, more

neighbors than on the BCC lattice, and therefore the RW quantities should be much smaller on the FCC

lattice. However, since enumeration of those quantities on the FCC lattice is not so simple (in fact, it is

rather complicated!), we decided to use the more charming BCC lattice.
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2.1. The body-centered cubic (BCC) lattice

The d-dimensional BCC lattice Ld is a graph that contains the origin o = (0, . . . , 0) and

is generated by the set of neighbors
{
x = (x1, . . . , xd) ∈ Zd :

∏d
j=1 |xj | = 1

}
. It is

equivalent to Zd when d = 1 and 2 (modulo rotation by π/4) but is more crowded in

higher dimensions in the sense that the degree of each vertex is 2d on Ld, while it is 2d

on Zd. We write x ∼ y if x, y ∈ Ld are neighbors, i.e.,
∏d
j=1 |xj − yj | = 1. It is a natural

extension of the standard 3-dimensional BCC structure (see Figure 2.1).

Figure 2.1: The basic structure (in red) of the BCC lattice Ld for d = 2, 3.

The d-dimensional Brownian motion with the identity covariance matrix can be con-

structed as the scaling limit of random walk (RW) on Ld generated by the 1-step distri-

bution

D(x) =
1

2d
1{x∼o} =

d∏
j=1

1

2
δ|xj |,1.

Due to this factorization and Stirling’s formula2, we can obtain a rather sharp bound on

the 2n-step return probability for all n ∈ N, as

(2.1) 0 ≤ (πn)−d/2 −D∗2n(o) ≤
(

1− ed
(

1
24n+1

− 1
6n

))
(πn)−d/2 ≤ 2d

15n
(πn)−d/2.

Using this, we can easily estimate various RW quantities, such as the RW loop ε1, the RW

bubble ε2 and the RW triangle ε3, defined as

(2.2) εj = (D∗2 ∗ S∗j1 )(o) =

∞∑
n=1

D∗2n(o)×


1 [j = 1],

(2n− 1) [j = 2],

(2n− 1)n [j = 3].

For example, if we split the sum into two at n = N , then the RW bubble ε2 in dimensions

2The two-sided bound 1
12n+1

≤ log n!√
2πn(n/e)n

≤ 1
12n

holds for all n ∈ N [9, Section II.9].
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d > 4 can be estimated as

0 ≤ ε2 −
N∑
n=1

(2n− 1)D∗2n(o) ≤ 2π−d/2
∫ ∞
N

t1−d/2 dt =
4π−d/2

d− 4
N (4−d)/2.

If we choose d = 5 and N = 100 and use a calculator to evaluate the sum over n ≤ N ,

then we obtain ε2 ≤ 0.178465. Table 2.1 summarizes the bounds on those RW quantities

in different dimensions by choosing N = 500 (so that, by (2.1), we can show that the RW

triangle ε3 for d = 7 takes a value around the indicated number within 10−6).

d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

ε1 0.393216 0.118637 0.046826 0.020461 0.009406 0.004451 0.002144

ε2 ∞ ∞ 0.178332 0.044004 0.015302 0.006156 0.002678

ε3 ∞ ∞ ∞ ∞ 0.052689 0.012354 0.004148

Table 2.1: Upper bounds on the RW loop, bubble and triangle for 3 ≤ d ≤ 9.

2.2. Self-avoiding walk

As declared at the end of Section 1, we restrict our attention to strictly SAW, which we

simply call SAW from now on. Let Ω(x, y) be the set of self-avoiding paths on Ld from x

to y. By convention, Ω(x, x) is considered to be a singleton: a zero-step SAW at x. Then,

the SAW two-point function defined in the previous section can be simplified as

(2.3) Gp(x) =
∑

ω∈Ω(o,x)

p|ω|
|ω|∏
j=1

D(ωj − ωj−1),

where the empty product is regarded as 1. Recall that the susceptibility and its critical

point are defined as

(2.4) χp =
∑
x∈Ld

Gp(x), pc = sup{p ≥ 0 : χp <∞}.

For more background and related results before 1993, we refer to the “green” book by

Madras and Slade [18]. For recent progress in various important problems, we refer to the

monograph by Bauerschmidt et al. [4].

2.3. Percolation

Here, we introduce bond percolation on Ld. Each bond {u, v} ⊂ Ld randomly takes

either one of the two states, occupied or vacant, independently of the other bonds. We
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define the bond-occupation probability of a bond {u, v} as pD(v − u), where p ∈ [0, 2d] is

the percolation parameter, which is equal to the expected number of occupied bonds per

vertex. Let Pp be the associated probability measure, and denote its expectation by Ep.
Next, we define the percolation two-point function. In order to do so, we first introduce

the notion of connectivity. We say that a self-avoiding path ω = (ω0, . . . , ω|ω|) ∈ Ω(x, y) is

occupied if either x = y or every bj(ω) ≡ {ωj−1, ωj} for j = 1, . . . , |ω| is occupied. We say

that x is connected to y, denoted by x ←→ y, if there is an occupied self-avoiding path

ω ∈ Ω(x, y). Then, we define the percolation two-point function as

(2.5) Gp(x) = Pp(o←→ x) = Pp
( ⋃
ω∈Ω(o,x)

{ω is occupied}
)
.

The susceptibility χp and its critical point pc are defined as in (2.4). Menshikov [19] and

Aizenman and Barsky [1] independently proved that pc is unique in the sense that it can

also be characterized by the emergence of an infinite cluster of the origin:

pc = inf{p ∈ [0, 2d] : Pp(o←→∞) > 0}.

Recently, Duminil-Copin and Tassion [8] found a particularly simple proof of the unique-

ness. They also extended the idea to the Ising model and dramatically simplified the

proof of the uniqueness of the critical temperature, first proven by Aizenman, Barsky and

Fernández [2].

For more background and related results before 1999, we refer to the excellent book

by Grimmett [13]. The book by Bollobás and Riordan [5] also contains progress after the

publication of Grimmett’s book.

2.4. The main result

On the BCC lattice Ld, we can prove the following result without introducing too much

technical complexity.

Theorem 2.1 (Infrared bound). For SAW on Ld≥6 and percolation on Ld≥9, there exists

a model-dependent constant K ∈ (0,∞) such that

‖(1− D̂)Ĝp‖∞ ≤ K uniformly in p ∈ [1, pc),

which implies the mean-field behavior, e.g., γ = 1.

In the proof of a key proposition necessary for the above theorem, we will also show

that χ1 <∞. This automatically implies the infrared bound for p ∈ [0, 1), since

‖(1− D̂)Ĝp‖∞ ≤ 2χ1 <∞.
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The above result for SAW is not as sharp as the result in [16, 17], where Hara and

Slade proved the infrared bound on Zd≥5. If we simply follow their analysis with the same

amount of work, then we should be able to extend the above result to Ld≥5. However,

as is mentioned earlier, this is not our intention. We include the result for SAW as an

example, just to show how easy it is to prove the infrared bound in such low dimensions

with relatively small effort. Going down from 9 to 7 for percolation will require more

serious effort. This will be the pursuit of the joint work [7].

The proof of the above theorem is rather straightforward, assuming the following three

propositions. To state those propositions, we first define

(2.6) g1(p) = p, g2(p) = ‖(1− D̂)Ĝp‖∞.

Obviously, what we want to do is to show that g2(p) is bounded uniformly in p ∈ [1, pc).

To define one more relevant function g3(p), we introduce the notation for a sort of second

derivative in the Fourier space, in a particular direction. For a function f̂ on Td and

k, l ∈ Td, we let

∆̂kf̂(l) =
f̂(l + k) + f̂(l − k)

2
− f̂(l).

By a simple trigonometric calculation, it is shown in [24, (5.17)]3 that the Fourier transform

of the RW Green function Ŝ1(k) ≡ (1 − D̂(k))−1, which is well-defined in a proper limit

when d > 2, obeys the inequality

|∆̂kŜ1(l)| ≤ Û(k, l)

≡ (1− D̂(k))

(
Ŝ1(l + k) + Ŝ1(l − k)

2
Ŝ1(l) + 4Ŝ1(l + k)Ŝ1(l − k)

)
.

(2.8)

Finally, we define

(2.9) g3(p) = sup
k,l

1

Û(k, l)
×

|∆̂kĜp(l)| [SAW],

|∆̂k(Ĝp(l)pD̂(l))| [percolation],

where the supremum near k = 0 should be interpreted as the supremum over the limit

as |k| → 0. It will be clear that g3 is defined in slightly different ways between the two

models, due to the difference in the recursion equations obtained by the lace expansion.

3It is shown in [24, Lemma 5.7] that a function Â(k) = (1− â(k))−1, where â is the Fourier transform of

a symmetric function a(x) = a(−x) for all x ∈ Zd, satisfies the identity

∆̂kÂ(l) =
Â(l + k) + Â(l − k)

2
Â(l)∆̂kâ(l)

+ Â(l + k)Â(l − k)Â(l)

(∑
x

a(x)(sin l · x)(sin k · x)

)2

.

(2.7)

The inequality (2.8) is obtained by applying the Schwarz inequality to the sum in the above expression.
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Now, we state the aforementioned three propositions and show that they indeed imply

Theorem 2.1.

Proposition 2.2 (Continuity). The functions {gi(p)}3i=1 are continuous in p ∈ [1, pc).

Proposition 2.3 (Initial conditions). For SAW on Ld≥6 and percolation on Ld≥8, there

are model-dependent finite constants {Ki}3i=1 such that gi(1) < Ki for i = 1, 2, 3.

Proposition 2.4 (Bootstrapping argument). For SAW on Ld≥6 and percolation on Ld≥9,

we fix p ∈ (1, pc) and assume gi(p) ≤ Ki, i = 1, 2, 3, where {Ki}3i=1 are the same constants

as in Proposition 2.3. Then, the stronger inequalities gi(p) < Ki, i = 1, 2, 3, hold.

Proof of Theorem 2.1 assuming Propositions 2.2–2.4. Since g2(p) is continuous in p ∈ [1, pc),

with the initial value g2(1) < K2, and cannot be equal to K2 for p ∈ (1, pc ∧K1), we can

say that the strict inequality g2(p) < K2 holds for all p ∈ [1, pc ∧ K1). Since the same

argument applies to g1(p), we can conclude pc ≤ K1, hence g2(p) < K2 for all p ∈ [1, pc)

(see Figure 2.2).

g2(p)

K2

0 1 pc K1 p

Figure 2.2: Depiction of the proof of Theorem 2.1 assuming Propositions 2.2–2.4.

This completes the proof.

2.5. Where and how to use the lace expansion

It remains to prove Propositions 2.2–2.4. The proof of Proposition 2.2 is elementary,

though cumbersome for g3(p), and is explained in the next section. To prove the other

two propositions, we will use the following lace expansion.

Proposition 2.5 (Lace expansion). For any p < pc and N ∈ Z+ ≡ {0} ∪ N, there exist

model-dependent nonnegative functions {π(n)
p }Nn=0 on Ld (π

(0)
p ≡ 0 for SAW) such that, if
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we define I
(N)
p and J

(N)
p as

I(N)
p (x) = δo,x +

0 [SAW],∑N
n=0(−1)nπ

(n)
p (x) [percolation],

J (N)
p (x) = pD(x) +


∑N

n=1(−1)nπ
(n)
p (x) [SAW],∑N

n=0(−1)n(π
(n)
p ∗ pD)(x) [percolation],

then we obtain the recursion equation

(2.10) Gp(x) = I(N)
p (x) + (J (N)

p ∗Gp)(x) + (−1)N+1R(N+1)
p (x),

where the remainder R
(N)
p obeys the bound

0 ≤ R(N)
p (x) ≤ (π(N)

p ∗Gp)(x).

The derivation of the lace expansion is model-dependent and is explained for SAW in

Section 4.1 and for percolation in Section 5.1.

Here, we briefly explain where and how to use the lace expansion to prove Proposi-

tions 2.3 and 2.4. The details will be given in later sections.

Step 1. First, we bound {gi(p)}3i=1 in terms of sums of π̂
(n)
p (k) ≡∑x e

ik·xπ
(n)
p (x).

(i) Let p ∈ [1, pc) and suppose
∑∞

n=0 π̂
(n)
p (0) is small enough to ensure that

lim
N→∞

π̂(N)
p (0) = 0, Îp(k) ≡ lim

N→∞
Î(N)
p (k) > 0 uniformly in p and k.

The latter is always true for SAW since Îp(k) ≡ 1. The former implies that

0 ≤
∑
x∈Ld

R(N)
p (x) ≤ π̂(N)

p (0)χp −−−−→
N→∞

0.

Let (n.b. π
(0)
p ≡ 0 for SAW)

Π̂p(k) =
∞∑
n=0

(−1)nπ̂(n)
p (k), Ĵp(k) = pD̂(k) +

Π̂p(k) [SAW],

Π̂p(k)pD̂(k) [percolation].

Then, by using (2.10), we obtain

(2.11) χp ≡ Ĝp(0) = Îp(0) + Ĵp(0)χp =
Îp(0)

1− Ĵp(0)
.

Since χp ≥ 0 and Îp(0) > 0, we can conclude Ĵp(0) ≤ 1, which implies

(2.12) g1(p) ≤

1− Π̂p(0) [SAW],

(1 + Π̂p(0))−1 [percolation].
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(ii) Next, by (2.10) and (2.11), we obtain

(2.13) Ĝp(k) =
Îp(k)

1− Ĵp(k)
=

Îp(k)

−∆̂kĴp(0) + Îp(0)/χp
,

where we have used the symmetry Ĵp(k) = Ĵp(−k) to obtain −∆̂kĴp(0) = Ĵp(0) − Ĵp(k).

Suppose −∑∞n=0 ∆̂kπ̂
(n)
p (0) ≡∑∞n=0

∑
x(1 − cos k · x)π

(n)
p (x) is smaller than 1 − D̂(k) in

order to ensure −∆̂kĴp(0) ≥ 0. Then, Ĝp(k) is bounded as4

0 ≤ Ĝp(k) ≤ Îp(k)

−∆̂kĴp(0)
.

Since p ≥ 1, this implies

(2.14) g2(p) ≤


sup
k

(
1 +
−∆̂kΠ̂p(0)

1− D̂(k)

)−1

[SAW],

sup
k

(
1 +

1

Îp(k)

−∆̂kΠ̂p(0)

1− D̂(k)

)−1

[percolation],

where the supremum near k = 0 should be interpreted as the supremum over the limit as

|k| → 0.

(iii) To evaluate g3(p), we want to use the identity (2.7). To do so for percolation, we

first notice that, by using Îp(k)pD̂(k) = Ĵp(k) and (2.13), we obtain

Ĝp(k)pD̂(k) =
Ĵp(k)

1− Ĵp(k)
=

1

1− Ĵp(k)
− 1 ≡ Âp(k)− 1,

hence ∆̂k(Ĝp(l)pD̂(l)) = ∆̂kÂp(l). As a result, g3(p) for both models can be written as

g3(p) = sup
k,l

|∆̂kÂp(l)|
Û(k, l)

.

4For percolation, the non-negativity of Ĝp(k) is elementary and proven in [3, Lemma 3.3]. The actual

proof goes as follows. First, by translation-invariance, we can use any vertex y to rewrite Ĝp(k) as

Ĝp(k) =
∑
x

eik·xPp(o←→ x) =
∑
x

eik·xPp(y ←→ x+ y) = Ep

[∑
z

eik·(z−y)1{y←→z}

]
.

Then, by using the identity 1 =
∑
y 1{y∈C(o)}/|C(o)|, where C(o) is the set of vertices connected from o,

we can rewrite the rightmost expression as

Ep

 1

|C(o)|
∑
y∈C(o)

∑
z

eik·(z−y)1{y←→z}

 = Ep

 1

|C(o)|
∑

y,z∈C(o)

eik·(z−y)

 = Ep

∣∣∣∣∣∣ 1√
|C(o)|

∑
z∈C(o)

eik·z

∣∣∣∣∣∣
2 ≥ 0.
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Then, by using (2.7) with a(x) = Jp(x), noting Âp(k) = (−∆̂kĴp(0) + Îp(0)/χp)
−1 ≥ 0

and applying the Schwarz inequality as in [24, Lemma 5.7], we obtain

g3(p) ≤ sup
k,l

1− D̂(k)

Û(k, l)

(
Âp(l + k) + Âp(l − k)

2
Âp(l)

|∆̂kĴp(l)|
1− D̂(k)

+ 4Âp(l + k)Âp(l − k)
−∆̂l |̂Jp|(0)

1− Ĵp(l)
−∆̂k |̂Jp|(0)

1− D̂(k)

)
,

(2.15)

where

|̂Jp|(k) =
∑
x∈Ld

eik·x|Jp(x)|.

We can further bound |∆̂kĴp(l)| and −∆̂k |̂Jp|(0) ≡ |̂Jp|(0)− |̂Jp|(k) ≥ 0 in terms of sums

of |∆̂kπ̂
(n)
p (0)|. However, to simplify the exposition, we refrain from doing so for now and

postpone it to later sections.

So far, we have assumed that
∑∞

n=0 π̂
(n)
p (0) and −∑∞n=0 ∆̂kπ̂

(n)
p (0) are small enough

to carry out the above computations. Sufficient conditions to this assumption are

(2.16)

∞∑
n=1

π̂(n)
p (0) <∞, sup

k

∞∑
n=1

−∆̂kπ̂
(n)
p (0)

1− D̂(k)
< 1

for SAW, and

(2.17)
∞∑
n=0

π̂(n)
p (0) + sup

k

∞∑
n=0

−∆̂kπ̂
(n)
p (0)

1− D̂(k)
< 1

for percolation (cf., (5.49)). These conditions are to be verified eventually.

Step 2. As shown in (2.12), (2.14) and (2.15), the bootstrapping functions {gi(p)}3i=1 are

bounded in terms of sums of π̂
(n)
p (0) and sums of |∆̂kπ̂

(n)
p (0)|. In the second step, we

bound those lace-expansion coefficients in terms of smaller quantities, such as

(2.18) Lp = ‖(pD)∗2 ∗Gp‖∞, Bp = ‖(pD)∗2 ∗G∗2p ‖∞, Tp = ‖(pD)∗2 ∗G∗3p ‖∞.

For example, we can bound π̂
(n)
p for n ≥ 2 as

0 ≤ π̂(n)
p (0) ≤

Bp(p‖D‖∞ + Lp)r
n−2 [SAW],

(1 + 1
2Bp + Tp)

2rρn−1 [percolation],

where

(2.19) r = p‖D‖∞ + Lp +Bp, ρ =

(
1 +

1

2
Bp + Tp

)
(r + Tp) + Tp(2r + Tp).

See Sections 4 and 5 for the proof of the above inequality and the bounds on π̂
(0)
p (0) and

π̂
(1)
p (0). It will also be shown that the amplitude of |∆̂kπ̂

(n)
p (0)|/(1 − D̂(k)) is bounded



Lace Expansion on BCC Lattice 737

in a similar fashion, with the common ratio r for SAW and ρ for percolation. Therefore,

the assumptions made in Step 1 hold if Lp, Bp, Tp and other quantities in the bounds are

small enough.

Step 3. In the final step, we investigate the aforesaid diagrams and prove that, by choosing

appropriate values for {Ki}3i=1, those diagrams are indeed small enough for SAW on Ld≥6

and for percolation on Ld≥9.

(i) For p = 1, we only need to use the trivial inequality G1(x) ≤ S1(x), x ∈ Ld, for

both models to obtain that, for d > 2 (as mentioned earlier, Ŝ1(k) ≡ (1 − D̂(k))−1 is

well-defined in a proper limit when d > 2),

(2.20) L1 ≤ ‖D∗2 ∗ S1‖∞ =

∫
Td

D̂(k)2

1− D̂(k)

ddk

(2π)d
= (D∗2 ∗ S1)(o) ≡ ε1.

Similarly, we obtain

(2.21) B1 ≤ ε2, T1 ≤ ε3.

Consulting with Table 2.1 in Section 2.1, we can see that, even in dc +1 dimensions, r and

ρ in (2.19) are small enough for the bootstrapping functions {gi(p)}3i=1 to be convergent.

(ii) The strategy for p ∈ (1, pc) is different from that for p = 1, because there is no a

priori bound on Gp in terms of S1. Here, we use the assumptions gi(p) ≤ Ki, i = 1, 2, 3,

to evaluate the diagrams. For example,

(2.22) Lp ≤ p2

∫
Td
D̂(k)2|Ĝp(k)| ddk

(2π)d
≤ K2

1K2

∫
Td

D̂(k)2

1− D̂(k)

ddk

(2π)d︸ ︷︷ ︸
=ε1

.

Similarly,

(2.23) Bp ≤ K2
1K

2
2ε2, Tp ≤ K2

1K
3
2ε3.

As a result, r and ρ in (2.19) become functions of {Ki}i=1,2. If we choose their values

appropriately, then we can derive the improved bound g1(p) < K1 for all d ≥ dc + 1. To

improve the bounds on {gi(p)}i=2,3, we also have to control K3. This is the worst enemy

that keeps us from going down to dc + 1 dimensions. In [7], we will make all-out efforts

to overcome this problem.

2.6. Organization

In the rest of this survey, we prove the above propositions in detail. In Section 3, we prove

Proposition 2.2 for both models.
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In Section 4, we prove Propositions 2.3–2.5 for SAW as follows. In Section 4.1, we

explain the derivation of the lace expansion (see Proposition 2.5) for SAW. In Section 4.2,

we prove bounds on the lace-expansion coefficients in terms of basic diagrams, as briefly

explained in Step 2 in Section 2.5. In Section 4.4, we prove bounds on those basic diagrams

in terms of RW quantities, as explained in Step 3 in Section 2.5. Applying them to

the bounds on the bootstrapping functions {gi(p)}3i=1 obtained in Step 1 in Section 2.5,

we prove Propositions 2.3 and 2.4 on Ld≥6. Finally, in Section 4.5, we provide further

discussion to potentially improve our results.

In Section 5, we prove Propositions 2.3–2.5 for percolation as follows. In Section 5.1,

we derive the lace expansion (see Proposition 2.5) for percolation. In Section 5.2, we prove

bounds on the lace-expansion coefficients in terms of basic diagrams, as briefly explained

in Step 2 in Section 2.5. In Section 5.4, we prove bounds on those basic diagrams in terms

of RW quantities, as explained in Step 3 in Section 2.5. Applying them to the bounds

on the bootstrapping functions {gi(p)}3i=1 obtained in Step 1 in Section 2.5, we prove

Proposition 2.3 on Ld≥8 and Proposition 2.4 on Ld≥9. In Section 5.5, we provide further

discussion to potentially improve our results.

3. Continuity of the bootstrapping functions

In this section, we prove Proposition 2.2. First, we recall (2.6) and (2.9) for the boot-

strapping functions {gi(p)}3i=1. Obviously, g1(p) ≡ p is continuous. To prove continuity of

the other two, we introduce

g̃2,k(p) = (1− D̂(k))Ĝp(k),

g̃3,k,l(p) =
1

Û(k, l)
×

∆̂kĜp(l) [SAW],

∆̂k(Ĝp(l)D̂(l)) [percolation],

and show that they are continuous in p ∈ [1, pc) for every k, l ∈ Td. However, since

g2(p) = sup
k∈Td
|g̃2,k(p)|, g3(p) = sup

k,l∈Td
|g̃3,k,l(p)|,

and the supremum of continuous functions is not necessarily continuous, we must be a bit

more cautious here. The following elementary lemma provides a sufficient condition for

the supremum to be continuous.

Lemma 3.1. (Lemma 5.13 of [24], in our language) Fix p0 ∈ [1, pc) and let {f̂k(p)}k∈Td
be an equicontinuous family of functions in p ∈ [1, p0]. Suppose that supk∈Td f̂k(p) < ∞
for every p ∈ [1, p0]. Then, supk∈Td f̂k(p) <∞ is continuous in p ∈ [1, p0].
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Therefore, in order to prove continuity of {gi(p)}i=2,3 in p ∈ [1, pc), we want to show

that {g̃2,k(p)}k∈Td and {g̃3,k,l(p)}k,l∈Td are equicontinuous families of functions in p ∈ [1, p0]

for each p0 ∈ [1, pc). To prove this, it then suffices to show that the following (i) and (ii)

hold.

(i) g̃2,k(p) and ∂pg̃2,k(p) are finite uniformly in k ∈ Td and p ∈ [1, p0].

(ii) g̃3,k,l(p) and ∂pg̃3,k,l(p) are finite uniformly in k, l ∈ Td and p ∈ [1, p0].

The proof of (i) is not so hard. By 0 ≤ 1−D̂(k) ≤ 2, |Ĝp(k)| ≤ χp and the monotonicity

of χp in p, we obtain |g̃2,k(p)| ≤ 2χp0 <∞ uniformly in k ∈ Td and p ∈ [1, p0]. Moreover,

by subadditivity for SAW, Russo’s formula and the BK inequality for percolation (see,

e.g., [13]), and then using translation-invariance, we obtain

(3.1) 0 ≤ ∂pGp(x) ≤ (D ∗G∗2p )(x),

hence

|∂pg̃2,k(p)| ≤ 2
∑
x

(D ∗G∗2p )(x) ≤ 2χ2
p0 <∞,

uniformly in k ∈ Td and p ∈ [1, p0], as required.

The proof of (ii) needs extra care, especially near k = 0, because of the factor 1− D̂(k)

in Û(k, l). From here, we prove (ii) for SAW and for percolation separately.

Proof of (ii) for SAW. First, by using the telescopic inequality in [10, Appendix A]5

(3.2) 0 ≤ 1− cos
J∑
j=1

tj ≤ J
J∑
j=1

(1− cos tj),

5Although (3.2) is a result of simple trigonometric computation, it is not so easy to come up to the actual

proof. The actual proof of [10, Appendix A] goes as follows. First, take the real part of the telescopic

identity 1− exp
(
i
∑J
j=1 tj

)
=
∑J
j=1(1− eitj ) exp

(
i
∑j−1
h=1 th

)
, where the empty sum for j = 1 is regarded

as zero. Then, use the inequalities
∣∣ sin∑j−1

h=1 th
∣∣ ≤∑j−1

h=1 | sin th|, | sin tj || sin th| ≤ (sin2 tj + sin2 th)/2 and

sin2 tj ≤ 2(1− cos tj) to obtain

1− cos

(
J∑
j=1

tj

)
−

J∑
j=1

(1− cos tj) = −
J∑
j=1

(1− cos tj)

(
1− cos

j−1∑
h=1

th

)
︸ ︷︷ ︸

≥0

+

J∑
j=1

(sin tj) sin

j−1∑
h=1

th

≤
J∑
j=1

j−1∑
h=1

sin2 tj + sin2 th
2

≤ (J − 1)

J∑
j=1

(1− cos tj),

which implies (3.2).
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we obtain

|∆̂kĜp(l)| ≤
∑
x

(1− cos k · x)Gp(x)

=
∑
x

∑
ω∈Ω(o,x)

1− cos

|ω|∑
i=1

k · (ωi − ωi−1)

 p|ω|
|ω|∏
j=1

D(ωj − ωj−1)

≤
∑
u,v,x

(
1− cos k · (v − u)

) ∑
ω∈Ω(o,x)

|ω|
|ω|∑
i=1

1{bi(ω)=(u,v)}p
|ω|
|ω|∏
j=1

D(ωj − ωj−1).

(3.3)

Ignoring the self-avoidance constraint between η ≡ (ω0, . . . , ωi−1) and ξ ≡ (ωi, . . . , ω|ω|)

and using translation-invariance, we can further bound |∆̂kĜp(l)| as

|∆̂kĜp(l)| ≤
∑
u,v,x

(
1− cos k · (v − u)

)
pD(v − u)

×
∑

η∈Ω(o,u)
ξ∈Ω(v,x)

(|η|+ |ξ|+ 1)p|η|
|η|∏
i=1

D(ηi − ηi−1) p|ξ|
|ξ|∏
j=1

D(ξj − ξj−1)

≤ 2p(1− D̂(k))χp
∑
x

∑
ω∈Ω(o,x)

(|ω|+ 1)p|ω|
|ω|∏
j=1

D(ωj − ωj−1).

However, by the identity |ω|+1 =
∑

y 1{y∈ω} for a self-avoiding path ω, subadditivity and

translation-invariance, the sum in the last line is bounded as

∑
x

∑
ω∈Ω(o,x)

(|ω|+ 1)p|ω|
|ω|∏
j=1

D(ωj − ωj−1) ≤
∑
x,y

Gp(y)Gp(x− y) = χ2
p.

As a result, we arrive at

(3.4) |∆̂kĜp(l)| ≤ 2p0(1− D̂(k))χ3
p0 ,

which implies that g̃3,k,l(p) is finite uniformly in k, l ∈ Td and p ∈ [1, p0].

For the derivative ∂pg̃3,k,l(p) ≡ Û(k, l)−1∆̂k∂pĜp(l), we note that

|∆̂k∂pĜp(l)|
(3.1)

≤
∑
x

(1− cos k · x)(D ∗G∗2p )(x)

(3.2)

≤ 3

(
(1− D̂(k))χ2

p + 2χp
∑
v

(1− cos k · v)Gp(v)︸ ︷︷ ︸
=∆̂kĜp(0)

)

(3.4)

≤ 3(1− D̂(k))χ2
p0(1 + 4p0χ

2
p0).

(3.5)

Therefore, ∂pg̃3,k,l(p) is also finite uniformly in k, l ∈ Td and p ∈ [1, p0].
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Proof of (ii) for percolation. First, we note that

|∆̂k(Ĝp(l)D̂(l))| ≤
∑
x

(1− cos k · x)(Gp ∗D)(x)
(3.2)

≤ 2
(
|∆̂kĜp(0)|+ χp(1− D̂(k))

)
,

and that

|∆̂k(∂pĜp(l)D̂(l))| ≤
∑
x

(1− cos k · x)(∂pGp ∗D)(x)

(3.1) & (3.2)

≤ 2
(
|∆̂k∂pĜp(0)|+ χ2

p(1− D̂(k))
)

(3.5)

≤ 2
(

6χp|∆̂kĜp(0)|+ 4χ2
p(1− D̂(k))

)
.

Therefore, to evaluate g̃3,k,l(p) and ∂pg̃3,k,l(p), it suffices to evaluate |∆̂kĜp(0)|.
To evaluate |∆̂kĜp(0)| by using (3.2), as we did for SAW, we first rewrite the expression

(2.5) for Gp(x). To do so, we introduce ordering among self-avoiding paths from o to x as

follows. For each vertex x, let B(x) be the set of bonds incident on x. Order the elements

in B(x) in an arbitrary but fixed manner. For a pair of bonds b, b′ ∈ B(x), we write b ≺ b′
if b is lower than b′ in that ordering. For a pair of self-avoiding paths ω, ω′ ∈ Ω(x, y),

we write ω ≺ ω′ if at the first time τ when ω becomes incompatible with ω′ (therefore

bj(ω) = bj(ω
′) for all j < τ) we have bτ (ω) ≺ bτ (ω′). We say that ω is occupied if all

b1(ω), . . . , b|ω|(ω) are occupied. Let Ex,y(ω) be the event that ω ∈ Ω(x, y) is the lowest

occupied path from x to y:

(3.6) Ex,y(ω) = {ω is occupied} \
⋃

ω′∈Ω(x,y)
(ω′≺ω)

{ω′ is occupied}.

Then, we can rewrite the expression (2.5) for Gp(x) as

Gp(x) =
∑

ω∈Ω(o,x)

Pp(Eo,x(ω)).

Similar to (3.3), we can bound |∆̂kĜp(0)| as

|∆̂kĜp(0)| ≤
∑
x

∑
ω∈Ω(o,x)

|ω|
|ω|∑
i=1

(1− cos k · (ωi − ωi−1))Pp(Eo,x(ω))

=
∑
u,v,x

(1− cos k · (v − u))
∑

ω∈Ω(o,x)

|ω|
|ω|∑
i=1

1{bi(ω)=(u,v)}Pp(Eo,x(ω)).
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Let η = (ω0, . . . , ωi) and ξ = (ωi, . . . , ω|ω|) and denote their concatenation in that order

by η ◦ ξ. Then, the above inequality is equivalent to

|∆̂kĜp(0)| ≤
∑
u,v,x

(1− cos k · (v − u))
∑

η∈Ω(o,v)

1{b|η|(η)=(u,v)}

×
∑

ξ∈Ω(v,x)
(η◦ξ∈Ω(o,x))

(|η|+ |ξ|)Pp(Eo,x(η ◦ ξ)).

Next, we rewrite Pp(Eo,x(η ◦ ξ)). To do so, we introduce a peculiar cluster of η as

follows. Given a vertex y and a bond b ∈ B(y), we define C≺b(y) to be the set of vertices

that are connected from y via an occupied bond b′ ∈ B(y) with b′ ≺ b; if there are no such

occupied bonds, then we define C≺b(y) = {y}. Given a self-avoiding path η, we let

C≺η =

|η|⋃
j=1

C≺bj(η)(ηj−1).

Notice that the terminal point η|η| is not in C≺η. Using this notation and recalling (3.6),

we can rewrite the event Eo,x(η ◦ ξ) for η ∈ Ω(o, v) and ξ ∈ Ω(v, x) with η ◦ ξ ∈ Ω(o, x) as

Eo,x(η ◦ ξ) = Eo,v(η) ∩ {Ev,x(ξ) occurs on Ld \ C≺η}.

For a V ⊂ Ld, we let PVp be the percolation measure defined by making all bonds b with

b ∩ (Ld \ V ) 6= ∅ vacant. Then, we obtain

Pp(Eo,x(η ◦ ξ)) = Ep
[
1Eo,v(η)P

Ld\C≺η
p (Ev,x(ξ))

]
,

hence

|∆̂kĜp(0)| ≤
∑
u,v,x

(1− cos k · (v − u))
∑

η∈Ω(o,v)

1{b|η|(η)=(u,v)}

×
(
|η|Ep

[
1Eo,v(η)

∑
ξ∈Ω(v,x)

(η◦ξ∈Ω(o,x))

PLd\C≺η
p (Ev,x(ξ))

]

+ Ep
[
1Eo,v(η)

∑
ξ∈Ω(v,x)

(η◦ξ∈Ω(o,x))

|ξ|PLd\C≺η
p (Ev,x(ξ))

])
.

(3.7)

The contribution from the first expectation is evaluated as follows. First, we note that

the sum over ξ can be replaced by the sum over ξ ∈ Ω(v, x) that are restricted in Ld \C≺η,
or PLd\C≺η

p (Ev,x(ξ)) = 0 otherwise. Then, the resulting sum equals the restricted two-point
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function on Ld \ C≺η and is bounded by the full two-point function Gp(x− v). Therefore,∑
η∈Ω(o,v)

1{b|η|(η)=(u,v)}|η|Ep
[
1Eo,v(η)

∑
ξ∈Ω(v,x)

(η◦ξ∈Ω(o,x))

PLd\C≺η
p (Ev,x(ξ))

]

≤
∑

η∈Ω(o,v)

1{b|η|(η)=(u,v)}|η|Pp(Eo,v(η))Gp(x− v).

(3.8)

We apply the same analysis to η = ζ ◦ (u, v), where ζ = (η0, . . . , η|η|−1), and obtain

(3.8) ≤ pD(v − u)Gp(x− v)
∑

ζ∈Ω(o,u)

(|ζ|+ 1)Pp(Eo,u(ζ))

= pD(v − u)Gp(x− v)
∑
y

∑
ζ′∈Ω(o,y)
ζ′′∈Ω(y,u)

(ζ′◦ζ′′∈Ω(o,u))

Pp(Eo,u(ζ ′ ◦ ζ ′′)),(3.9)

where the equality is due to the identity |ζ|+ 1 =
∑

y 1{y∈ζ}. Again, by the same analysis

as discussed above, we finally obtain

(3.10) (3.9) ≤ G∗2p (u)pD(v − u)Gp(x− v).

The contribution from the second expectation in (3.7) can be evaluated in a similar

way, and the result is∑
η∈Ω(o,v)

1{b|η|(η)=(u,v)}Ep
[
1Eo,v(η)

∑
ξ∈Ω(v,x)

(η◦ξ∈Ω(o,x))

|ξ|PLd\C≺η
p (Ev,x(ξ))

]

≤ Gp(u)pD(v − u)G∗2p (x− v).

(3.11)

Substituting (3.10) and (3.11) back into (3.7), we obtain the same bound as (3.4):

|∆̂kĜp(0)| ≤ 2p0(1− D̂(k))χ3
p0 ,

which implies finiteness of g̃3,k,l(p) and ∂pg̃3,k,l(p) uniformly in k, l ∈ Td and p ∈ [1, p0], as

required. This completes the proof of Proposition 2.2.

4. Lace-expansion analysis for self-avoiding walk

In this section, we prove Propositions 2.3–2.5 for SAW. First, in Section 4.1, we explain

the derivation of the lace expansion, Proposition 2.5, for SAW. In Section 4.2, we prove

bounds on the lace-expansion coefficients in terms of basic diagrams, such as Lp and Bp.

Finally, in Section 4.4, we prove bounds on those basic diagrams in terms of RW loops and

RW bubbles and use them to prove Propositions 2.3 and 2.4 on Ld≥6. We close this section

by addressing potential elements for extending the result to 5 dimensions, in Section 4.5.
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4.1. Derivation of the lace expansion

Proposition 2.5 for SAW is restated as follows.

Proposition 4.1 (Lace expansion for SAW). For any p < pc and N ∈ N, there are

nonnegative functions {π(n)
p }Nn=1 on Ld such that, if we define Π

(N)
p as

Π(N)
p (x) =

N∑
n=1

(−1)nπ(n)
p (x),

then we obtain the recursion equation

(4.1) Gp(x) = δo,x + ((pD + Π(N)
p ) ∗Gp)(x) + (−1)N+1R(N+1)

p (x),

where the remainder R
(N)
p obeys the bound

(4.2) 0 ≤ R(N)
p (x) ≤ (π(N)

p ∗Gp)(x).

Sketch proof. First, we derive the first expansion, i.e., (4.1) for N = 1. For notational

convenience, we use

P (ω) = p|ω|
|ω|∏
j=1

D(ωj − ωj−1).

Then, by splitting the sum in (2.3) into two depending on whether |ω| is zero or positive,

we obtain

(4.3) Gp(x) = δo,x +
∑

ω∈Ω(o,x)
(|ω|≥1)

P (ω) = δo,x +
∑
y

pD(y)
∑

ω∈Ω(y,x)

P (ω)1{o/∈ω}.

This is depicted as

o x = δo,x + o x

where the rectangle next to the origin represents that there is a bond from o to a neigh-

boring vertex y, which is summed over Ld and unlabeled in the picture, and the dashed

two-sided arrow represents mutual avoidance between o and SAWs from y to x, which

corresponds to the indicator 1{o/∈ω} in (4.3). Using the identity 1{o/∈ω} = 1 − 1{o∈ω} due

to the inclusion-exclusion relation, we complete the first expansion as

Gp(x) = δo,x + o x− o x

︸ ︷︷ ︸
≡R(1)

p (x)

= δo,x + (pD ∗Gp)(x)−R(1)
p (x).
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Next, we expand the remainder R
(1)
p (x) to complete the first expansion. Splitting each

SAW from y (summed over Ld and unlabeled in the picture) to x through o into two

SAWs, ω1 ∈ Ω(y, o) and ω2 ∈ Ω(o, x) (in red), we can rewrite R
(1)
p (x) as

R(1)
p (x) = o x

where the dashed two-sided arrow implies that the concatenation of ω1 and ω2 in this

order, denoted ω1 ◦ω2, is SAW. Using the identity 1{ω1◦ω2 is SAW} = 1−1{ω1◦ω2 is not SAW},

we obtain

R(1)
p (x) = o x− o x

︸ ︷︷ ︸
≡R(2)

p (x)

=
∑
y o=y︸︷︷︸
≡π(1)

p (y)

Gp(x− y)−R(2)
p (x),

where the precise definition of π
(1)
p (x) is the following:

π(1)
p (x) = (pD ∗Gp)(o)δo,x.

Since R
(2)
p (x) is nonnegative, this also implies (4.2) for N = 1. This completes the first

expansion.

To show how to derive the higher-order expansion coefficients, we further demonstrate

the expansion of the remainder R
(2)
p (x). Since ω1 ◦ ω2 is not SAW, there must be at least

one vertex other than o where ω2 hits ω1. Take the first such vertex, say, z 6= o, which is

summed over Ld and unlabeled in the following picture, and split ω2 ∈ Ω(o, x) into two

SAWs, ω21 ∈ Ω(o, z) and ω22 ∈ Ω(z, x) (in blue), so that ω1 ∩ ω21 = {o, z}. Then, we can

rewrite R
(2)
p (x) as

R(2)
p (x) = o x

where the dashed two-sided arrow between the red ω21 and the blue ω22 implies that the

concatenation ω21◦ω22 is SAW. Using the identity 1{ω21◦ω22 is SAW} = 1−1{ω21◦ω22 is not SAW},

we obtain

R(2)
p (x) = o x− o x

︸ ︷︷ ︸
≡R(3)

p (x)

=
∑
y

y

o︸︷︷︸
≡π(2)

p (y)

Gp(x− y)−R(3)
p (x),
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where the precise definition of π
(2)
p (x) is the following:

(4.4) π(2)
p (x) = (1− δo,x)

∑
ω1,ω2,ω3∈Ω(o,x)

P (ω1)P (ω2)P (ω3)
∏
i 6=j

1{ωi∩ωj={o,x}}.

Since R
(3)
p (x) is nonnegative, this implies (4.2) for N = 2, as required.

By repeated application of inclusion-exclusion relations, we obtain the lace expansion

(4.1), with the lace-expansion coefficients depicted as

(4.5) π(3)
p (x) =

o x

, π(4)
p (x) =

o

x

, π(5)
p (x) =

o x

, . . .

where the slashed line segments represent SAWs with length ≥ 0, while the others rep-

resent SAWs with length ≥ 1. The unlabeled vertices are summed over Ld. Due to the

construction explained above, the red line segments avoid the black ones, the blue ones

avoid the red ones, the yellow ones avoid the blue ones, and so on. We complete the sketch

proof of Proposition 4.1.

4.2. Diagrammatic bounds on the expansion coefficients

As explained in Step 1 in Section 2.5, the bootstrapping functions {gi(p)}3i=1 are bounded

in terms of sums of π̂
(n)
p (0) and |∆̂kπ̂

(n)
p (0)|. In this subsection, we prove bounds on those

quantities in terms of basic diagrams, such as Lp and Bp in (2.18), as briefly explained in

Step 2 in Section 2.5. Recall that

Lp = ‖(pD)∗2 ∗Gp‖∞, Bp = ‖(pD)∗2 ∗G∗2p ‖∞, r = p‖D‖∞ + Lp +Bp.

We also define

B′p = ‖(pD)∗4 ∗G∗2p ‖∞, Ŵp(k) = sup
x

(1− cos k · x)Gp(x).

Lemma 4.2 (Diagrammatic bounds on the expansion coefficients). The expansion coeffi-

cients π̂
(n)
p (0) ≡∑x π

(n)
p (x) and |∆̂kπ̂

(n)
p (0)| ≡∑x(1− cos k · x)π

(n)
p (x), both nonnegative,

obey the following bounds:

π̂(n)
p (0) ≤

Lp [n = 1],

Bp(p‖D‖∞ + Lp)r
n−2 [n ≥ 2],

(4.6)

|∆̂kπ̂
(n)
p (0)| ≤

B2
pŴp(k)m2r2m−2 [n = 2m+ 1],

B2
pŴp(k)m(m− 1)r2m−3 +BpŴp(k)mr2m−2 [n = 2m].

(4.7)

For |∆̂kπ̂
(2)
p (0)|, in particular, the following bound also holds:

(4.8) |∆̂kπ̂
(2)
p (0)| ≤ 3Bp

2d
p(1− D̂(k)) +B′pŴp(k).
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Remark 4.3. As shown in (4.25) and (4.21) in the next subsection, ‖Ŵp/(1− D̂)‖∞ could

be relatively large, compared to Lp, Bp and r. Therefore, if we want to have a good

bound on |∆̂kπ̂
(n)
p (0)|/(1− D̂(k)), we should have a small multiplicative factor to Ŵp(k).

By (4.7), that multiplicative factor is at most bn/2c2Bprn−2 for n ≥ 2 (it is zero for n = 1,

due to the definition of π
(1)
p ) and the dominant contribution comes from the case of n = 2,

i.e., Bp. In (4.8), on the other hand, the multiplicative factor to Ŵp(k) is B′p, which is

potentially much smaller than Bp. This can be seen by comparing the RW versions of Bp

and B′p, which are the RW bubble ε2 and

ε′2 = (D∗4 ∗ S2
1)(o) =

∞∑
n=2

(2n− 3)D∗2n(o).

Table 4.1 summarizes the bounds on those RW bubbles that are evaluated as explained

in Section 2.1.

d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

ε2 ∞ 0.178332 0.044004 0.015302 0.006156 0.002678

ε′2 ∞ 0.115931 0.018708 0.004302 0.001161 0.000344

Table 4.1: Comparison of upper bounds on the RW bubbles for 4 ≤ d ≤ 9.

The amount of extra work caused by the use of (4.8) instead of using only (4.7) is

quite small. However, this is the key to be able to go down to 6 dimensions. We will get

back to this point in Section 4.5.

Sketch proof of Lemma 4.2. In the following, we repeatedly use the trivial inequality

(4.9) Gp(x)1{x 6=o} ≤ (pD ∗Gp)(x).

For example,

π̂(1)
p (0) =

∑
x 6=o

pD(x)Gp(x) ≤ ((pD)∗2 ∗Gp)(o) ≤ Lp.

For n ≥ 2, we first decompose π̂
(n)
p (0) by using subadditivity and then repeatedly apply

(4.9) to obtain (4.6). For example,

π̂(2)
p (0) =

o

≤

∑
x6=o

Gp(x)2

(sup
x 6=o

Gp(x)

)
(4.9)

≤ ((pD)∗2 ∗G∗2p )(o)︸ ︷︷ ︸
≤Bp

(
sup
x 6=o

(pD ∗Gp)(x)

)
,

(4.10)
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and

π̂(5)
p (0) =

o

≤

∑
x6=o

Gp(x)2

sup
x 6=o

∑
y 6=x

Gp(y)Gp(x− y)

3(
sup
x 6=o

Gp(x)

)
(4.9)

≤ Bp

(
sup
x

(pD ∗G∗2p )(x)

)3(
sup
x

(pD ∗Gp)(x)

)
.

(4.11)

In general, π̂
(n)
p (0) for n ≥ 2 is bounded by the right-most expression with the power 3

replaced by n− 2. Notice that, by omitting the spatial variables, we have

pD ∗Gp = pD ∗ (δ + (1− δ)Gp)
(4.9)

≤ pD + (pD)∗2 ∗Gp,

where δ is the Kronecker delta, hence

sup
x

(pD ∗Gp)(x) ≤ p‖D‖∞ + ‖(pD)∗2 ∗Gp‖∞ = p‖D‖∞ + Lp.

Similarly, we have

pD ∗G∗2p = pD ∗Gp ∗ (δ + (1− δ)Gp)
(4.9)

≤ pD ∗Gp + (pD)∗2 ∗G∗2p
= pD ∗ (δ + (1− δ)Gp) + (pD)∗2 ∗G∗2p

(4.9)

≤ pD + (pD)∗2 ∗Gp + (pD)∗2 ∗G∗2p ,

hence

sup
x

(pD ∗G∗2p )(x) ≤ p‖D‖∞ + ‖(pD)∗2 ∗Gp‖∞ + ‖(pD)∗2 ∗G∗2p ‖∞

= p‖D‖∞ + Lp +Bp ≡ r.
(4.12)

This completes the proof of (4.6).

Next, we prove (4.7) for n = 2m+1. Since π
(1)
p (x) is proportional to δo,x and therefore

∆̂kπ̂
(1)
p (0) ≡ 0, we can assume m ≥ 1. To bound |∆̂kπ̂

(2m+1)
p (0)| ≡ ∑

x(1 − cos k ·
x)π

(2m+1)
p (x) for m ≥ 1, we first identify the diagram vertices along the lowest diagram

path from o to x, say, y1, . . . , ym−1, and then split x into {yj − yj−1}mj=1, where y0 = o

and ym = x. For example,

|∆̂kπ̂
(5)
p (0)| =

∑
y1,y2

1− cos
∑
j=1,2

k · (yj − yj−1)


y0=o y2

y1

.
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Then, by using (3.2) and subadditivity, we obtain

|∆̂kπ̂
(5)
p (0)| ≤ 2

∑
y1,y2

((1− cos k · y1) + (1− cos k · (y2 − y1)))

×
(
Gp(y1)

o y2
y1

+ Gp(y2 − y1)
o y2

y1

)

≤ 2Ŵp(k)

(
o

+
o

)
.

Each remaining diagram is bounded, by following similar decomposition to (4.10) and

(4.11) and then using (4.12), by B2
pr

2, yielding the desired bound on |∆̂kπ̂
(5)
p (0)|. In

general,

|∆̂kπ̂
(2m+1)
p (0)| ≤ mŴp(k)×

(
m diagrams, each bounded by B2

pr
2m−2

)
≤ B2

pŴp(k)m2r2m−2,

as required.

To prove (4.7) for n = 2m, we follow the same line as above for n = 2m+ 1. To bound

|∆̂kπ̂
(2m)
p (0)| ≡∑x(1− cos k · x)π

(2m)
p (x), we first identify the diagram vertices along the

lowest diagram path from o to x, say, y1, . . . , ym−1, and then split x into {yj − yj−1}mj=1,

where y0 = o and ym = x. For example,

|∆̂kπ̂
(4)
p (0)| =

∑
y1,y2

(
1− cos

∑
j=1,2

k · (yj − yj−1)

)
y0=o

y2

y1

.

Then, by using (3.2) and subadditivity, we obtain

|∆̂kπ̂
(4)
p (0)| ≤ 2

∑
y1,y2

((1− cos k · y1) + (1− cos k · (y2 − y1)))

×
(
Gp(y1)

o

y2

y1

+ Gp(y2 − y1)
o

y2

y1

)

≤ 2Ŵp(k)

(
o

+
o

)
.

Following similar decomposition to (4.10) and (4.11) and using (4.12), we can bound the

first diagram by B2
pr, while the second diagram is bounded by Bpr

2, yielding the desired

bound on |∆̂kπ̂
(4)
p (0)|. In general,

|∆̂kπ̂
(2m)
p (0)| ≤ mŴp(k)×

((
(m− 1) diagrams, each bounded by B2

pr
2m−3

)
+
(
1 diagram, bounded by Bpr

2m−2
))

≤ B2
pŴp(k)m(m− 1)r2m−3 +BpŴp(k)mr2m−2,
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as required.

To prove the bound (4.8) on |∆̂kπ̂
(2)
p (0)|, we recall the definition (4.4) and divide π

(2)
p (x)

into π
(2),=1
p (x) and π

(2),≥2
p (x), where

π(2),=1
p (x) = (1− δo,x)

∑
ω1,ω2,ω3∈Ω(o,x)

(∃ i : |ωi|=1)

P (ω1)P (ω2)P (ω3)
∏
i 6=j

1{ωi∩ωj={o,x}},

π(2),≥2
p (x) = (1− δo,x)

∑
ω1,ω2,ω3∈Ω(o,x)

(∀ i : |ωi|≥2)

P (ω1)P (ω2)P (ω3)
∏
i 6=j

1{ωi∩ωj={o,x}}.

Then, by symmetry, the contribution from π
(2),=1
p (x) is bounded as

|∆̂kπ̂
(2),=1
p (0)| ≤ 3

∑
x∼o

(1− cos k · x)pD(x)

( ∑
ω∈Ω(o,x)

P (ω)

︸ ︷︷ ︸
≤(pD∗Gp)(x)

)2

≤ 3

(
sup
x∼o

(pD ∗Gp)(x)2

)
p
∑
x

(1− cos k · x)D(x)

= 3

(
1

2d

∑
x∼o

(pD ∗Gp)(x)2

︸ ︷︷ ︸
≤Bp

)
p(1− D̂(k)),

(4.13)

while the contribution from π
(2),≥2
p (x) is easily bounded as

|∆̂kπ̂
(2),≥2
p (0)| ≤

∑
x

(1− cos k · x)

( ∑
ω∈Ω(o,x)
(|ω|≥2)

P (ω)

)3

≤
∑
x

((pD)∗2 ∗Gp)(x)2

︸ ︷︷ ︸
≤B′p

(
sup
x

(1− cos k · x)Gp(x)︸ ︷︷ ︸
=Ŵp(k)

)
.

This completes the proof of Lemma 4.2.

4.3. Diagrammatic bounds on the bootstrapping functions

Let

Π̂odd
p (k) =

∞∑
m=0

π̂(2m+1)
p (k), Π̂even

p (k) =

∞∑
m=1

π̂(2m)
p (k).
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Suppose that r ≡ p‖D‖∞ + Lp +Bp < 1. Then, by Lemma 4.2, we obtain

0 ≤ Π̂odd
p (0) ≤ Lp +Bp(p‖D‖∞ + Lp)

r

1− r2
,(4.14)

0 ≤ Π̂even
p (0) ≤ Bp(p‖D‖∞ + Lp)

1

1− r2
,(4.15)

sup
k

|∆̂kΠ̂
odd
p (0)|

1− D̂(k)
≤
B2
p(1 + r2)

(1− r2)3

∥∥∥∥ Ŵp

1− D̂

∥∥∥∥
∞
,(4.16)

sup
k

|∆̂kΠ̂
even
p (0)|

1− D̂(k)
≤ 3Bp

2d
p+

(
B′p +B2

p

2r

(1− r2)3
+Bp

r2(2− r2)

(1− r2)2

)∥∥∥∥ Ŵp

1− D̂

∥∥∥∥
∞
.(4.17)

Applying these bounds to (2.12), (2.14) and (2.15), we obtain the following bounds on the

bootstrapping functions {gi(p)}3i=1.

Lemma 4.4. Suppose r < 1 and that Lp, Bp, B
′
p, ‖Ŵp/(1− D̂)‖∞ are so small that the

two inequalities in (2.16) hold. Then, we have

g1(p) ≤ 1 + Lp +
Bp(p‖D‖∞ + Lp)r

1− r2
,(4.18)

g2(p) ≤
(

1−
B2
p(1 + r2)

(1− r2)3

∥∥∥∥ Ŵp

1− D̂

∥∥∥∥
∞

)−1

,(4.19)

g3(p) ≤ max{g2(p), 1}3

×
((

1 +
3Bp
2d

)
p+

(
B′p +

B2
p

(1− r2)(1− r)2
+
Bpr

2(2− r2)

(1− r2)2

)∥∥∥∥ Ŵp

1− D̂

∥∥∥∥
∞

)2

.

Proof. The bounds on g1(p) and g2(p) are easy; since Π̂p(0) = Π̂even
p (0) − Π̂odd

p (0) and

−∆̂kΠ̂p(0) = |∆̂kΠ̂
even
p (0)| − |∆̂kΠ̂

odd
p (0)|, we obtain

g1(p)
(2.12)

≤ 1 + Π̂odd
p (0)

(4.14)

≤ 1 + Lp +
Bp(p‖D‖∞ + Lp)r

1− r2
,

g2(p)
(2.14)

≤ sup
k

(
1−
|∆̂kΠ̂

odd
p (0)|

1− D̂(k)

)−1
(4.16)

≤
(

1−
B2
p(1 + r2)

(1− r2)3

∥∥∥∥ Ŵp

1− D̂

∥∥∥∥
∞

)−1

.

For g3(p), since Ĝp(k) = Âp(k) ≡ 1/(1 − Ĵp(k)) for SAW and |Ĝp(k)| ≤ g2(p)Ŝ1(k) ≡
g2(p)/(1− D̂(k)), we obtain

g3(p)
(2.15)

≤ sup
k,l

1− D̂(k)

Û(k, l)

(
Ŝ1(l + k) + Ŝ1(l − k)

2
Ŝ1(l)g2(p)2 |∆̂kĴp(l)|

1− D̂(k)

+ 4Ŝ1(l + k)Ŝ1(l − k)g2(p)3−∆̂l |̂Jp|(0)

1− D̂(l)

−∆̂k |̂Jp|(0)

1− D̂(k)

)
(2.8)

≤ max{g2(p), 1}3 max

sup
k,l

|∆̂kĴp(l)|
1− D̂(k)

,

(
sup
k

−∆̂k |̂Jp|(0)

1− D̂(k)

)2
 .
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Since Jp = pD + Πp for SAW, we have

|∆̂kĴp(l)|
1− D̂(k)

=
1

1− D̂(k)

∣∣∣∣∣∑
x

(1− cos k · x)eil·x(pD(x) + Πp(x))

∣∣∣∣∣
≤ 1

1− D̂(k)

∑
x

(1− cos k · x)
(
pD(x) + Πodd

p (x) + Πeven
p (x)

)
≤ p+

|∆̂kΠ̂
even
p (0)|

1− D̂(k)
+
|∆̂kΠ̂

odd
p (0)|

1− D̂(k)
,

which is larger than 1, since p ≥ 1. It is easy to check that −∆̂k |̂Jp|(0)/(1− D̂(k)) obeys

the same bound. Therefore, by using (4.16) and (4.17), we obtain

g3(p) ≤ max{g2(p), 1}3
(
p+ sup

k

|∆̂kΠ̂
even
p (0)|

1− D̂(k)
+ sup

k

|∆̂kΠ̂
odd
p (0)|

1− D̂(k)

)2

≤ max{g2(p), 1}3

×
((

1 +
3Bp
2d

)
p+

(
B′p +

B2
p

(1− r2)(1− r)2
+
Bpr

2(2− r2)

(1− r2)2

)∥∥∥∥ Ŵp

1− D̂

∥∥∥∥
∞

)2

,

as required.

4.4. Bounds on diagrams in terms of random-walk quantities

In this subsection, we evaluate the diagrams for p ∈ [1, pc) and complete the proofs of

Propositions 2.3 and 2.4.

First, we evaluate the diagrams for p ∈ (1, pc) under the bootstrapping assumptions.

Lemma 4.5. Let d ≥ 5 and p ∈ (1, pc) and suppose that gi(p) ≤ Ki, i = 1, 2, 3, for some

constants {Ki}3i=1. Then, we have

Lp ≤ K2
1K2ε1, Bp ≤ K2

1K
2
2ε2, B′p ≤ K4

1K
2
2ε
′
2,(4.20) ∥∥∥∥ Ŵp

1− D̂

∥∥∥∥
∞
≤ 5K3(1 + 2ε1 + ε2).(4.21)

Proof. The first two inequalities in (4.20) have already been explained in (2.22) and (2.23).

Similarly, by using gi(p) ≤ Ki, i = 1, 2, we have

B′p ≤ p4

∫
Td
D̂(k)4Ĝp(k)2 ddk

(2π)d
≤ K4

1K
2
2

∫
Td

D̂(k)4

(1− D̂(k))2

ddk

(2π)d︸ ︷︷ ︸
=(D∗4∗S∗21 )(o)

= K4
1K

2
2ε
′
2.

For (4.21), we use g3(p) ≤ K3 to obtain

(4.22) 0 ≤ (1− cos k · x)Gp(x) =

∫
Td

(−∆̂kĜp(l))e
il·x ddl

(2π)d
≤ K3

∫
Td
Û(k, l)

ddl

(2π)d
,
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uniformly in x and k. Then, by (2.8) and using the Schwarz inequality, the right-hand

side is further bounded by

(4.23) 5K3(1− D̂(k))

∫
Td
Ŝ1(l)2 ddl

(2π)d
= 5K3(1− D̂(k))S∗21 (o).

Since S∗21 (o) =
∑∞

n=0(2n+ 1)D∗2n(o) = 1 + 2ε1 + ε2 (see (2.2)), this completes the proof

of Lemma 4.5.

Next, we evaluate the diagrams at p = 1 by using the trivial inequality G1(x) ≤ S1(x).

Here, we do not need the bootstrapping assumptions.

Lemma 4.6. Let d ≥ 5 and p = 1. Then, we have

L1 ≤ ε1, B1 ≤ ε2, B′1 ≤ ε′2,(4.24) ∥∥∥∥ Ŵ1

1− D̂

∥∥∥∥
∞
≤ 5(1 + 2ε1 + ε2).(4.25)

Proof. The first two inequalities in (4.24) have already been explained in (2.20) and (2.21).

Similarly, by the trivial inequality G1(x) ≤ S1(x), we have

B′1 ≤ ‖D∗4 ∗ S∗21 ‖∞ =

∫
Td

D̂(k)4

(1− D̂(k))2

ddk

(2π)d
= ε′2.

Also, by following the same line as (4.22) and (4.23), we obtain

(1− cos k · x)Gp(x) ≤ (1− cos k · x)S1(x) =

∫
Td

(−∆̂kŜ1(l))eil·x
ddl

(2π)d

≤
∫
Td
Û(k, l)

ddl

(2π)d
≤ 5(1− D̂(k))(1 + 2ε1 + ε2).

This completes the proof of (4.25).

Proof of Proposition 2.3. Since ε1 and ε2 are finite for d ≥ 5 (see Table 2.1 in Section 2.1)

and decreasing in d (because D∗2n(o) ≡
((

2n
n

)
2−2n

)d
on Ld is decreasing in d), we have

r = ‖D‖∞ + L1 +B1

(4.24)

≤ 2−d + ε1 + ε2 ≤

0.257 [d = 5],

0.081 [d ≥ 6].

In addition, by (4.14)–(4.17) and Lemma 4.6 (see also Table 4.1 in Section 4.2), we have

∞∑
n=1

π̂
(n)
1 (0) ≤

0.066 [d = 5],

0.023 [d ≥ 6],
sup
k

∞∑
n=1

−∆̂kπ̂
(n)
1 (0)

1− D̂(k)
≤

1.331 [d = 5],

0.120 [d ≥ 6],
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which imply that the inequalities in (2.16) hold for all d ≥ 6 (but not for d = 5). Then,

by Lemma 4.4, we obtain

g1(1) ≤ 1 + ε1 +
ε2(2−d + ε1)r

1− r2
≤ 1.021,(4.26)

g2(1) ≤
(

1− 5(1 + 2ε1 + ε2)
ε2

2(1 + r2)

(1− r2)3

)−1

≤ 1.012,(4.27)

g3(1) ≤ (1.011)3

(
1 +

3ε2

2d
+ 5(1 + 2ε1 + ε2)

(
ε′2 +

ε2
2

(1− r2)(1− r)2
+
ε2r

2(2− r2)

(1− r2)2

))2

≤ 1.301.

(4.28)

Proposition 2.3 holds as long as K1 > 1.021, K2 > 1.012 and K3 > 1.301.

Proof of Proposition 2.4. Let

K1 = K2 = 1.03, K3 = 1.79,

so that Proposition 2.3 holds for d ≥ 6. Using Table 2.1 in Section 2.1, we have

(4.29) r
(4.20)

≤ K12−d +K2
1K2ε1 +K2

1K
2
2ε2 ≤ 0.088.

In addition, by (4.14)–(4.17) and Lemma 4.5 (see also Table 4.1 in Section 4.2), we have

∞∑
n=1

π̂(n)
p (0) ≤ 0.025, sup

k

∞∑
n=1

−∆̂kπ̂
(n)
p (0)

1− D̂(k)
≤ 0.257,

which imply that the inequalities in (2.16) hold. Then, similar to (4.26)–(4.28), we obtain

g1(p) ≤ 1 +K2
1K2ε1 +

K2
1K

2
2ε2(K12−d +K2

1K2ε1)r

1− r2
≤ 1.023 < K1,

g2(p) ≤
(

1− 5K3(1 + 2ε1 + ε2)
K4

1K
4
2ε

2
2(1 + r2)

(1− r2)3

)−1

≤ 1.026 < K2,

g3(p) ≤ (1.025)3

((
1 +

3K2
1K

2
2ε2

2d

)
K1 + 5K3(1 + 2ε1 + ε2)

×
(
K4

1K
2
2ε
′
2 +

K4
1K

4
2ε

2
2

(1− r2)(1− r)2
+
K2

1K
2
2ε2r

2(2− r2)

(1− r2)2

))2

≤ 1.789 < K3.

This completes the proof of Proposition 2.4.
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4.5. Further discussion

We have been able to prove convergence of the lace expansion for SAW on Ld≥6 in full

detail, in such a small number of pages, rather easily. This is due to the simple structure of

the BCC lattice Ld and the choice of the bootstrapping functions {gi(p)}3i=1 (and thanks

to the extra effort explained in the remark after Lemma 4.2). Of course, if we follow

the same analysis as Hara and Slade [16, 17], we should be able to extend the result to 5

dimensions. But, then, the amount of work and the level of technicality would be almost

the same, and it would not make this survey attractive or accessible to beginners. Instead

of following the analysis of [16, 17], we keep the material as simple as possible and just

summarize elements by which we could improve our analysis. Those elements are the

following.

(1) Apparently, the largest contribution comes from |∆̂kπ̂
(2)
p (0)|. To improve its bound,

we introduced an extra diagram, i.e., B′p ≡ ‖(pD)∗4 ∗ G∗2p ‖∞. As a result, we were

able to improve the applicable range from d ≥ 7 to d ≥ 6. It is natural to guess that

the introduction of longer bubbles, like B
(n)
p ≡ ‖(pD)∗2n ∗ G∗2p ‖∞, could result in

the desired applicable range d ≥ 5. Indeed, its RW counterpart (D∗2n ∗ S∗21 )(o) gets

smaller as n increases. However, since B
(n)
p has the exponentially growing factor

p2n, there must be an optimal n∗ ∈ N at which B
(n)
p attains its minimum. So far,

our naive computation failed to achieve convergence of the lace expansion in Ld≥5

by merely introducing B
(n)
p up to n = 3.

(2) The reason why we introduced B′p is because the current bound on ‖Ŵp/(1− D̂)‖∞
in (4.25) and (4.21) is not small. In particular, the relatively large factor 5 in (4.25)

and (4.21) is due to the use of the Schwarz inequality, as explained in the third

footnote. Therefore, if we could achieve a better bound on (2.7), hopefully without

using the Schwarz inequality, it would be of great help.

(3) In (4.18) and (4.19), we discarded the contributions from Π̂even
p (0) and |∆̂kΠ̂

even
p (0)|.

By Lemma 4.2, we can speculate Π̂even
p (0) ≤ Π̂odd

p (0) and |∆̂kΠ̂
even
p (0)| ≥ |∆̂kΠ̂

odd
p (0)|.

This means that, if we include their effect into computation, then g1(p) could be

much closer to 1 (see (2.12)) and g2(p) could be even smaller than 1 (see (2.14)),

and as a result, we could achieve the desired applicable limit d ≥ 5. However, to

make use of those even terms, we must also control lower bounds on g1(p) and g2(p),

and to do so, we need nontrivial lower bounds on the lace-expansion coefficients.

Heading towards this direction would significantly increase the amount of work and

technical details, as in [16,17], which is against our motivation of writing this survey.

(4) We evaluated Ĝp(k) by Ŝ1(k) ≡ (1 − D̂(k))−1 uniformly in k ∈ Td, i.e., in both
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infrared and ultraviolet regimes. However, doing so in the ultraviolet regime (i.e.,

bounding Gp(x) by S1(x) for small x) is not efficient, and as a result, it requires d to

be relatively large. To overcome this problem, we may want to incorporate the idea

of ultraviolet regularization, first introduced in [3] for percolation. This approach

has never been investigated in the previous lace-expansion work, but it could provide

a natural way to analyze in dimensions close to dc.

5. Lace-expansion analysis for percolation

In this section, we prove Propositions 2.3–2.5 for percolation. First, in Section 5.1, we ex-

plain the derivation of the lace expansion, Proposition 2.5, for percolation. In Section 5.2,

we prove bounds on the lace-expansion coefficients in terms of basic diagrams. However,

unlike SAW, we need more diagrams, such as Tp and V̂ j
p (k) for j = 0, 1, 2, 3. Finally, in

Section 5.4, we prove bounds on those basic diagrams in terms of RW loops, bubbles and

triangles and use them to prove Proposition 2.3 on Ld≥8 and Proposition 2.4 on Ld≥9. We

close this section by addressing potential elements for extending the result to 7 dimensions,

in Section 5.5.

5.1. Derivation of the lace expansion

Proposition 2.5 for percolation is restated as follows.

Proposition 5.1. [15] For any p < pc and N ∈ Z+, there are nonnegative functions

{π(n)
p }Nn=0 on Ld such that, if we define Π

(N)
p as

Π(N)
p (x) =

N∑
n=0

(−1)nπ(n)
p (x),

then we obtain the recursion equation

(5.1) Gp(x) = δo,x + Π(N)
p (x) + ((δ + Π(N)

p ) ∗ pD ∗Gp)(x) + (−1)N+1R(N+1)
p (x),

where the remainder R
(N+1)
p (x) obeys the bound

0 ≤ R(N+1)
p (x) ≤ (π(N)

p ∗Gp)(x).

To prove the above proposition, we first introduce some notions and notation.

Definition 5.2. Fix a bond configuration and let x, y, u, v ∈ Ld.

(i) Given a bond b, we define C̃b(x) to be the set of vertices connected to x in the new

configuration obtained by setting b to be vacant.
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(ii) We say that a directed bond (u, v) is pivotal for the connection from x to y if x←→ u

occurs in C̃{u,v}(x) (i.e., x is connected to u without using {u, v}) and if v ←→ y

occurs in the complement of C̃{u,v}(x), denoted by C̃{u,v}(x)c. Let piv(x, y) be the

set of directed pivotal bonds for the connection from x to y.

(iii) We say that x is doubly connected to y, denoted by x ⇐⇒ y, if either x = y or

x←→ y and piv(x, y) = ∅.

(iv) Given a set of vertices A ⊂ Ld, we say that x and y are connected in A if either

x = y ∈ A or there is an occupied self-avoiding path from x to y consisting of vertices

in A. We write this event as {x←→ y in A}.

(v) Given a set of vertices A ⊂ Ld, we say that x and y are connected through A if

either x = y ∈ A or every occupied self-avoiding path from x to y contains vertices

in A. We write this event as {x A←−−→ y}.

Sketch proof of Proposition 5.1. First, we derive the first expansion, i.e., (5.1) for N = 0.

By splitting the event {o←→ x} into two depending on whether or not there is a pivotal

bond for the connection from o to x, we first obtain

(5.2) Gp(x) = Pp(o←→ x,piv(o, x) = ∅︸ ︷︷ ︸
={o⇐⇒x}

) + Pp(o←→ x,piv(o, x) 6= ∅).

Let

π(0)
p (x) = Pp(o⇐⇒ x)− δo,x.

Then, by definition, the first term in (5.2) is δo,x + π
(0)
p (x). To expand the second term

in (5.2), we use the first pivotal bond b ≡ (b, b) for the connection from o to x, so that

o ⇐⇒ b in C̃b(o) and b ←→ x in C̃b(o)c. Since those two events are independent of the

occupation status of b, we obtain

Pp(o←→ x,piv(o, x) 6= ∅)
=
∑
b

Pp
(
o⇐⇒ b in C̃b(o), b occupied, b←→ x in C̃b(o)c

)
=
∑
b

pD(b)E0
p

[
1{o⇐⇒b}P1

p

(
b←→ x in C̃b0(o)c

)]
,

(5.3)

where D(b) is the abbreviation for D(b − b), and the extra indices6 represent that C̃b0(o)

is random against E0
p but deterministic against P1

p. In the last line, we have dropped “in

C̃b0(o)” by using the fact that {b←→ x in C̃b0(o)c} = ∅ when 1{o⇐⇒b in C̃b0(o)} 6= 1{o⇐⇒b}.

6This rewrite is due to the tower property E[X] = E[E[X | G]], where E[X | G] is the conditional expectation

of a random variable X with respect to a sub-σ-algebra G.
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Now we introduce schematic drawings, such as

(5.4) δo,x + π(0)
p (x) = o x , (5.3) = o x .

In the second drawing, the parallel short line segments in the middle represents pD(b),

which is summed over all bonds b and unlabeled. The dashed two-sided arrow represents

mutual avoidance between C̃b0(o) (in black) and C̃b1(x) (in red). By the inclusion-exclusion

relation {b ←→ x in C̃b0(o)c} = {b ←→ x} \ {b C̃b0(o)←−−→ x}, we complete the first expansion

as

Gp(x) = o x + o x − o x︸ ︷︷ ︸
≡R(1)

p (x)

= δo,x + π(0)
p (x) + ((δ + π(0)

p ) ∗ pD ∗Gp)(x)−R(1)
p (x).

The precise definition of the remainder R
(1)
p (x) is

R(1)
p (x) =

∑
b

pD(b)E0
p

[
1{o⇐⇒b}P1

p

(
b
C̃b0(o)c←−−→ x

)]
.

Next, we expand the remainder R
(1)
p (x) to derive the second expansion, i.e., (5.1) for

N = 1. To do so, and to derive the higher-order expansion later, we have to deal with the

event {v A←−−→ x} for some vertex v and a vertex set A. Let

E(v, x;A) =
{
v

A←−−→ x
}
\

⋃
b∈piv(v,x)

{
v

A←−−→ b
}
.

Intuitively, if we regard a percolation cluster of v containing x as a string of sausages from

v to x, then E(v, x;A) is considered to be the event that the last sausage is the first one

that goes through A. Then, we can split the event {v A←−−→ x} into two disjoint events as

(5.5)
{
v

A←−−→ x
}

= E(v, x;A) ∪
{
∃ b ∈ piv(v, x) occupied & v

A←−−→ b
}
.

Let

π(1)
p (x) =

∑
b

pD(b)E0
p

[
1{o⇐⇒b}P1

p

(
E(b, x; C̃b0(o))

)]
,

so that we have

R(1)
p (x) = π(1)

p (x)

+
∑
b1

pD(b1)E0
p

[
1{o⇐⇒b1}P

1
p

(
∃ b2 ∈ piv(b1, x) occupied & b1

C̃b10 (o)←−−→ b2
)]
.
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Notice that the event {∃ b ∈ piv(v, x) occupied & v
A←−−→ b} in (5.5) can be rewritten by

identifying the first element in {b ∈ piv(v, x) : v
A←−−→ b} as{

∃ b ∈ piv(v, x) occupied & v
A←−−→ b

}
=
⋃
b

{E(v, b;A) occurs in C̃b(v)} ∩ {b occupied} ∩ {b←→ x in C̃b(v)c}.(5.6)

By this rewrite and using the fact that the first and third events on the right-hand side

are independent of the occupation status of b, we obtain (cf., (5.3))

R(1)
p (x) = π(1)

p (x)

+
∑
b1,b2

pD(b1)pD(b2)E0
p

[
1{o⇐⇒b1}E

1
p

[
1
E(b1,b2;C̃b10 (o))

P2
p

(
b2 ←→ x in C̃b21 (b1)c

)]]
,

where we have dropped “occurs in C̃b21 (b1)” by using the fact that {b2 ←→ x in C̃b21 (b1)c} =

∅ when 1{E(b1,b2;C̃b10 (o)) occurs in C̃b21 (b1)} 6= 1
E(b1,b2;C̃b10 (o))

. By using similar schematic draw-

ings to (5.4), the above identity for R
(1)
p is rewritten as

R(1)
p (x) = o x + o x ,

where the dashed two-sided arrow represents mutual avoidance between C̃b21 (b1) (in red)

and C̃b22 (x) (in blue). By the inclusion-exclusion relation {b2 ←→ x in C̃b21 (b1)c} = {b2 ←→

x} \ {b2
C̃b21 (b1)←−−−→ x}, we arrive at the second expansion

R(1)
p (x) = o x + o x

− o x

︸ ︷︷ ︸
≡R(2)

p (x)

= π(1)
p (x) + (π(1)

p ∗ pD ∗Gp)(x)−R(2)
p (x).

To show how to derive the higher-order expansion coefficients, we further demonstrate

the expansion of the remainder R
(2)
p (x) by using schematic drawings. Using (5.5) and

(5.6), we can rewrite R
(2)
p (x) as

(5.7)

R(2)
p (x) = o x

︸ ︷︷ ︸
≡π(2)

p (x)

+ o x .
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The precise definition of π
(2)
p (x) is

π(2)
p (x) =

∑
b1,b2

pD(b1)pD(b2)E0
p

[
1{o⇐⇒b1}E

1
p

[
1
E(b1,b2;C̃b10 (o))

P2
p

(
E(b2, x; C̃b21 (b1))

)]]
.

As in the previous stages of the expansion, the dashed two-sided arrow in (5.7) represents

mutual avoidance between C̃b32 (b2) (in blue) and C̃b33 (x) (in green). Then, by the inclusion-

exclusion relation {b3 ←→ x in C̃b32 (b2)c} = {b3 ←→ x} \ {b3
C̃b32 (b2)←−−−→ x}, we obtain

R(2)
p (x) = o x + o x

− o x

︸ ︷︷ ︸
≡R(3)

p (x)

= π(2)
p (x) + (π(2)

p ∗ pD ∗Gp)(x)−R(3)
p (x).

By repeated applications of inclusion-exclusion to the remainders, we can derive the higher-

order expansion coefficients, such as

π(3)
p (x) = o x ,

π(4)
p (x) = o x .

We complete the sketch proof of Proposition 5.1.

5.2. Diagrammatic bounds on the expansion coefficients

As explained in Step 1 in Section 2.5, the bootstrapping functions {gi(p)}3i=1 are bounded

in terms of sums of π̂
(n)
p (0) and |∆̂kπ̂

(n)
p (0)|. In this subsection, we prove bounds on those

quantities in terms of basic diagrams, such as Tp in (2.18) and V̂ 0
p , V̂ 1

p , V̂ 2
p , V̂ 3

p , defined as

Tp = ‖(pD)∗2 ∗G∗3p ‖∞,
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V̂ 0
p (k) =

∑
x

(pD ∗Gp)(x)2(1− cos k · x),

V̂ 1
p (k) = sup

x

∑
y

(pD ∗Gp)(y)(1− cos k · y)Gp(x− y),

V̂ 2
p (k) = sup

x

∑
y

(pD ∗Gp)(y)(1− cos k · y)(pD ∗Gp)(x− y),

V̂ 3
p (k) = sup

x,y

∑
{vj}5j=1

Gp(v1)(pD ∗Gp)(v2 − v1)(1− cos k · (v2 − v1))

× (pD ∗Gp)(v3 − v2)(pD ∗Gp)(v4 − v1)(pD ∗Gp)(v4 − v2)

× (pD ∗Gp)(v5 − v4)(pD ∗Gp)(x− v5)Gp(y + v3 − v5).

Recall r = p‖D‖∞ + Lp +Bp, and we also define

ρ = Tp(2r + Tp) + (r + Tp)

(
1 +

Bp
2

+ Tp

)
.

Lemma 5.3 (Diagrammatic bounds on the expansion coefficients). The expansion coeffi-

cients π̂
(n)
p (0) ≡∑x π

(n)
p (x) and |∆̂kπ̂

(n)
p (0)| ≡∑x(1− cos k · x)π

(n)
p (x), both nonnegative,

obey the following bounds:

π̂(n)
p (0) ≤

Bp/2 [n = 0],

(1 +Bp/2 + Tp)
2rρn−1 [n ≥ 1],

(5.8)

|∆̂kπ̂
(0)
p (0)| ≤ 1

2
V̂ 0
p (k),(5.9)

|∆̂kπ̂
(1)
p (0)| ≤

(
1 + 2(Bp + r) +

3

4
Bp(Bp + 2r) + 3rTp

)
V̂ 0
p (k)

+ (8 + 6Bp + 9Tp)TpV̂
2
p (k).

(5.10)

For m ≥ 1,

|∆̂kπ̂
(2m)
p (0)|

≤ (4m+ 1)

(
ρ2m−1

(
2rV̂ 0

p (k) + TpV̂
2
p (k) + TpV̂

1
p (k)

)(
1 +

Bp
2

+ Tp

)
+mρ2m−1

(
V̂ 2
p (k) + V̂ 1

p (k)
)(

1 +
Bp
2

+ Tp

)2

+ ρ2m−2
(

(2m− 1)
(
r2V̂ 0

p (k) + rTpV̂
2
p (k) + rTpV̂

1
p (k) + T 2

p V̂
1
p (k)

)
+ (m− 1)

(
rTpV̂

0
p (k) + V̂ 3

p (k)
))(

1 +
Bp
2

+ Tp

)2)
,

(5.11)

and

|∆̂kπ̂
(2m+1)
p (0)|
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≤ (4m+ 3)

(
2ρ2m

(
rV̂ 0

p (k) + TpV̂
2
p (k)

)(
1 +

Bp
2

+ Tp

)
+ ρ2m

(
(m+ 1)V̂ 2

p (k) +mV̂ 1
p (k)

)(
1 +

Bp
2

+ Tp

)2

(5.12)

+mρ2m−1
(

2
(
r2V̂ 0

p (k) + rTpV̂
2
p (k) + rTpV̂

1
p (k) + T 2

p V̂
1
p (k)

)
+ rTpV̂

0
p (k) + V̂ 3

p (k)
)(

1 +
Bp
2

+ Tp

)2)
.

The rest of this subsection is devoted to showing the above bounds on π̂
(n)
p (0) and

|∆̂kπ̂
(n)
p (0)| for n = 0 in Section 5.2.1, for n = 1 in Section 5.2.2, for n = 2 in Section 5.2.3,

and for n ≥ 3 in Section 5.2.4.

5.2.1. Bounds on π̂
(0)
p (0) and |∆̂kπ̂

(0)
p (0)|

By the Boolean and BK inequalities, we obtain

π(0)
p (x) = Pp(o⇐⇒ x)− δo,x

= Pp
( ⋃
b1,b2∈B(o)

(b1≺b2)

{
{b1 occupied, b1 ←→ x} ◦ {b2 occupied, b2 ←→ x}

})

≤
∑

b1,b2∈B(o)
(b1≺b2)

pD(b1)Gp(x− b1)pD(b2)Gp(x− b2)

≤ 1

2
(pD ∗Gp)(x)2,

(5.13)

where we have used the ordering ≺ introduced above (3.6). The factor 1/2 in the last line

is due to ignoring the ordering. Then, summing over x yields (5.8) for n = 0.

The bound (5.9) on |∆̂kπ̂
(0)
p (0)| is also achieved by multiplying both sides of (5.13) by

1− cos k · x and summing the resulting inequality over x.

5.2.2. Bounds on π̂
(1)
p (0) and |∆̂kπ̂

(1)
p (0)|

First, we prove (5.8) for n = 1 and (5.10) by assuming the following diagrammatic bound

on π
(1)
p (x):

π(1)
p (x)

≤ o x +
1

2
o x + o x +

1

2
o x +

1

4
o x

+
1

2
o x + o x +

1

2
o x + o x ,

(5.14)
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where we have used the following two types of line segments:

(5.15) o x = Gp(x), o x = (pD ∗Gp)(x).

As in the case for SAW (cf., e.g., (4.5)), the unlabeled vertices are summed over Ld. The

proof of (5.14) is given at the end of Section 5.2.2.

Proof of (5.8) for n = 1 assuming (5.14). The bound on π̂
(1)
p (0) is obtained by summing

both sides of (5.14) over x and repeatedly using translation-invariance. For example,

o =

o

o︸ ︷︷ ︸
≤Bp

≤
o︸ ︷︷ ︸

≤Tp

(
sup
x

o

x

︸ ︷︷ ︸
≤r (∵ (4.12))

)
Bp ≤ TprBp,

and

o ≤
o︸ ︷︷ ︸

≤Tp

sup
x

∑
y o

x

y

≤ Tp
(

sup
x, z

∑
y o y

x y + z )
o︸ ︷︷ ︸
≤Tp

≤ Tp
(

sup
x, z

o

x− z

︸ ︷︷ ︸
≤r (∵ (4.12))

)
Tp ≤ TprTp.

Applying the same analysis to the other diagrams, we obtain

π̂(1)
p (0) ≤ (pD ∗G∗2p )(o) +

1

2
(pD ∗G∗2p )(o)Bp + rTp +

1

2
Bp(pD ∗G∗2p )(o)

+
1

4
Bp(pD ∗G∗2p )(o)Bp +

1

2
BprTp + Tpr +

1

2
TprBp + TprTp

= (pD ∗G∗2p )(o)

(
1 +

Bp
2

)2

+ r

(
2

(
1 +

Bp
2

)
Tp + T 2

p

)
(4.12)

≤
(

1 +
Bp
2

+ Tp

)2

r,

as required.

Sketch proof of (5.10). The bound on |∆̂kπ̂
(1)
p (0)| is obtained by multiplying 1− cos k · x

to both sides of (5.14) and summing the resulting expression over x. To decompose the

diagrams into the basic diagrams, we also use the telescopic inequality (3.2), translation-

invariance and the trivial inequality

(5.16) o x 1{x 6=o} = Gp(x)1{x 6=o} ≤ (pD ∗Gp)(x) = o x .
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For example, ∑
x

o x (1− cos k · x)

(3.2)

≤ 2
∑
x, y

o
y

x
(
(1− cos k · y) + (1− cos k · (x− y))

)
(5.16)

≤ 2
∑
y

o y (1− cos k · y)︸ ︷︷ ︸
=V̂ 0

p (k)

o︸ ︷︷ ︸
≤Bp

+ 2 o︸ ︷︷ ︸
≤r (∵ (4.12))

sup
y

∑
x

y x (1− cos k · (x− y))︸ ︷︷ ︸
=V̂ 0

p (k)

≤ 2V̂ 0
p (k)Bp + 2rV̂ 0

p (k).

Another example is the following:∑
x

o x (1− cos k · x)

(3.2)

≤ 3
∑
{xj}3j=1

o

x1 x2

x3

3∑
j=1

(1− cos k · (xj − xj−1)),
(5.17)

where x0 = o. The contribution from 1− cos k · x1 is bounded by

3

(
sup
x

∑
y

y

o

x

(1− cos k · y)

︸ ︷︷ ︸
=V̂ 2

p (k)

)(
sup
x

o

x

︸ ︷︷ ︸
=Tp

)
o

(5.16)

≤ 3V̂ 2
p (k)TpTp.

The contribution from 1− cos k · (x3 − x2) obeys the same bound, because

3 o

(
sup
x

o

x

︸ ︷︷ ︸
=Tp

)
sup
x

∑
y o

y

x (1− cos k · y)
(5.16)

≤ 3TpTpV̂
2
p (k).

The contribution from 1− cos k · (x2 − x1) is bounded by

3 o

(
sup
x,z

∑
y o y

x y + z

(1− cos k · y)

)
o

≤ 3Tp

(
sup
x,z

∑
y o

x− z

y (1− cos k · y)

)
Tp

(5.16)

≤ 3TpV̂
2
p (k)Tp.
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As a result, (5.17) is bounded by 9T 2
p V̂

2
p (k). The other terms can be estimated similarly.

We complete the proof of (5.10).

Proof of (5.14). First, we recall the definition of π
(1)
p (x):

π(1)
p (x) =

∑
b

pD(b)E0
p

[
1{o⇐⇒b}P1

p

(
E(b, x; C̃b0(o))

)]
.

Let x
A⇐==⇒ y be the event that x is doubly connected to y through A, i.e., there are

at least two occupied paths from x to y and every occupied path from x to y has vertices

of A. Then, by definition, we have

(5.18) E(v, x;A) ⊂
⋃
y

{
{v ←→ y} ◦

{
y

A⇐==⇒ x
}}
.

Splitting
{
y

A⇐==⇒ x
}

into three events depending on where the double connection tra-

verses A, we obtain{
y

A⇐==⇒ x
}
⊂ {y = x ∈ A} ∪ {y ⇐⇒ x 6= y ∈ A}
∪
⋃

z (6=y)

{
{y ←→ z ∈ A} ◦ {z ←→ x} ◦ {y ←→ x 6= y}

}
,

hence (see Figure 5.1(a)–(c))

E(v, x;A) ⊂ {v ←→ x ∈ A}︸ ︷︷ ︸
(a)

∪
⋃
y

{
{v ←→ y ∈ A} ◦ {y ⇐⇒ x 6= y}

}
︸ ︷︷ ︸

(b)

∪
⋃
y,z

(y 6=z)

{
{v ←→ y} ◦ {y ←→ z ∈ A} ◦ {z ←→ x} ◦ {y ←→ x 6= y}

}
︸ ︷︷ ︸

(c)

.
(5.19)

(u, v)
x

(a)

(u, v)
x

(b)

(u, v)
x

(c)

o z

(d)

o
u

z

(e)

o
u

z

(f)

Figure 5.1: Schematic drawings for the events in (5.19) and (5.22). The real and dotted

line segments are on different probability spaces. The arcs having short line segments at

one of the two end vertices represent nonzero connections.
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Then, by the BK inequality and the argument around (5.13) to derive the factor 1/2,

and applying the trivial inequality (5.16) to the nonzero connections (e.g., Pp(y ←→ x 6=
y) ≤ (pD ∗Gp)(x− y)), we obtain

∑
v

pD(v − u)Pp(E(v, x;A))

≤
∑
y,z

1{z∈A}

(
(pD ∗Gp)(x− u)δy,xδz,x +

1

2
(pD ∗Gp)(y − u)(pD ∗Gp)(x− y)2δz,y

+ (pD ∗Gp)(y − u)(pD ∗Gp)(z − y)Gp(x− z)(pD ∗Gp)(x− y)

)
,

(5.20)

and therefore, by using the diagrammatic representations in (5.15),

(5.21)

π(1)
p (x) ≤

∑
u,z

Pp(o⇐⇒ u, o←→ z)

( u

x δz,x +
1

2

u

z
x +

u

z

x

︸ ︷︷ ︸
≡uzRx

)
.

We emphasize that each of the above line segments is a two-point function Gp, and not a

connection event described in Figure 5.1.

It remains to investigate Pp(o⇐⇒ u, o←→ z) in (5.21). Splitting the event into three

depending on which vertex on the backbone from o to u a connection to z comes out of,

we have (see Figure 5.1(d)–(f))

{o⇐⇒ u, o←→ z}
⊂ {o = u←→ z}︸ ︷︷ ︸

(d)

∪
{
{o⇐⇒ u 6= o} ◦ {u←→ z}

}︸ ︷︷ ︸
(e)

∪
⋃
w

{
{o←→ u 6= o} ◦ {o←→ w} ◦ {w ←→ u 6= w} ◦ {w ←→ z}

}
︸ ︷︷ ︸

(f)

.

(5.22)

Then, again, by the BK inequality and the argument around (5.13) to derive the factor

1/2, and applying the trivial inequality (5.16) to the nonzero connections, we obtain

(5.23) Pp(o⇐⇒ u, o←→ z) ≤ o

z

δu,o +
1

2
o

u

z

+ o

u

z︸ ︷︷ ︸
≡Luz

.

Combining this with (5.21), we obtain the diagrammatic bound (5.14), as required.
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5.2.3. Bounds on π̂
(2)
p (0) and |∆̂kπ̂

(2)
p (0)|

We organize this section in a different way from the previous section for the case of n = 1.

We first explain the diagrammatic bound (5.28) on π
(2)
p (x) for a fixed x. Then, by using

this, we prove the bounds (5.8) for n = 2 and (5.11) for m = 1.

Now we start investigating π
(2)
p (x) for a fixed x, which is defined as

π(2)
p (x) =

∑
b1,b2

pD(b1)pD(b2)E0
p

[
1{o⇐⇒b1}E

1
p

[
1
E(b1,b2;C̃b10 (o))

P2
p

(
E(b2, x; C̃b21 (b1))

)]]
.

First, by using (5.20) and (5.21), we obtain

(5.24) π(2)
p (x) ≤

∑
b1

pD(b1)
∑
u2,z2

E0
p

[
1{o⇐⇒b1}P

1
p

(
E(b1, u2; C̃b10 (o))∩{b1 ←→ z2}

)]
× u2
z2 Rx .

Next, we have to deal with the event E(v1, u2;A) ∩ {v1 ←→ z2} for a given set A. By

(5.18), we first obtain the relation

(5.25) E(v1, u2;A) ∩ {v1 ←→ z2} ⊂
⋃
y

{
{v1 ←→ y} ◦

{
y

A⇐==⇒ u2

}}
∩ {v1 ←→ z2}.

Next, we split the event into two depending on which vertex on the backbone from v1 to

u2 a connection to z2 comes out of: either before or from the last sausage. Then, we split

each of the two into four events depending on where the double connection from y to u2

traverses A. The resulting eight events are depicted in Figure 5.2.

(u1, v1)

u2
z2

(a)

(u1, v1) u2
z2

(b)

(u1, v1) u2
z2

(c)

(u1, v1)

u2
z2

(d)

(u1, v1)

u2
z2

(e)

(u1, v1)

u2
z2

(f)

(u1, v1) u2
z2

(g)

(u1, v1) u2
z2

(h)

Figure 5.2: Schematic drawings for the events in (5.25) (cf., Figure 5.1). A connection to

z2 comes out of the backbone from v1 to u2 before the last sausage ((a)–(d)) or from the

last sausage ((e)–(h)).

Finally, by the BK inequality and the argument around (5.13) to derive the factor 1/2,
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and applying the trivial inequality (5.16) to the nonzero connections, we obtain∑
b1

pD(b1)E0
p

[
1{o⇐⇒b1}P

1
p

(
E(b1, u2; C̃b10 (o)) ∩ {b1 ←→ z2}

)]
≤
∑
u1,z1

Pp(o⇐⇒ u1, o←→ z1)× u1
z1 M

z2
u2 ,

(5.26)

where (in some of the following diagrams, we use the identity (pD∗Gp)(x) = (Gp∗pD)(x))

u1
z1 M

z2
u2 =

u1

u2

z2

δz1,u2 +
1

2

u1

z1 u2

z2

+

u1

z1 u2

z2

+

u1

u2

z2

δz1,u2 +
1

2

u1

z1 u2

z2

+

u1

z1

u2

z2

+

u1

z1

u2

z2

+

u1

z1 u2

z2

.

(5.27)

Finally, by using (5.23), we arrive at

(5.28) π(2)
p (x) ≤

∑
u1,u2,z1,z2

Lu1z1 × u1
z1 M

z2
u2 × u2

z2 Rx,

which consists of 72 (= 3× 8× 3) terms.

Sketch proof of (5.8) for n = 2. The bound on π̂
(2)
p (0) is obtained by summing both sides

of (5.28) over x and repeatedly using translation-invariance. For example, the combination

of the third diagrams in (5.23), (5.27) and (5.21) is bounded as

∑
x

∑
u1,u2,z1,z2

o

u1

z1

u1

z1 u2

z2

u2

z2

x

≤
o︸ ︷︷ ︸

≤Tp

sup
x, z

∑
y o

x

y

y + z

o︸ ︷︷ ︸
≤Tp

.

(5.29)
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Also, the middle diagram is bounded as

sup
x,z

∑
y o

x

y

y + z

≤ sup
x

o

x

sup
v,w,z

∑
y w y

v y + z

≤ sup
x,u

∑
y o

x

y
y + u︸ ︷︷ ︸

≤Tp

o︸ ︷︷ ︸
≤Tp

sup
v,w,z

w

v − z

︸ ︷︷ ︸
≤r (∵ (4.12))

.

(5.30)

Therefore, (5.29) is bounded above by TpT
2
p rTp.

Another example is the combination of the third diagram in (5.23), the last diagram

in (5.27) and the third diagram in (5.21), which is bounded as

∑
x

∑
u1,u2,z1,z2

o

u1

z1

u1

z1 u2

z2

u2

z2

x

≤
o︸ ︷︷ ︸

≤Tp

sup
x, z

∑
y o

x

y

y + z

o︸ ︷︷ ︸
≤Tp

.

(5.31)

Since

(5.32) sup
x,z

∑
u,v,y o

x

u v
y

y + z

≤ sup
x

o

x

︸ ︷︷ ︸
=Tp

sup
u,u′

u

u′

sup
v,v′,z

∑
y v y

v′ y + z

︸ ︷︷ ︸
≤r (∵ (4.12))

,

and

u

u′

=
∑
y

(pD∗G∗2p )(y−u)Gp(u
′−y)

(5.16)

≤ (pD ∗G∗2p )(u′ − u)︸ ︷︷ ︸
≤r (∵ (4.12))

+ ((pD)∗2 ∗G∗3p )(u′ − u)︸ ︷︷ ︸
≤Tp

,

we can bound (5.31) above by TpTp(r + Tp)rTp.

Applying the same analysis to the other diagrams, we obtain

π̂(2)
p (0) ≤

(
1 +

Bp
2

+ Tp

)(
Tp +

1

2
TpBp + T 2

p + r +
1

2
rBp + Tpr + rTp + Tp(r + Tp)︸ ︷︷ ︸
=ρ

)

× r
(

1 +
Bp
2

+ Tp

)
,

as required.
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Sketch proof of (5.11) for m = 1. The bound on |∆̂kπ̂
(2)
p (0)| is obtained by multiplying

1− cos k · x to both sides of (5.28) and summing the resulting expression over x. During

the course, we split 1− cos k · x by using the telescopic inequality (3.2). For example, the

combination of the third diagrams in (5.23), (5.27) and (5.21) is bounded by

(5.33) 4
∑

y1,y2,y3,y4,
z1,z2

o

y1

z1

y1
y2

z1 z2

y3

z2

y3

y4

4∑
j=1

(1− cos k · (yj − yj−1)),

where y0 = o, while the combination of the third diagram in (5.23), the last diagram in

(5.27) and the third diagram in (5.21) is bounded by

(5.34)

5
∑

y1,y2,y3,y4,y5,
z1,z2

o

y1

z1

y1
y2

z1 z2

y3
y4

z2

y4

y5

5∑
j=1

(1− cos k · (yj − yj−1)).

Also, for the other 70 combinations of diagrams in (5.23), (5.27) and (5.21), the number

of intervals yj − yj−1 is at most 5. We use this fact to uniformly bound the multiplicative

constant in the telescopic inequality (3.2) by 5.

Now it remains to bound each combination in terms of basic diagrams. For example,

the contribution from 1− cos k · (y3 − y2) in (5.33) is bounded as

∑
y1,y2,y3,y4,

z1,z2

o

y1

z1

y1
y2

z1 z2

y3

z2

y3

y4 (1− cos k · (y3 − y2))

≤
o︸ ︷︷ ︸

≤Tp

sup
y1 o

y1

︸ ︷︷ ︸
≤T 2

p

sup
y2,z2,v

∑
y3 z2 y3 + v

y2 y3

(1− cos k · (y3 − y2))

︸ ︷︷ ︸
≤V̂ 2

p (k)

o︸ ︷︷ ︸
≤Tp

while the contribution from 1− cos k · y1 in (5.34) is bounded as

∑
y1,y2,y3,y4,y5,

z1,z2

o

y1

z1

y1
y2

z1 z2

y3
y4

z2

y4

y5 (1− cos k · y1)

≤ sup
v

∑
y1

o

y1 + v

y1

(1− cos k · y1)

︸ ︷︷ ︸
=V̂ 1

p (k)

sup
y2,z1 z1

y2

︸ ︷︷ ︸
=Tp

sup
y4,w w

y4

︸ ︷︷ ︸
≤(r+Tp)Tp

o︸ ︷︷ ︸
≤Tp

.
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The other combinations can be bounded similarly. We note that each bound uses one

of the diagrams V̂ 0
p (k), V̂ 1

p (k) and V̂ 2
p (k) (V̂ 3

p (k) is used only in the bounds on |∆̂kπ̂
(n)
p |

for n ≥ 3). Which one is used depends on which pair of two-point functions is multiplied

by 1 − cos k · (yj − yj−1): (pD ∗ Gp)(yj − yj−1)2, (pD ∗ Gp)(yj − yj−1)Gp(yj − yj−1 − v)

for some v, or (pD ∗Gp)(yj − yj−1)(pD ∗Gp)(yj − yj−1 − v) for some v, respectively. We

complete the sketch proof of (5.11) for m = 1.

5.2.4. Bounds on π̂
(n≥3)
p (0) and |∆̂kπ̂

(n≥3)
p (0)|

Recall the definition of π
(n)
p (x) for n ≥ 3:

π(n)
p (x) =

∑
b1,...,bn

n∏
i=1

pD(bi)E0
p

[
1{o⇐⇒b1}E

1
p

[
1
E(b1,b2;C̃b10 (o))

· · ·

× En−1
p

[
1
E(bn−1,bn;C̃bn−1

n−2 (bn−2))
Pnp
(
E(bn, x; C̃bnn−1(bn−1))

)]
· · ·
]]
.

Using (5.20) first (cf., (5.21) and (5.24)), then using (5.26) for n − 1 times, and finally

using (5.23), we obtain the fixed-x bound (cf., (5.28))

π(n)
p (x) ≤

∑
u1,...,un,
z1,...,zn

Lu1z1 × u1
z1 M

z2
u2 × · · · × un−1

zn−1 M
zn
un × un

znRx .

Sketch proof of (5.8) for n ≥ 3. We can follow the same line of the proof of (5.8) for n = 2.

The only difference is the size of middle section (cf., (5.30) and (5.32)), and it gives rise

to the factor ρn−1.

Sketch proof of (5.11) for m ≥ 2 and (5.12). As is done in the proof of (5.11) for m = 1 in

Section 5.2.3, we uniformly bound the multiplicative constant in the telescopic inequality

(3.2) by the maximum number of intervals, which is 2n+1 for |∆̂kπ̂
(n)
p (0)|. The remaining

task is almost the same as the previous case, except for the following two:

(i) Use the telescopic inequality (3.2) along the upper sequence of line segments for even

n (see (5.33) and (5.34)) or along the lower sequence for odd n (see below).

(ii) Use the basic diagram V̂ 3
p (k) to bound certain diagrams to which 1− cos k · (· · · ) is

assigned in a peculiar way.

For example, the contribution to |∆̂kπ̂
(3)
p (0)| from the combination of the third diagrams

in (5.23), (5.27) and (5.21) is bounded as

7
∑

y1,y2,y3,
z1,...,z6

o

z1

y1

z2

y1

z2 z3

y2

z3
z4

y2 y3

z5

y3

z5

z6

6∑
j=1

(1−cos k·(zj−zj−1)),
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where z0 = o. Then, the contribution to the sum from 1− cos k · (z3 − z2) is bounded by

o︸ ︷︷ ︸
≤Tp

sup
y1,z1,u

∑
z2,z3,z4 z1

y1

z2 z3
z4

z4 + u

(1− cos k · (z3 − z2))

︸ ︷︷ ︸
=V̂ 3

p (k)

sup
v

o

v

︸ ︷︷ ︸
≤T 2

p

o︸ ︷︷ ︸
≤Tp

.

The other combinations can be bounded similarly, and we refrain from showing tedious

computations.

5.3. Diagrammatic bounds on the bootstrapping functions

Let

Π̂even
p (k) =

∞∑
m=0

π̂(2m)
p (k), Π̂odd

p (k) =

∞∑
m=0

π̂(2m+1)
p (k).

Suppose that ρ ≡ Tp(2r + Tp) + (r + Tp)(1 + Bp/2 + Tp) < 1. Then, by Lemma 5.3, we

obtain

0 ≤ Π̂even
p (0) ≤ Bp

2
+

(1 +Bp/2 + Tp)
2rρ

1− ρ2
,(5.35)

0 ≤ Π̂even
p (0) ≤ (1 +Bp/2 + Tp)

2r

1− ρ2
,(5.36)

sup
k

|∆̂kΠ̂
even
p (0)|

1− D̂(k)
≤

3∑
j=0

ϕeven
j

∥∥∥∥ V̂ j
p

1− D̂

∥∥∥∥
∞
,(5.37)

where

ϕeven
0 =

1

2
+

(
1 +

Bp
2

+ Tp

)
10rρ

(1− ρ2)2

+

(
1 +

Bp
2

+ Tp

)2 r2(5 + 12ρ2) + 3Tprρ
2(3 + ρ)

(1− ρ2)3
,

(5.38)

ϕeven
1 =

(
1 +

Bp
2

+ Tp

)
5Tpρ

(1− ρ2)2

+

(
1 +

Bp
2

+ Tp

)2 ρ(5 + 3ρ2) + Tp(r + Tp)(5 + 12ρ2)

(1− ρ2)3
,

(5.39)

ϕeven
2 =

(
1 +

Bp
2

+ Tp

)
5Tpρ

(1− ρ2)2

+

(
1 +

Bp
2

+ Tp

)2 ρ(5 + 3ρ2) + Tpr(5 + 12ρ2)

(1− ρ2)3
,

(5.40)

ϕeven
3 =

(
1 +

Bp
2

+ Tp

)2 3ρ2(3 + ρ)

(1− ρ2)3
,(5.41)
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and

(5.42) sup
k

|∆̂kΠ̂
odd
p (0)|

1− D̂(k)
≤

3∑
j=0

ϕodd
j

∥∥∥∥ V̂ j
p

1− D̂

∥∥∥∥
∞
,

where

ϕodd
0 = 1 + 2(Bp + r) +

3

4
Bp(Bp + 2r) + 3Tpr +

(
1 +

Bp
2

+ Tp

)
14rρ2

(1− ρ2)2

+

(
1 +

Bp
2

+ Tp

)2 rρ(2r + Tp)(7 + ρ2)

(1− ρ2)3
,

(5.43)

ϕodd
1 =

(
1 +

Bp
2

+ Tp

)2 ρ(ρ+ 2Tpr + 2T 2
p )(7 + ρ2)

(1− ρ2)3
,(5.44)

ϕodd
2 = Tp(8 + 6Bp + 9Tp) +

(
1 +

Bp
2

+ Tp

)
14Tpρ

2

(1− ρ2)2

+

(
1 +

Bp
2

+ Tp

)2 ρ2(14 + 3ρ2) + 2Tprρ(7 + ρ2)

(1− ρ2)3
,

(5.45)

ϕodd
3 =

(
1 +

Bp
2

+ Tp

)2 ρ(7 + ρ2)

(1− ρ2)3
.(5.46)

Applying these bounds to (2.12), (2.14) and (2.15), we obtain the following bounds on the

bootstrapping functions {gi(p)}3i=1.

Lemma 5.4. Suppose ρ < 1 and that Lp, Bp, Tp, ‖V̂ j
p /(1 − D̂)‖∞, j = 0, 1, 2, 3, are so

small that the inequality (2.17) holds. Then, we have

g1(p) ≤
(

1− (1 +Bp/2 + Tp)
2r

1− ρ2

)−1

,(5.47)

g2(p) ≤
(

1−
(

1− Bp
2
− (1 +Bp/2 + Tp)

2r

1− ρ

)−1 3∑
j=0

ϕodd
j

∥∥∥∥ V̂ j
p

1− D̂

∥∥∥∥
∞

)−1

,(5.48)

g3(p) ≤ max

{
g2(p)

(
1− Bp

2
− (1 +Bp/2 + Tp)

2r

1− ρ

)−1

, 1

}3

× p2

(
1 +Bp +

2(1 +Bp/2 + Tp)
2r

1− ρ + 2

3∑
j=0

(ϕeven
j + ϕodd

j )

∥∥∥∥ V̂ j
p

1− D̂

∥∥∥∥
∞

)2

.

Proof. The bound on g1(p) is easy; since Π̂p(0) = Π̂even
p (0)− Π̂odd

p (0), we obtain

g1(p)
(2.12)

≤
(
1− Π̂odd

p (0)
)−1

(5.36)

≤
(

1− (1 +Bp/2 + Tp)
2r

1− ρ2

)−1

.

Also, since −∆̂kΠ̂p(0) = |∆̂kΠ̂
even
p (0)|−|∆̂kΠ̂

odd
p (0)| and Î(k) ≡ 1+Π̂p(k) ≥ 1−Π̂even

p (0)−
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Π̂odd
p (0) (> 0 as long as the inequality (2.17) holds), we obtain

g2(p)
(2.14)

≤ sup
k

(
1− 1

1− Π̂even
p (0)− Π̂odd

p (0)

|∆̂kΠ̂
odd
p (0)|

1− D̂(k)

)−1

≤
(

1−
(

1− Bp
2
− (1 +Bp/2 + Tp)

2r

1− ρ

)−1 3∑
j=0

ϕodd
j

∥∥∥∥ V̂ j
p

1− D̂

∥∥∥∥
∞

)−1

.

(5.49)

For g3(p), since Ĝp(k) = Îp(k)Âp(k) ≡ Îp(k)/(1 − Ĵp(k)) for percolation and |Ĝp(k)| ≤
g2(p)Ŝ1(k) ≡ g2(p)/(1− D̂(k)), we obtain

g3(p)
(2.15)

≤ sup
k,l

1− D̂(k)

Û(k, l)

(
Ŝ1(l + k) + Ŝ1(l − k)

2
Ŝ1(l)

(
g2(p)

1− Π̂even
p (0)− Π̂even

p (0)

)2 |∆̂kĴp(l)|
1− D̂(k)

+ 4Ŝ1(l + k)Ŝ1(l − k)

(
g2(p)

1− Π̂even
p (0)− Π̂even

p (0)

)3−∆̂l |̂Jp|(0)

1− D̂(l)

−∆̂k |̂Jp|(0)

1− D̂(k)

)
(2.8)

≤ max

{
g2(p)

1− Π̂even
p (0)− Π̂even

p (0)
, 1

}3

max

{
sup
k,l

|∆̂kĴp(l)|
1− D̂(k)

,

(
sup
k

−∆̂k |̂Jp|(0)

1− D̂(k)

)2}
.

Since Jp = pD + Πp ∗ pD for percolation, we have

|∆̂kĴp(l)|
1− D̂(k)

=
p

1− D̂(k)

∣∣∣∣∑
x

(1− cos k · x)eil·x(D(x) + (Πp ∗D)(x))

∣∣∣∣
≤ p
(∑

x

1− cos k · x
1− D̂(k)

D(x) +
∑
x,y

1− cos k · x
1− D̂(k)

|Πp(y)|D(x− y)

)
≤ p
(

1 +
∑
x,y

1− cos k · x
1− D̂(k)

(
Πeven
p (y) + Πodd

p (y)
)
D(x− y)

)
,

which is larger than 1, since p ≥ 1. By the telescopic inequality (3.2), the sum over x, y

is bounded as ∑
x,y

1− cos k · x
1− D̂(k)

(
Πeven
p (y) + Πodd

p (y)
)
D(x− y)

≤ 2
∑
y

(1− cos k · y)(Πeven
p (y) + Πodd

p (y))

1− D̂(k)

∑
x

D(x− y)

+ 2
∑
y

(
Πeven
p (y) + Πodd

p (y)
)∑

x

(1− cos k · (x− y))D(x− y)

1− D̂(k)

≤ 2

( |∆̂kΠ̂
even
p (0)|

1− D̂(k)
+
|∆̂kΠ̂

odd
p (0)|

1− D̂(k)

)
+ 2
(
Π̂even
p (0) + Π̂odd

p (0)
)
.

As a result,

|∆̂kĴp(l)|
1− D̂(k)

≤ p
(

1 + 2
(
Π̂even
p (0) + Π̂odd

p (0)
)

+ 2

( |∆̂kΠ̂
even
p (0)|

1− D̂(k)
+
|∆̂kΠ̂

odd
p (0)|

1− D̂(k)

))
.



Lace Expansion on BCC Lattice 775

It is not difficult to check if −∆̂k |̂Jp|(0)/(1− D̂(k)), which is nonnegative, obeys the same

bound. Therefore, we obtain

g3(p) ≤ max

{
g2(p)

(
1− Bp

2
− (1 +Bp/2 + Tp)

2r

1− ρ

)−1

, 1

}3

× p2

(
1 +Bp +

2(1 +Bp/2 + Tp)
2r

1− ρ + 2
3∑
j=0

(ϕeven
j + ϕodd

j )

∥∥∥∥ V̂ j
p

1− D̂

∥∥∥∥
∞

)2

,

as required.

5.4. Bounds on diagrams in terms of random-walk quantities

In this subsection, we evaluate the diagrams for p ∈ [1, pc) and complete the proofs of

Propositions 2.3 and 2.4 for percolation.

First, we evaluate the diagrams for p ∈ (1, pc) under the bootstrapping assumptions.

Lemma 5.5. Let d ≥ 7 and p ∈ (1, pc) and suppose that gi(p) ≤ Ki, i = 1, 2, 3, for some

constants {Ki}3i=1. Then, we have

Tp ≤ K2
1K

3
2ε3,(5.50) ∥∥∥∥ V̂ 0

p

1− D̂

∥∥∥∥
∞
≤ K2

1K2ε1 + 5K2
1K2K3ε3,(5.51) ∥∥∥∥ V̂ 1

p

1− D̂

∥∥∥∥
∞
≤ K1 +

5K2
1

2d
+ 5K3

1K2ε1 + 6K3
1K

2
2ε2 + 20K2

1K2K3ε3,(5.52) ∥∥∥∥ V̂ 2
p

1− D̂

∥∥∥∥
∞
≤ K2

1

2d
+K3

1K2ε1 + 2K3
1K

2
2ε2 + 10K2

1K2K3ε3,(5.53) ∥∥∥∥ V̂ 3
p

1− D̂

∥∥∥∥
∞
≤ 5K5

1K
7
2K3(1 + 3ε1 + 2ε2 + ε3)ε2

3.(5.54)

Proof. The inequality (5.50) has already been explained in (2.22) and (2.23).

To prove (5.51), we first use the trivial inequality Gp ≤ δ + pD ∗Gp to obtain

V̂ 0
p (k)

1− D̂(k)
≤
∑
x∼o

1− cos k · x
1− D̂(k)

pD(x)(pD ∗Gp)(x)

+
∑
x

1− cos k · x
1− D̂(k)

(
(pD)∗2 ∗Gp

)
(x)(pD ∗Gp)(x).

(5.55)

By symmetry (cf., (4.13)), the first term is bounded by

(5.56) p sup
x∼o

(pD ∗Gp)(x) =
p

2d

∑
x∼o

(pD ∗Gp)(x)︸ ︷︷ ︸
=((pD)∗2∗Gp)(o)

= Lp
(4.20)

≤ K2
1K2ε1.
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For the second term, we use the Fourier representation to obtain∑
x

(
(pD)∗2 ∗Gp

)
(x)

(pD ∗Gp)(x)(1− cos k · x)

1− D̂(k)

=

∫
Td

ddl

(2π)d
(pD̂(l))2Ĝp(l)

−∆̂k(pD̂(l)Ĝp(l))

1− D̂(k)

≤ K2
1K2K3

∫
Td

ddl

(2π)d
D̂(l)2Ŝ1(l)

Û(k, l)

1− D̂(k)
.

(5.57)

Recall the definition (2.8) of Û(k, l), in which we have three terms: 1
2 Ŝ1(l + k)Ŝ1(l),

1
2 Ŝ1(l − k)Ŝ1(l) and 4Ŝ1(l + k)Ŝ1(l − k). By inversion, we have, e.g.,∫

Td

ddl

(2π)d
D̂(l)2Ŝ1(l)Ŝ1(l + k)Ŝ1(l − k)

=
∑
x,y

S1(x)S1(y)eik·(x−y)

∫
Td

ddl

(2π)d
D̂(l)2Ŝ1(l)eil(x+y)︸ ︷︷ ︸

=(D∗2∗S1)(x+y)

≤ (D∗2 ∗ S∗31 )(o) = ε3.

(5.58)

It is not difficult to check if the other combinations obey the same bound. This completes

the proof of (5.51).

Next, we prove (5.53) before showing (5.52). First, by the trivial inequality Gp ≤
δ + pD ∗Gp, we obtain

V̂ 2
p (k)

1− D̂(k)
≤ sup

x

∑
y

pD(y)(1− cos k · y)

1− D̂(k)
(pD ∗Gp)(x− y)

+ sup
x

∑
y

((pD)∗2 ∗Gp)(y)(1− cos k · y)

1− D̂(k)
(pD ∗Gp)(x− y).

Since ‖pD ∗Gp‖∞ ≤ p/2d + Lp, the first term is bounded by K1(K1/2
d + K2

1K2ε1). For

the second term, we use the telescopic inequality (3.2) to obtain

2
∑
y,z

pD(z)(pD ∗Gp)(y − z)
1− D̂(k)

(
(1− cos k · z) + (1− cos k · (y − z))

)
(pD ∗Gp)(x− y)

≤ 2
∑
z

pD(z)(1− cos k · z)
1− D̂(k)

(
(pD)∗2 ∗G∗2p

)
(x− z)

+ 2
∑
y′

(pD ∗Gp)(y′)(1− cos k · y′)
1− D̂(k)

(
(pD)∗2 ∗Gp

)
(x− y′),

where we have used the replacement y′ = y−z. Since ((pD)∗2 ∗G∗2p )(x−z) ≤ Bp, which is

due to the Schwarz inequality, the first term is bounded by 2pBp ≤ 2K3
1K

2
2ε2 (cf., (4.20)).
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On the other hand, by the Fourier representation, the second term is bounded by (cf.,

(5.57) and (5.58))

2

∫
Td

ddl

(2π)d
|∆̂k(pD̂(l)Ĝp(l))|

1− D̂(k)
(pD̂(l))2Ĝp(l)

≤ 2K2
1K2K3

∫
Td

ddl

(2π)d
Û(k, l)

1− D̂(k)
D̂(l)2Ŝ1(l) ≤ 10K2

1K2K3ε3.

(5.59)

This completes the proof of (5.53).

Similarly, by using the trivial inequality Gp ≤ δ+pD∗Gp and the telescopic inequality

(3.2), we have

V̂ 1
p (k)

1− D̂(k)
≤ sup

x

∑
y

pD(y)(1− cos k · y)

1− D̂(k)
Gp(x− y)︸ ︷︷ ︸
≤‖Gp‖∞

+ 2 sup
x

∑
y

pD(y)(1− cos k · y)

1− D̂(k)
(pD ∗G∗2p )(x− y)︸ ︷︷ ︸

≤r

+ 2 sup
x

∑
y

(pD ∗Gp)(y)(1− cos k · y)

1− D̂(k)
(pD ∗Gp)(x− y)︸ ︷︷ ︸

=‖V̂ 2
p /(1−D̂)‖∞

.

By ‖Gp‖∞ ≤ 1 + p/2d +Lp ≤ 1 +K1/2
d +K2

1K2ε1 and using (4.29) and (5.53), we obtain

(5.52).

It remains to show the bound (5.54) of order ε2
3. This is an improvement from a naive

bound of order ε3, and is a result of repeated applications of the Hölder and Schwarz

inequalities, as explained now. First, we recall the definition of V̂ 3
p (k):

V̂ 3
p (k) = sup

x,y

∑
{vj}5j=1

Gp(v1)(pD ∗Gp)(v2 − v1)(1− cos k · (v2 − v1))

× (pD ∗Gp)(v3 − v2)(pD ∗Gp)(v4 − v1)(pD ∗Gp)(v4 − v2)

× (pD ∗Gp)(v5 − v4)(pD ∗Gp)(x− v5)Gp(y + v3 − v5).

By using the Fourier representation and then the assumptions gj(p) ≤ Kj for j = 1, 2, 3,

the above sum over {vj}5j=1 is bounded above as∫ 3∏
j=1

ddlj
(2π)d

Ĝp(l1)
(
− ∆̂k

(
pD̂ ∗Gp(l2)

))
pD̂ ∗Gp(l3)pD̂ ∗Gp(l1 − l2)

× pD̂ ∗Gp(l3 − l2)pD̂ ∗Gp(l1 − l3)pD̂ ∗Gp(l1)Ĝp(l3)e−il1·x+il3·y

≤ p5

∫ 3∏
j=1

ddlj
(2π)d

|Ĝp(l1)|
∣∣∆̂k

(
pD̂(l2)Ĝp(l2)

)∣∣|D̂(l3)Ĝp(l3)||D̂(l1 − l2)Ĝp(l1 − l2)|
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× |D̂(l3 − l2)Ĝp(l3 − l2)||D̂(l1 − l3)Ĝp(l1 − l3)||D̂(l1)Ĝp(l1)||Ĝp(l3)|

≤ K5
1K

7
2K3

∫ 3∏
j=1

ddlj
(2π)d

Ŝ1(l1)Û(k, l2)|D̂(l3)|Ŝ1(l3)|D̂(l1 − l2)|Ŝ1(l1 − l2)

× |D̂(l3 − l2)|Ŝ1(l3 − l2)|D̂(l1 − l3)|Ŝ1(l1 − l3)|D̂(l1)|Ŝ1(l1)Ŝ1(l3),

where we have used the abbreviation
∫

=
∫∫∫

(Td)3 and the fact that Ŝ1 ≥ 0.

To investigate the above integral, we introduce the notation, such as Ŝ1−2 = Ŝ1(l1− l2)

and Ŝ2+ = Ŝ1(l2 + k) (n.b. the new subscripts are not the values of p). By repeated

applications of the Hölder and Schwarz inequalities and periodicity, the contribution from,

e.g., Ŝ2+Ŝ2− in Û(k, l2) is bounded as∫ 3∏
j=1

ddlj
(2π)d

Ŝ1Ŝ2+Ŝ2−|D̂3|Ŝ3|D̂1−2|Ŝ1−2|D̂3−2|Ŝ3−2|D̂1−3|Ŝ1−3|D̂1|Ŝ1Ŝ3

≤
(∫ 3∏

j=1

ddlj
(2π)d

(
Ŝ2+|D̂3−2|Ŝ3−2|D̂1−3|Ŝ1−3

)3)1/3

×
(∫ 3∏

j=1

ddlj
(2π)d

(
|D̂1|Ŝ2

1 |D̂3|Ŝ2
3 Ŝ2−|D̂1−2|Ŝ1−2

)3/2)2/3

=

(∫
Td

ddl2
(2π)d

Ŝ3
2+︸ ︷︷ ︸

≡5

∫
Td

ddl3
(2π)d

|D̂3−2|3Ŝ3
3−2︸ ︷︷ ︸

≤ε3

∫
Td

ddl1
(2π)d

|D̂1−3|3Ŝ3
1−3︸ ︷︷ ︸

≤ε3

)1/3

×
(∫

Td

ddl1
(2π)d

|D̂1|3/2Ŝ3
1

∫
Td

ddl3
(2π)d

|D̂3|3/2Ŝ3
3

∫
Td

ddl2
(2π)d

Ŝ
3/2
2− |D̂1−2|3/2Ŝ3/2

1−2︸ ︷︷ ︸
≤51/2ε

1/2
3 (∵Schwarz)

)2/3

≤ 52/3ε3

(∫
Td

ddl1
(2π)d

|D̂1|3/2Ŝ3
1

)4/3

≤ 52/3ε3

((∫
Td

ddl1
(2π)d

D̂2
1Ŝ

3
1

)3/4(∫
Td

ddl1
(2π)d

Ŝ3
1

)1/4)4/3

≤ 5 ε2
3.

By the identity S1 = δ +D ∗ S1, we further obtain

5 =

∫
Td

ddl

(2π)d
Ŝ1(l)3 = 1 + 3ε1 + 2ε2 + ε3.

The contributions from the other terms in Û(k, l2) obey the same bound. This completes

the proof of (5.54), hence the proof of Lemma 5.5.

Next, we evaluate the diagrams at p = 1 by using the trivial inequality G1(x) ≤ S1(x).

Here, we do not need the bootstrapping assumptions.



Lace Expansion on BCC Lattice 779

Lemma 5.6. Let d ≥ 7 and p = 1. Then, we have

T1 ≤ ε3,(5.60) ∥∥∥∥ V̂ 0
1

1− D̂

∥∥∥∥
∞
≤ ε1 + 5ε3,

∥∥∥∥ V̂ 1
1

1− D̂

∥∥∥∥
∞
≤ 1 +

5

2d
+ 5ε1 + 6ε2 + 20ε3,∥∥∥∥ V̂ 2

1

1− D̂

∥∥∥∥
∞
≤ 1

2d
+ ε1 + 2ε2 + 10ε3,

∥∥∥∥ V̂ 3
1

1− D̂

∥∥∥∥
∞
≤ 5(1 + 3ε1 + 2ε2 + ε3)ε2

3.

Proof. The inequality (5.60) has already been explained in (2.20) and (2.21). Similarly,

we can show the other inequalities by using the trivial inequality G1(x) ≤ S1(x). For

example (cf., (5.55)–(5.57)),

V̂ 0
1 (k)

1− D̂(k)
≤
∑
x∼o

D(x)(1− cos k · x)

1− D̂(k)
(D ∗ S1)(x)

+
∑
x

(D∗2 ∗ S1)(x)
(D ∗ S1)(x)(1− cos k · x)

1− D̂(k)

≤ (D∗2 ∗ S1)(o)︸ ︷︷ ︸
=ε1

+

∫
Td

ddl

(2π)d
D̂(l)2Ŝ1(l)

|∆̂k(D̂(l)Ŝ1(l))|
1− D̂(k)

.

(5.61)

Since ∣∣∆̂k

(
D̂(l)Ŝ1(l)

)∣∣ =
∣∣∆̂k

(
Ŝ1(l)− 1

)∣∣ = |∆̂kŜ1(l)| ≤ Û(k, l),

the integral in (5.61) is bounded by 5ε3 (cf., (5.58)). To avoid redundancy, we refrain from

showing the other inequalities. This completes the proof of Lemma 5.6.

Proof of Proposition 2.3. Since ε1, ε2 and ε3 are finite for d ≥ 7 (see Table 2.1 in Sec-

tion 2.1) and decreasing in d (because D∗2n(o) ≡
((

2n
n

)
2−2n

)d
on Ld is decreasing in d),

we have

(5.62) r = ‖D‖∞ + L1 +B1

(4.24)

≤ 2−d + ε1 + ε2 ≤


0.0326 [d = 7],

0.0146 [d = 8],

0.0068 [d ≥ 9],

and, by (4.24), (5.60) and also (5.62),

ρ = T1(2r + T1) + (r + T1)

(
1 +

B1

2
+ T1

)

≤ ε3(2r + ε3) + (r + ε3)
(

1 +
ε2

2
+ ε3

)
≤


0.0967 [d = 7],

0.0279 [d = 8],

0.0111 [d ≥ 9].
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In addition, by (5.35)–(5.46) and Lemma 5.6, we have

∞∑
n=0

π̂
(n)
1 (0) + sup

k

∞∑
n=0

−∆̂kπ̂
(n)
1 (0)

1− D̂(k)
≤


2.7700 [d = 7],

0.3623 [d = 8],

0.1124 [d ≥ 9],

which implies that the inequality (2.17) holds for all d ≥ 8 (but not for d = 7). Then, by

Lemma 5.4, we obtain

g1(1) ≤
(

1− (1 + ε2/2 + ε3)2r

1− ρ2

)−1

≤

1.0154 [d = 8],

1.0070 [d ≥ 9],
(5.63)

g2(1) ≤
(

1−
(

1− ε2

2
− (1 + ε2/2 + ε3)2r

1− ρ

)−1 3∑
j=0

ϕodd
j

∥∥∥∥ V̂ j
1

1− D̂

∥∥∥∥
∞

)−1

(5.64)

≤

1.1049 [d = 8],

1.0272 [d ≥ 9],
(5.65)

g3(1) ≤
[
the bounds in (5.64)

]3 × (1− ε2

2
− (1 + ε2/2 + ε3)2r

1− ρ

)−3

(5.66)

×
(

1 + ε2 +
2(1 + ε2/2 + ε3)2r

1− ρ + 2
3∑
j=0

(ϕeven
j + ϕodd

j )

∥∥∥∥ V̂ j
1

1− D̂

∥∥∥∥
∞

)2

(5.67)

≤

4.2433 [d = 8],

1.6673 [d ≥ 9].
(5.68)

Proposition 2.3 for percolation holds as long as K1 > 1.0154, K2 > 1.1049, K3 > 4.2433

for d = 8, and K1 > 1.0070, K2 > 1.0272, K3 > 1.6673 for d ≥ 9.

Proof of Proposition 2.4. Let

K1 = 1.01, K2 = 1.09, K3 = 2.70,

so that Proposition 2.3 holds for d ≥ 9. Then, by Table 2.1 in Section 2.1, we obtain

(5.69) r
(4.20)

≤ K12−d +K2
1K2ε1 +K2

1K
2
2ε2 ≤ 0.0077,

and, by (4.20), (5.50) and (5.69),

ρ ≤ K2
1K

3
2ε3(2r +K2

1K
3
2ε3) + (r +K2

1K
3
2ε3)

(
1 +

K2
1K

2
2ε2

2
+K2

1K
3
2ε3

)
≤ 0.0134.
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In addition, by (5.35)–(5.46) and Lemma 5.5, we have

∞∑
n=0

π̂(n)
p (0) + sup

k

∞∑
n=0

−∆̂kπ̂
(n)
p (0)

1− D̂(k)
≤ 0.2151,

which implies that the inequality (2.17) holds. Then, similar to (5.63)–(5.66), we obtain

g1(p) ≤
(

1− (1 +K2
1K

2
2ε2/2 +K2

1K
3
2ε3)2r

1− ρ2

)−1

≤ 1.0080 < K1,

g2(p) ≤
(

1−
(

1− K2
1K

2
2ε2

2
− (1 +K2

1K
2
2ε2/2 +K2

1K
3
2ε3)2r

1− ρ

)−1 3∑
j=0

ϕodd
j

∥∥∥∥ V̂ j
p

1− D̂

∥∥∥∥
∞

)−1

≤ 1.0810 < K2,

g3(p) ≤ (1.081)3

(
1− K2

1K
2
2ε2

2
− (1 +K2

1K
2
2ε2/2 +K2

1K
3
2ε3)2r

1− ρ

)−3

K2
1

×
(

1 +K2
1K

2
2ε2 +

2(1 +K2
1K

2
2ε2/2 +K2

1K
3
2ε3)2r

1− ρ

+ 2
3∑
j=0

(ϕeven
j + ϕodd

j )

∥∥∥∥ V̂ j
p

1− D̂

∥∥∥∥
∞

)2

≤ 2.6606 < K3.

This completes the proof of Proposition 2.4 for percolation.

5.5. Further discussion

We have been able to prove convergence of the lace expansion for percolation on Ld≥9 in full

detail. Compared with the analysis for SAW, the analysis for percolation is more involved.

However, as compared to the NoBLE analysis on Zd≥11 [10, 11], the current analysis is

much simpler, shorter and more transparent. This is due to the simple structure of the

BCC lattice Ld and the choice of the bootstrapping functions {gi(p)}3i=1.

To go down to the desired 7 dimensions, we must improve our analysis in various

aspects. Some of the key elements we can think of are almost identical to those for SAW

already mentioned in Section 4.5, with slight modifications as follows.

(1) The largest contribution comes from |∆̂kπ̂
(0)
p (0)| and |∆̂kπ̂

(1)
p (0)|, and their common

leading term is proportional to the diagram function V̂ 0
p (k). To improve its bound,

we may introduce extra diagrams, such as B′p ≡ ‖(pD)∗4∗G∗2p ‖∞ and T ′p ≡ ‖(pD)∗4∗
G∗3p ‖∞, as is done for SAW, or even longer diagrams, such as T

(n)
p ≡ ‖(pD)∗2n ∗

G∗3p ‖∞. Although its RW counterpart (D∗2n ∗ S∗31 )(o) is decreasing in n, the bound

on T
(n)
p may attain the minimum at some n∗ ∈ N, due to the exponentially growing

factor p2n. So far, we have not investigated a result of using T
(n∗)
p , since introducing
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such new diagrams increases the number of terms to deal with, which may cause

extra complication.

(2) Similarly to the case of ‖Ŵp/(1 − D̂)‖∞ for SAW, we used the Schwarz inequality

to bound ‖V̂ j
p /(1 − D̂)‖∞, j = 0, 1, 2, 3, in Lemmas 5.5 and 5.6. As a result, the

relatively large factor 5 appeared (see, e.g., (5.59)), as explained in the third footnote.

It would be of great help if we could do away with the Schwarz inequality to achieve

a better bound on (2.7).

(3) As is the case for SAW, we ignored the contributions from Π̂even
p (0) and |∆̂kΠ̂

even
p (0)|

in (5.47) and (5.48). If we include their effect into computation, then g1(p) could be

much closer to 1 (cf. (2.12)) and g2(p) could be even smaller than 1 (cf. (2.14)), and

as a result, we could achieve convergence of the lace expansion on Ld≥7. However, to

make use of those even terms, we must also control lower bounds on g1(p) and g2(p),

and to do so, we need nontrivial lower bounds on the lace-expansion coefficients.

Achieving this goal without causing too much complication would be a challenging

task.

(4) Instead of estimating Ĝp(k) by Ŝ1(k) ≡ (1 − D̂(k))−1 uniformly in k ∈ Td, which

may not be efficient in the ultraviolet regime, we may split the estimate of Gp(x)

between for large x and for small x. For small x, estimating Gp(x) by S1(x) is

expected to be a bit too crude. Therefore, estimating the lace-expansion coefficients

in the ultraviolet regime by naively using the BK inequality would be too primitive.

Here, we may need incorporate the ultraviolet regularization of [3] or large-field

analysis in the rigorous renormalization group for spin systems.
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