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High Spatial Accuracy Analysis of Linear Triangular Finite Element for

Distributed Order Diffusion Equations

Lin He and Jincheng Ren*

Abstract. In this paper, an effective numerical fully discrete finite element scheme

for the distributed order time fractional diffusion equations is developed. By use of

the composite trapezoid formula and the well-known L1 formula approximation to

the distributed order derivative and linear triangular finite element approach for the

spatial discretization, we construct a fully discrete finite element scheme. Based on

the superclose estimate between the interpolation operator and the Ritz projection op-

erator and the interpolation post-processing technique, the superclose approximation

of the finite element numerical solution and the global superconvergence are proved

rigorously, respectively. Finally, a numerical example is presented to support the

theoretical results.

1. Introduction

In this paper, we are concerned with the following distributed order fractional diffusion

equations:

(1.1)


Dwt u(x, y, t) = ∆u(x, y, t) + g(x, y, t) if (x, y) ∈ Ω, t ∈ (0, T ],

u(x, y, 0) = u0(x, y) if (x, y) ∈ Ω,

u(x, y, t)|∂Ω = 0 if t ∈ [0, T ],

where Ω ⊂ R2 is a bounded, convex domain with Lipschitz boundary ∂Ω and [0, T ] is the

time interval. The symbol ∆ denotes the Laplacian operator. The given functions g(x, y, t)

and u0(x, y) are assumed to be smooth. The distributed order fractional derivative under
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consideration is defined by [10] as follows:

Dwt u(x, y, t) =

∫ 1

0
w(α) C0D

α
t u(x, y, t) dα,

w(α) ≥ 0,

∫ 1

0
w(α) dα = ω0 > 0,

C
0D

α
t u(x, y, t) =

 1
Γ(1−α)

∫ t
0 (t− s)−α ∂u(x,y,s)

∂s ds if 0 ≤ α < 1,

∂u(x,y,t)
∂t if α = 1.

(1.2)

Equation (1.1) was obtained to improve the modeling accuracy of the single-term

model for describing problems in mathematical physics and engineering [1, 2, 10, 15, 22].

Due to their extensive development of fractional partial differential equations (PDEs) in

engineering and science, there has been significant interest in constructing some numerical

schemes for their solutions. Liao et al. [8] obtained a Du Fort-Frankel type explicit scheme

for solving the distributed order subdiffusion equation by combining the L1 formula of

Riemann-Liouville derivative with the midpoint quadrature of the weighted integral. Us-

ing the weighted and shifted Grünwald formula proposed in [21], Deng et al. established

some effective difference schemes for solving one-dimensional and two-dimensional dis-

tributed order fractional PDEs. Gao et al. [4] investigated the unconditional stability

and convergence of the obtained schemes for distributed order fractional PDEs with the

energy method. In recent work [5], a rigorous numerical analysis of two fully discrete

schemes for the distributed-order time fractional diffusion equation with nonsmooth ini-

tial data was presented. An implicit difference scheme for the time distributed-order and

Riesz space fractional diffusions in bounded domains was discussed, and its stability and

convergence was analyzed in [23]. Chen et al. [3] studied a fully discrete spectral method

for the distributed order time fractional reaction-diffusion equation on an unbounded do-

main. Recently, Ren et al. [12] considered an efficient algorithm for the evaluation of the

Caputo fractional derivative and the superconvergence property of fully discrete finite ele-

ment approximation for the time fractional subdiffusion equation. Later, they presented a

fully discrete scheme for the diffusion-wave equations in [11]. The unconditional stability

and superconvergence error estimates of the obtained schemes are investigated using the

integral identities and postprocessing techniques. The optimal time accuracy O(τ3−α)

(1 < α < 2) is obtained.

Recently, Shi et al. [17–19] considered some finite element methods for solving the

fractional PDEs. As we all know, the superconvergence analysis is widely applied to

the classical PDEs for different finite element schemes, to the best of our knowledge, it

seems that there are few studies focusing on the superconvergence error estimates of the

triangular finite element for the fractional PDEs with distributed order. This gap in the

research literature is the motivation for our work. Based on the relationship between Ritz
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projection and the interpolated operator of linear triangular element, the unconditional

stability priori estimate and the global superconvergence estimate of the FEM scheme for

(1.1) are proved rigorously.

The plan of this paper is as follows. In Section 2, some notations and auxiliary lemmas

are presented. In Sections 3 and 4, a fully discrete scheme for the distributed order time

fractional subdiffusion equations is developed and the unconditional stability as well as

the superconvergence of the scheme are proved, respectively. In Section 5, some numerical

results are provided to verify our theoretical analysis. Throughout, the notation C denotes

a generic constant, which may not be the same at different occurrences, but it is always

independent of the mesh size h, the time step size τ and ∆α.

2. Preliminaries

In this section, some useful notations, lemmas and formulae will be prepared for the

forthcoming work.

Let =h = {K} be a be a family of uniform triangular meshes, hK = diam{K} and

h = maxK∈=h
hK . Then over the triangulation =h, we define a continuous piecewise linear

finite element space Vh by

Vh = {vh ∈ H1
0 (Ω), vh|K is a linear function, ∀K ∈ =h}.

Moreover, let Rh : H1
0 (Ω)→ Vh be the Ritz projection operator defined by

(∇(u−Rhu),∇vh) = 0, ∀ vh ∈ Vh.

Then, from the projection error estimates, there holds

(2.1) ‖u−Rhu‖+ h‖∇(u−Rhu)‖ ≤ Ch2‖u‖2, ∀u ∈ H2(Ω) ∩H1
0 (Ω).

For the finite difference discretization of the fractional derivative, let 0 = t0 < t1 <

· · · < tN = T be the equidistant partition of time interval [0, T ] with step size τ = T/N

for some positive integer N . We divide the interval [0, 1] into 2J-subintervals with ∆α =

1/(2J) and αl = l∆α, l = 0, 1, 2, . . . , 2J . Let un denote the solution u(x, y, t) at t = tn.

The L1 approximation of the Caputo fractional derivative is approximated by [20]:

C
0D

α
t u(x, y, tk) ≈

1

Γ(1− α)

k−1∑
j=0

∫ tj+1

tj

uj+1 − uj

τ

1

(tn − s)α
ds

=
1

µ(α)

[
a

(α)
0 uk −

k−1∑
j=1

(
a

(α)
k−j−1 − a

(α)
k−j
)
uj − a(α)

k−1u
0

]
≡ Dα

τ u
k, 1 ≤ k ≤ N,

(2.2)



698 Lin He and Jincheng Ren

where µ(α) = ταΓ(2− α), a
(α)
0 = 1, a

(α)
k = (k + 1)1−α − k1−α. The local truncation error

of (2.2) is of the order O(τ2−α) when the function u is twice continuously differentiable.

To describe the numerical approximation, the following lemma is useful.

Lemma 2.1. Let s(α) ∈ C2[0, 1], then we have∫ 1

0
s(α) dα = ∆α

2l∑
l=0

cls(αl)−
(∆α)2

12
s′′(ξ), ξ ∈ (0, 1),

where c0 = c2J = 1/2, cl = 1, l = 1, 2, . . . , 2J − 1.

3. Stability of the fully discrete finite element scheme

This section is devoted to the study of the stability of the fully discrete finite element

scheme.

Suppose that w(α) ∈ C2[0, 1] and C
0D

α
t u(x, y, t) ∈ C2[0, 1], then by Lemma 2.1, (1.2)

and (2.2), we have

(3.1) Dwt u(x, y, tk) = ∆α
2J∑
l=0

clw(αl)D
αl
τ u

k(x, y) +O(τ + (∆α)2).

We construct the fully discrete finite element for the problem (1.1) as: Find ukh ∈ Vh
such that

(3.2)

∆α
∑2J

l=0 clw(αl)(D
αl
τ u

k
h, vh) + (∇ukh,∇vh) = (gk, vh), ∀ vh ∈ Vh, 1 ≤ k ≤ N,

u0
h = Rhu

0.

Now, we focus on the stability analysis of the fully discrete scheme (3.2). Using the

similar arguments of [13, 14, 24], we can can obtain the result of Theorem 3.1. Since the

following estimates will play a key role in the error analysis of the FEM approximations,

we give some hints of the proof.

Theorem 3.1. The fully discrete finite element scheme (3.2) is unconditionally stable

with respect to the initial value u0 and the inhomogeneous term g, i.e.,

‖∇ukh‖2 ≤ ‖∇u0
h‖2 +

1

4
max

0≤α≤1
{Γ(1− α)Tα} max

1≤k≤N
‖gk‖2, 1 ≤ k ≤ N.

Proof. Choosing vh = ∆α
∑2J

l=0 clw(αl)D
αl
τ u

k
h in (3.2), it follows that(

∆α
2J∑
l=0

clw(αl)D
αl
τ u

k
h,∆α

2J∑
l=0

clw(αl)D
αl
τ u

k
h

)
+

(
∇ukh,∆α

2J∑
l=0

clw(αl)D
αl
τ ∇ukh

)

=

(
gk,∆α

2J∑
l=0

clw(αl)D
αl
τ u

k
h

)
, 1 ≤ k ≤ N.
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Noticing that a
(αl)
k−1 and

(
a

(αl)
k−j−1 − a

(αl)
k−j
)

are positive, we have for all 1 ≤ k ≤ N ,∥∥∥∥∥∆α
2J∑
l=0

clw(αl)D
αl
τ u

k
h

∥∥∥∥∥
2

+ ∆α
2J∑
l=0

clw(αl)

µαl
‖∇ukh‖2

= ∆α
2J∑
l=0

clw(αl)

µαl

k−1∑
j=1

(
a

(αl)
k−j−1 − a

(αl)
k−j
)
(∇ujh,∇u

k
h) + ∆α

2J∑
l=0

clw(αl)

µαl
a

(αl)
k−1(∇u0

h,∇ukh)

+

(
gk,∆α

2J∑
l=0

clw(αl)D
αl
τ u

k
h

)

≤ ∆α
2J∑
l=0

clw(αl)

µαl

k−1∑
j=1

(
a

(αl)
k−j−1 − a

(αl)
k−j
)‖∇ujh‖2 + ‖∇ukh‖2

2

+ ∆α
2J∑
l=0

clw(αl)

µαl
a

(αl)
k−1

‖∇u0
h‖2 + ‖∇ukh‖2

2
+

1

4
‖gk‖2 +

∥∥∥∥∥∆α
2J∑
l=0

clw(αl)D
αl
τ u

k
h

∥∥∥∥∥
2

.

Noticing (1.2), we get

∆α

2J∑
l=0

clw(αl)

µαl
‖∇ukh‖2 ≤ ∆α

2J∑
l=0

clw(αl)

µαl

k−1∑
j=1

(
a

(αl)
k−j−1 − a

(αl)
k−j
)
‖∇ujh‖

2

+ ∆α
2J∑
l=0

clw(αl)

µαl
a

(αl)
k−1B, 1 ≤ k ≤ N,

(3.3)

where

B = ‖∇u0
h‖2 +

1

4
max

0≤α≤1
{Γ(1− α)Tα} max

1≤k≤N
‖gk‖2.

Then, using mathematical induction, we have

(3.4) ‖∇ukh‖2 ≤ B, 1 ≤ k ≤ N.

According to (3.3), (3.4) is obviously true for k = 1. Assume that (3.4) is valid for

k = 2, . . . , l − 1, then we obtain

∆α
2J∑
l=0

clw(αl)

µαl
‖∇ukh‖2

≤ ∆α

2J∑
l=0

clw(αl)

µαl

l−1∑
j=1

(
a

(αl)
l−j−1 − a

(αl)
l−j
)
‖∇ujh‖

2 + ∆α

2J∑
l=0

clw(αl)

µαl
a

(αl)
l−1B

≤ ∆α

2J∑
l=0

clw(αl)

µαl

l−1∑
j=1

(
a

(αl)
l−j−1 − a

(αl)
l−j
)
B + ∆α

2J∑
l=0

clw(αl)

µαl
a

(αl)
l−1B

= ∆α

2J∑
l=0

clw(αl)

µαl
B.

Therefore, we get the desired result.
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4. Superconvergent error estimate for the fully discrete finite element scheme

In this section, the superclose estimate of ‖∇(Rhu
k − ukh)‖ is deduced unconditionally

through the relationship between the interpolated operator Ih and the Ritz projection

operator Rh, then the superconvergent error estimate for the scheme is derived.

For convenience, we employ the following splitting of the error

ek = (uk −Rhuk) + (Rhu
k − ukh) ≡ ρk + θk.

Then subtracting (1.1) from the problem (3.2), we get the error equation for 1 ≤ k ≤ N

that

(
∆α

2J∑
l=0

clw(αl)D
αl
τ θ

k, vh

)
+ (∇θk,∇vh)

= −

(
∆α

2J∑
l=0

clw(αl)D
αl
τ ρ

k, vh

)
+

(
∆α

2J∑
l=0

clw(αl)D
αl
τ u

k −Dw
t u

k, vh

)
, ∀ vh ∈ Vh.

(4.1)

Theorem 4.1. Suppose that C0Dαt u ∈ C2([0, 1];H2(Ω)∩H1
0 (Ω)), u and ukh are the solutions

of (1.1) and (3.2), respectively. Then we have the following superclose estimate for 1 ≤
k ≤ N ,

‖Rhuk − ukh‖1 ≤ C
(
τ + (∆α)2 + h2

)1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖2

 .

Proof. Taking vh = ∆α
∑2J

l=0 clw(αl)D
αl
τ θ

k in (4.1) yields

∥∥∥∥∥∆α

2J∑
l=0

clw(αl)D
αl
τ θ

k

∥∥∥∥∥
2

+ ∆α

2J∑
l=0

clw(αl)

µαl
‖∇θk‖2

= ∆α

2J∑
l=0

clw(αl)

µαl

k−1∑
j=1

(
a

(αl)
k−j−1 − a

(αl)
k−j
)
(∇θj ,∇θk)

+ ∆α
2J∑
l=0

clw(αl)

µαl
a

(αl)
k−1(∇θ0,∇θk)

−

(
∆α

2J∑
l=0

clw(αl)D
αl
τ ρ

k,∆α

2J∑
l=0

clw(αl)D
αl
τ θ

k

)

+

(
∆α

2J∑
l=0

clw(αl)D
αl
τ u

k −Dw
t u

k,∆α

2J∑
l=0

clw(αl)D
αl
τ θ

k

)
.

(4.2)
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Using (2.2), we have∥∥∥∥∥∆α
2J∑
l=0

clw(αl)D
αl
τ u

k

∥∥∥∥∥
2

2

≤

(
∆α

2J∑
l=0

clw(αl)

)2

max
0≤α≤1

‖Dα
τ u

k‖22

≤

(
∆α

2J∑
l=0

clw(αl)

)2

max
0≤α≤1

(
‖Dα

τ u
k − C

0Dαt uk‖22 + ‖C0Dαt uk‖22
)

≤

(
∆α

2J∑
l=0

clw(αl)

)2

max
0≤α≤1

(
τ2−α max

0≤s≤T
‖utt(s)‖22 + max

0≤s≤T
‖C0Dαt u(s)‖22

)

≤ (ω0 + 1)2

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖2

2

,

(4.3)

where in the last inequality we have used Lemma 2.1.

For the third term on the right-hand side of (4.2), we have by (2.1) and (4.3) that∣∣∣∣∣−
(

∆α
2J∑
l=0

clw(αl)D
αl
τ ρ

k,∆α
2J∑
l=0

clw(αl)D
αl
τ θ

k

)∣∣∣∣∣
≤ 3

4

∥∥∥∥∥∆α
2J∑
l=0

clw(αl)D
αl
τ ρ

k

∥∥∥∥∥
2

+
1

3

∥∥∥∥∥∆α
2J∑
l=0

clw(αl)D
αl
τ θ

k

∥∥∥∥∥
2

≤ Ch4

∥∥∥∥∥∆α
2J∑
l=0

clw(αl)D
αl
τ u

k

∥∥∥∥∥
2

2

+
1

3

∥∥∥∥∥∆α
2J∑
l=0

clw(αl)D
αl
τ θ

k

∥∥∥∥∥
2

≤ Ch4

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖2

2

+
1

3

∥∥∥∥∥∆α

2J∑
l=0

clw(αl)D
αl
τ θ

k

∥∥∥∥∥
2

.

(4.4)

For the last term on the right-hand side of (4.2), using (3.1) to get∣∣∣∣∣
(

∆α

2J∑
l=0

clw(αl)D
αl
τ u

k −Dw
t u

k,∆α

2J∑
l=0

clw(αl)D
αl
τ θ

k

)∣∣∣∣∣
≤ C

(
τ + (∆α)2

) ∥∥∥∥∥∆α

2J∑
l=0

clw(αl)D
αl
τ θ

k

∥∥∥∥∥
≤ C

(
τ + (∆α)2

)2
+

1

3

∥∥∥∥∥∆α
2J∑
l=0

clw(αl)D
αl
τ θ

k

∥∥∥∥∥ .
(4.5)

Then, substituting (4.4) and (4.5) into (4.2), and using the analytical method of Theo-

rem 3.1, we obtain the desired result.
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In what follows, we will give the estimate of ‖Ihuk − ukh‖1 with the idea of [16], where

Ih is the associated interpolation operator over Vh. It has been proved in [9] that for all

u ∈ H3(Ω),

(4.6) |(∇(u− Ihu),∇vh)| ≤ Ch2‖u‖3‖∇vh‖, ∀ vh ∈ Vh.

With the help of Theorem 4.1 and (4.6), we can derive the following superclose result

easily.

Theorem 4.2. Suppose that u and ukh are solutions of (1.1) and (3.2), respectively, u ∈
C2([0, 1];H3(Ω) ∩H1

0 (Ω)), then we have the superclose estimate for 1 ≤ k ≤ N that

‖Ihuk − ukh‖1 ≤ C
(
τ + (∆α)2 + h2

)1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖2 + ‖u‖3

 .

Now we consider a coarser decomposition T2h of Ω into patches K̃ such that Ω =⋃
K̃∈T2h K̃ and each patch K̃ consists of a fixed number of element K. The decomposition

Th can be generated from T2h by a regular refinement, i.e., a patch consists of four elements

(see Figure 4.1).

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�
�
�

Z1 Z2

Z3

Z6

Z4Z5

Figure 4.1: The element K̃.

Next we construct the postprocessing operator Π2h : C(K̃)→ P2(K̃) on K̃ as follows:

Π2hu(Zi) = u(Zi), i = 1, 2, . . . , 6,

where P2(K̃) is the space of polynomials of degrees no more than 2 on K̃. One can check

that the interpolation postprocessing operator defined above is well-posed and has the

following properties (cf. [9]):
Π2hIhu = Π2hu, ∀u ∈ H2(Ω),

‖Π2hu− u‖1 ≤ Chr|u|r+1, ∀u ∈ Hr+1(Ω), 0 ≤ r ≤ 2,

‖Π2hvh‖1 ≤ C‖vh‖1, ∀ vh ∈ Vh.

Thus we can obtain the following superconvergent result.
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Theorem 4.3. Under the assumptions of Theorem 4.2, we have the superconvergent result

for 1 ≤ k ≤ N that

‖uk −Π2hu
k
h‖1 ≤ C

(
τ + (∆α)2 + h2

)1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖2 + ‖u‖3

 .

Remark 4.4. The main contribution of this paper is to obtain thee superconvergence error

estimates for linear triangular finite element with the relationship between Ih and Rh.

Here, it should be pointed out that if we choose Ihu instead of Rhu in Theorem 4.1,

then the regularity of solution C
0Dαt u ∈ C2([0, 1];H2(Ω) ∩ H1

0 (Ω)) must be replaced by

u ∈ C2([0, T ];H3(Ω) ∩H1
0 (Ω)).

Remark 4.5. For the distributed-order fractional diffusion equations, we noticed that there

are some discussions on the regularity of distributed-order fractional diffusion equations,

such as Theorem 2.1 in [5], Theorems 2.1–2.2 in [7] and Theorems 1.1–1.3 in [6], but

they are not adopted to our convergence analysis as we may need some explicit bounds

on the time derivatives of the solution. We also believe that the solution of distributed-

order fractional diffusion equations may exists the weak singularity in the time direction,

it would be constructive and challenging to derive some more general regularities with

application to the analysis of some standard numerical schemes. We will go into further

investigation of this point in our future study.

Remark 4.6. The proposed method of this paper can be applied to other equations, such

as the time fractional wave equation, nonlinear Schrödinger equation.

Remark 4.7. Due to distributed order derivative is based on the composite trapezoid

formula and L1-type formula, whereas the temporal direction convergence order is only

one. Thus, it is of practical interest to develop time higher-order schemes and provide

rigorous error analysis.

5. Numerical experiment

In this section, we will present a numerical example to confirm the theoretical analysis.

Let Ω = [0, 1] × [0, 1], T = 0.5, w(α) = Γ(4 − α) and initial condition u0(x, y) = 0 in

the problem (1.1), then the exact solution of the example is

u(x, y, t) = 8t3 sin(πx) sin(πy).

Then g(x, y, t) is chosen corresponding to the exact solution.

In the computations, the domain Ω = [0, 1]× [0, 1] is triangulated as Figure 5.1. It is

the first divided into Mx ×My small rectangles (Mx and My are positive integers), and

then divide each rectangle into two triangles.
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Figure 5.1: The triangulation of domain Ω.

First, to investigate the numerical convergence rate of the proposed scheme in time,

we choose Mx = My = 300 and ∆α = 1/200, which are large enough to render negligible

the error caused by spatial discretization. The numerical errors and convergence orders in

H1 norm are given in Table 5.1. From Table 5.1, the first-order accuracy of scheme (3.2)

in time is verified by the example.

τ ‖un − unh‖1 rate

1/2 7.8128e-2 1.00

1/4 3.9162e-2 1.07

1/8 1.8593e-2 1.09

1/16 8.7343e-3 1.10

1/32 4.0747e-3

Table 5.1: Numerical errors and convergence orders in temporal direction with Mx =

My = 300 and ∆α = 1/200 at T = 0.5.

Secondly, the numerical accuracies of the fully finite element scheme in space is verified

by the example. Taking the fixed and sufficiently small temporal stepsizes and ∆α, the

‖un − unh‖, ‖un − unh‖1 and ‖un −Π2hu
n
h‖1 norm errors and spatial convergence orders of

the scheme are illustrated in Table 5.2, from which, the second-order supercloseness and

superconvergence of the scheme (3.2) is apparent, indicating the sharpness of our estimate

in Theorem 4.3.

Finally, we would like to investigate the numerical accuracy of the scheme (3.2) in

distributed-order variable ∆α. The H1-norm errors decrease as the step sizes in distribute

order are reduced. The optimal second-order convergence of ∆α is observed in Table 5.3,
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which is consistent with our theoretical analysis.

Mx ×My ‖un − unh‖ rate ‖un − unh‖1 rate ‖un −Π2hu
n
h‖1 rate

4× 4 4.3339e-2 1.87 2.9753e-1 0.94 5.4440e-2 1.63

8× 8 1.1863e-2 1.97 1.5471e-1 0.99 1.7581e-2 1.90

16× 16 3.0358e-3 2.00 7.8128e-2 1.00 4.6980e-3 1.99

32× 32 7.6026e-4 2.02 3.9162e-2 1.00 1.1846e-3 2.05

64× 64 1.8699e-4 1.9593e-2 2.8659e-4

Table 5.2: Numerical errors and convergence orders in spatial direction with τ = 1/200

and ∆α = 1/200 at T = 0.5.

∆α ‖un − unh‖1 rate

1/2 1.3117e-1 1.60

1/4 4.3335e-2 1.87

1/8 1.1858e-2 1.97

1/16 3.0300e-3 2.01

1/32 7.5444e-4

Table 5.3: Numerical errors and convergence orders in distributed order with Mx = My =

300 and τ = 1/200 at T = 0.5.

Acknowledgments

We would like to thank the anonymous referees for many constructive comments and

suggestions which led to an improved presentation of this paper. This work is supported by

Foundation of NSFC (No. 11601119), the program of HASTIT (No. 18HASTIT027), Young

talents Fund of HUEL and Foundation of Henan Educational Committee (No. 19A880033).

References

[1] M. Caputo, Distributed order differential equations modelling dielectric induction and

diffusion, Fract. Calc. Appl. Anal. 4 (2001), no. 4, 421–442.

[2] , Diffusion with space memory modelled with distributed order space fractional

differential equations, Ann. Geophys. 46 (2003), no. 2, 223–234.



706 Lin He and Jincheng Ren
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