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A Class of Fourth-order Parabolic Equations with Logarithmic Nonlinearity

Menglan Liao and Qingwei Li*

Abstract. In this paper, we apply the modified potential well method and the logarith-

mic Sobolev inequality to study the fourth-order parabolic equation with p-Laplacian

and logarithmic nonlinearity. Some results are obtained under the different initial

data conditions. More precisely, we give the global existence of weak solution by

combining the classical Galerkin’s method with the modified potential well method,

decay estimates, and blow-up in finite time when the initial energy is subcritical and

critical, respectively. In addition, sufficient conditions for the global existence and

blow-up of the weak solution are also provided for supercritical initial energy. These

results extend and improve many results in the literature.

1. Introduction

In this paper, we study the following fourth-order parabolic equation with logarithmic

nonlinearity:

(1.1)





ut + ∆2u− div(|∇u|p−2∇u) = |u|p−2u log |u| if (x, t) ∈ Ω× (0, T ),

u = ∂u
∂ν = 0 if (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x) if x ∈ Ω,

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, T ∈ (0,+∞],

ν is the outward normal on ∂Ω and u0 ∈ H2
0 (Ω), the parameter p satisfies the following

condition:

(1.2)





2 < p <∞ if N = 1, 2,

2 < p < 2N/(N − 2) if N ≥ 3.

It is well known that the fourth-order parabolic partial differential equations have many

applications in the fields such as materials science, engineering, biological mathematics,

image analysis, etc. Zangwill [30] gave a basic model

(1.3) ut = g −∇j + η
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with periodic boundary conditions and some initial condition u0 = u0(x), which described

a spatial variable x in the domain Ω = [0, L]2, the height u(x, t) of a film in epitaxial

growth. The phenomenological approach is to expand j in ∇u and powers thereof, and to

keep only “sensible” terms, which yielded

j = A1∇u+A2∇(∆u) +A3|∇u|2∇u+A4∇|∇u|2

with constants A1, . . . , A4 in the growth law (1.3). After that, Ortiz, Repetto and Si [21]

showed A4 = 0 if Onsager’s reciprocity relations hold, and dropped the noise term η,

furthermore, they introduced a transition function which models the energetics of the

boundary layer at the film/substrate interface. With the success of the model in simulat-

ing the experimental observations, the study of existence, uniqueness, and regularity of

solutions is more important. King, Stein and Winkler [10] considered nonlinear parabolic

problem

ut + ∆2u−∇(f(∇u)) = g

with Neumann boundary condition, and obtained existence, uniqueness and regularity

of solutions under suitable conditions. Qu and Zhou [23] studied the following thin-film

equation:

(1.4) ut + uxxxx = |u|p−1u− 1

|Ω|

∫

Ω
|u|p−1u dx.

By using the method of potential wells, they obtained a threshold result of global existence

and blow-up for the sign-changing weak solutions. They also obtained the conditions under

which the global solutions extinct in finite time. Further, Li, Gao and Han [13] added

the term −(|ux|p−2ux)x in (1.4), discussed the global existence, uniqueness, blow-up in

finite time and asymptotic behavior of solutions under different initial conditions. For

N = 1, some other results for fourth-order parabolic equations were obtained, one can

refer to [5, 27]. For general dimension N ≥ 1, Xu et al. [28] studied parabolic equation

ut − q∆u+ ∆2u+ f(u) = 0

with the same initial boundary value in (1.1), and showed that the solutions exist globally

or blow up in finite time under suitable conditions by using the modified potential well

method. However, they did not show whether there exist non-global solutions when the

initial energy is supercritical. Until recently, Han [6] considered the following fourth-order

parabolic equation with arbitrary initial energy:

(1.5) ut + ∆2u− div(|∇u|p−2∇u) = |u|q−1u.

Specifically, the author gave a threshold result for the solutions to exist globally or to blow-

up in finite time when the initial energy is subcritical and critical, respectively. Moreover,
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the decay rate of the L2 norm was also obtained for global solutions. Sufficient conditions

for the existence of global and blow-up solutions were also provided for supercritical initial

energy.

In recent years, partial differential equations with logarithmic nonlinearity have been

studied by many authors. Some remarkable achievements were also obtained. Chen, Luo

and Liu [2] studied the following semilinear heat equation under zero Dirichlet boundary

value condition:

(1.6) ut −∆u = u log |u|,

and obtained the existence of global solution and blow-up at +∞ under some suitable

conditions by using the logarithmic Sobolev inequality and a family of potential wells, and

gave the results for decay estimates of the global solutions. In the same year, Chen and

Tian [3] added pseudo-parabolic term ∆ut in (1.6) to consider semilinear pseudo-parabolic

equations with logarithmic nonlinearity, and obtained the existence of global solution,

blow-up at +∞, behavior of vacuum isolation of solutions and the asymptotic behavior of

solutions. Ji, Yin and Cao [8] revealed the effect of logarithmic nonlinearity on periodic

problems for semilinear heat equation and pseudo-parabolic equation with logarithmic

source. Some authors considered p-Laplace equation with logarithmic nonlinearity instead

of heat equation, one can refer to [1, 7, 11, 19], and the references therein. Here, we must

mention potential well method, which first was proposed by Sattinger [24] to study non-

linear hyperbolic boundary-initial value problem. Since then, many authors have studied

the existence of solutions for evolution equations by potential well theory [15–17, 20, 22,

26, 29]. Especially, authors [16, 17, 29] improved the results of Sattinger by introducing a

family of potential wells. They not only obtained some new results on global existence

and invariant sets of solutions, but also discovered the vacuum isolating of solutions.

However, when the right-hand side of (1.5) is logarithmic nonlinearity |u|p−2u log |u|,
i.e., problem (1.1), what will happen? To our best knowledge, there is no relative work

to answer this problem. There are many difficulties to deal with this problem. For exam-

ple, (1) generally speaking, the higher-order problems do not admit the usual maximum

principle and comparison principle, which makes some most effective methods, such as

the method of upper and lower solutions, invalid any more; (2) the main difficulty is in

this case that the potential well in [6] will be not suitable, since |u|p−2u log |u| does not

have similar properties corresponding to that one of |u|q−1u. In this paper, we will over-

come these difficulties to consider the global existence, uniqueness, decay estimates, and

blow-up property of problem (1.1).

This paper is organized as follows: In Section 2, we will give the crucial logarithmic

Sobolev inequality, some notations and lemmas about potential well theory. Sections 3
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and 4 will be devoted to the cases J(u0) < d and J(u0) = d, respectively, here J(u0) is

initial energy. In Section 5, we consider the case J(u0) > d.

2. Preliminaries

Throughout this paper, we denote by ‖ · ‖p the Lp(Ω) norm and ( · , · ) the inner product

in L2(Ω). We will equip H2
0 (Ω) with the norm ‖u‖H2

0 (Ω) = ‖∆u‖2, which is equivalent to

the standard one due to Poincaré’s inequality. S is the optimal embedding constant from

H2
0 (Ω) to Lp(Ω).

First, we need the following logarithmic Sobolev inequality:

Lemma 2.1. [4] For any u ∈W 1,p(RN ) with p ∈ (1,+∞), u 6= 0, and any µ > 0,

p

∫

RN
|u|p log

(
|u|

‖u‖Lp(RN )

)
dx+

N

p
log

(
pµe

NLp

)∫

RN
|u|p dx ≤ µ

∫

RN
|∇u|p dx,

where

Lp =
p

N

(
p− 1

e

)p−1

π−p/2
[

Γ(N2 + 1)

Γ
(
N p−1

p + 1
)
]p/N

.

For u ∈ W 1,p
0 (Ω), we define u = 0 for x ∈ RN \ Ω such that u ∈ W 1,p(RN ), then the

following Lp logarithmic Sobolev inequality holds for bounded domain Ω:

(2.1) p

∫

Ω
|u|p log

( |u|
‖u‖p

)
dx+

N

p
log

(
pµe

NLp

)∫

Ω
|u|p dx ≤ µ

∫

Ω
|∇u|p dx.

Lemma 2.2. [11] Let ρ be a positive number. Then we have the following inequalities:

Ψp log Ψ ≤ e−1

ρ
Ψp+ρ for all Ψ ≥ 1

and

|Ψp log Ψ| ≤ (ep)−1 for all 0 < Ψ < 1.

Secondly, we need to introduce some notations and definitions of some functionals and

sets.

For u ∈ H2
0 (Ω), define

J(u) =
1

2
‖∆u‖22 +

1

p
‖∇u‖pp −

1

p

∫

Ω
|u|p log |u| dx+

1

p2
‖u‖pp,

I(u) = ‖∆u‖22 + ‖∇u‖pp −
∫

Ω
|u|p log |u| dx.

It is obvious that the functionals J(u) and I(u) are well-defined and continuous on H2
0 (Ω)

due to the condition (1.2), and satisfy the following relation:

(2.2) J(u) =
1

p
I(u) +

1

p2
‖u‖pp +

p− 2

2p
‖∆u‖22.
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The relation (2.2) implies that if I(u) > 0, then J(u) > 0, which plays an important

role in dividing J(u0) and I(u0) into different situations. For instance, we do not need to

discuss the situation J(u0) < 0, I(u0) > 0.

Define the Nehari manifold

N = {u ∈ H2
0 (Ω) | I(u) = 0, ‖∆u‖2 6= 0}.

The potential well and its corresponding set are defined respectively by

W = {u ∈ H2
0 (Ω) | I(u) > 0, J(u) < d} ∪ {0},

V = {u ∈ H2
0 (Ω) | I(u) < 0, J(u) < d},

where

d = inf
06=u∈H2

0 (Ω)
sup
λ>0

J(λu) = inf
u∈N

J(u)

is the depth of the potential well W .

Lemma 2.3. The depth of the potential well W is positive.

Proof. Fix u ∈ N , according to Lemma 2.2 and (1.2), we get

‖∆u‖22 + ‖∇u‖pp =

∫

Ω
|u|p log |u| dx

=

∫

{x∈Ω:|u|≥1}
|u|p log |u| dx+

∫

{x∈Ω:|u|≤1}
|u|p log |u| dx

≤
∫

{x∈Ω:|u|≥1}
|u|p log |u| dx ≤ e−1

ρ1

∫

{x∈Ω:|u|≥1}
|u|p+ρ1 dx

≤ e−1

ρ1
‖u‖p+ρ1

p+ρ1
≤ e−1

ρ1
Sp+ρ1‖∆u‖p+ρ1

2

(2.3)

which implies ‖∆u‖2 ≥
(

1
(e−1/ρ1)Sp+ρ1

)1/(p+ρ1−2)
, here we use the embedding H2

0 (Ω) to

Lp+ρ1(Ω), and ρ1 > 0 is chosen such that p+ρ1 < 2N/(N −4) as N ≥ 5 and ρ1 is positive

as N ≤ 4. Since

J(u) =
1

2
‖∆u‖22 +

1

p
‖∇u‖pp −

1

p

∫

Ω
|u|p log |u| dx+

1

p2
‖u‖pp

=
p− 2

2p
‖∆u‖22 +

1

p2
‖u‖pp ≥

p− 2

2p

(
1

e−1

ρ1
Sp+ρ1

)1/(p+ρ1−2)

.

Therefore, d ≥ p−2
2p

(
1

(e−1/ρ1)Sp+ρ1

)1/(p+ρ1−2)
> 0.

For any δ > 0, define the modified functional and Nehari manifold as follows:

Iδ(u) = δ‖∆u‖22 + δ‖∇u‖pp −
∫

Ω
|u|p log |u| dx,

Nδ = {u ∈ H2
0 (Ω) | Iδ(u) = 0, ‖∆u‖2 6= 0}.
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The corresponding modified potential well and its corresponding set are defined respec-

tively by

Wδ = {u ∈ H2
0 (Ω) | Iδ(u) > 0, J(u) < d(δ)} ∪ {0},

Vδ = {u ∈ H2
0 (Ω) | Iδ(u) < 0, J(u) < d(δ)},

where d(δ) = infu∈Nδ J(u) is the depth of Wδ.

Definition 2.4 (Weak solution). A function u = u(x, t) ∈ L∞(0, T ;H2
0 (Ω)) with ut ∈

L2(0, T ;L2(Ω)) is called a weak solution to problem (1.1) if u(x, 0) = u0(x) and the

following equality holds:

(2.4) (ut, ϕ) + (∆u,∆ϕ) + (|∇u|p−2∇u,∇ϕ) = (|u|p−2u log |u|, ϕ) a.e. t > 0

for any ϕ ∈ H2
0 (Ω). Moreover,

(2.5)

∫ t

0
‖uτ‖22 dτ + J(u) = J(u0) a.e. t > 0.

The following lemmas, which give a series of properties of the functionals and sets

defined above, will play a pivotal role in the proof of our results. The proof of these

lemmas is different from that one of [2] due to the existence of logarithmic nonlinearity

|u|p−2u log |u|. Here, we will give the specific process of proof.

Lemma 2.5. For any u ∈ H2
0 (Ω) with ‖∆u‖2 6= 0, we have

(1) limλ→0+ J(λu) = 0, limλ→+∞ J(λu) = −∞;

(2) there exists a unique λ∗ = λ∗(u) > 0 such that dJ(λu)
dλ

∣∣
λ=λ∗ = 0. J(λu) is increasing

on 0 < λ ≤ λ∗, decreasing on λ∗ ≤ λ <∞ and takes its maximum at λ = λ∗;

(3) I(λu) > 0 on 0 < λ ≤ λ∗, I(λu) < 0 on λ∗ ≤ λ <∞ and I(λ∗u) = 0.

Proof. (1) It follows from the definition of J(u) that

J(λu) =
λ2

2
‖∆u‖22 +

λp

p
‖∇u‖pp −

λp

p

∫

Ω
|u|p log |u| dx− λp

p
log λ‖u‖pp +

λp

p2
‖u‖pp.

Obviously, assertion limλ→+∞ J(λu) = −∞ follows from p > 2, and limλ→0+ J(λu) = 0.

(2) By a direct computation, we get

(2.6)
dJ(λu)

dλ
= λp−1

(
λ2−p‖∆u‖22 + ‖∇u‖pp −

∫

Ω
|u|p log |u| dx− log λ‖u‖pp

)
.

Let

h(λ) = λ2−p‖∆u‖22 + ‖∇u‖pp −
∫

Ω
|u|p log |u| dx− log λ‖u‖pp,
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then

lim
λ→0+

h(λ) = +∞, lim
λ→+∞

h(λ) = −∞,

and

h′(λ) = (2− p)λ1−p‖∆u‖22 − λ−1‖u‖pp < 0.

Therefore, there exists a unique λ∗ > 0 such that h(λ∗) = 0. Moreover, (2.6) implies

dJ(λu)

dλ

∣∣∣
λ=λ∗

= (λ∗)p−1h(λ∗) = 0.

Since h(λ) > 0 on (0, λ∗) and h(λ) < 0 on (λ∗,+∞), (2) holds.

(3) By the definition of I(u), we get

dJ(λu)

dλ
=
I(λu)

λ
.

It is obvious that (3) holds from (2).

Lemma 2.6. For any u ∈ H2
0 (Ω) and γ(δ) = 1

S

( p2δe
NLp

)N/p2

, we have

(1) if 0 ≤ ‖∆u‖2 ≤ γ(δ), then Iδ(u) ≥ 0;

(2) if Iδ(u) < 0, then ‖∆u‖2 > γ(δ);

(3) if Iδ(u) = 0, then ‖∆u‖2 ≥ γ(δ).

Proof. (1) Using the logarithmic Sobolev inequality (2.1), we easily get

Iδ(u) = δ‖∆u‖22 + δ‖∇u‖pp −
∫

Ω
|u|p

(
log

|u|
‖u‖p

+ log ‖u‖p
)
dx

≥ δ‖∆u‖22 +

(
δ − µ

p

)
‖∇u‖pp +

(
N

p2
log

(
pµe

NLp

)
− log ‖u‖p

)
‖u‖pp.

(2.7)

Taking µ = δp in (2.7), we obtain

(2.8) Iδ(u) ≥
(
N

p2
log

(
p2δe

NLp

)
− log ‖u‖p

)
‖u‖pp.

If 0 ≤ ‖∆u‖2 ≤ γ(δ), then ‖u‖p ≤
( p2δe
NLp

)N/p2

by embedding H2
0 (Ω) to Lp(Ω). Therefore,

it follows from (2.8) that Iδ(u) ≥ 0.

(2) It easily follows from (1).

(3) If Iδ(u) = 0, then by (2.8) we get

(2.9)
N

p2
log

(
p2δe

NLp

)
≤ log ‖u‖p.

It follows from the embedding H2
0 (Ω) to Lp(Ω) that

‖∆u‖2 ≥
1

S
‖u‖p ≥ γ(δ).
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Lemma 2.7. The function d(δ) satisfies the following properties:

(1) d(δ) ≥
(

1−δ
p + p−2

2p

)
(γ(δ))2 +

( (1−δ)κ1

p + 1
p2

)( p2δe
NLp

)N/p
for 0 < δ ≤ 1. In particular,

d = d(1) ≥ p−2
2p (γ(1))2 + 1

p2

( p2e
NLp

)N/p
:= m, where κ1 is the first eigenvalue of the

problem 


−div(|∇u|p−2∇u) = κ|u|p−2u if x ∈ Ω,

u = 0 if x ∈ ∂Ω;

(2) there exists a unique b ∈ (1, δ] such that d(b) = 0 and d(δ) > 0 for 1 ≤ δ < b, here

δ = max
{

1 + 1/(pκ1), p/2
}

;

(3) d(δ) is strictly increasing on 0 < δ ≤ 1, strictly decreasing on 1 ≤ δ ≤ b and takes

its maximum d = d(1) at δ = 1.

Proof. (1) For any u ∈ H2
0 (Ω) with ‖∆u‖2 6= 0 and Iδ(u) = 0, we get ‖∆u‖2 ≥ γ(δ) by

Lemma 2.6(3). It follows from κ1‖u‖pp ≤ ‖∇u‖pp and (2.9) that

J(u) =
1

p
(1− δ)(‖∆u‖22 + ‖∇u‖pp) +

1

p
Iδ(u) +

1

p2
‖u‖pp +

p− 2

2p
‖∆u‖22

≥ 1

p
(1− δ)‖∆u‖22 +

κ1

p
(1− δ)‖u‖pp +

1

p2
‖u‖pp +

p− 2

2p
‖∆u‖22

≥
(

1− δ
p

+
p− 2

2p

)
(γ(δ))2 +

(
(1− δ)κ1

p
+

1

p2

)(
p2δe

NLp

)N/p

for 0 < δ ≤ 1. Therefore, we have

d(δ) ≥
(

1− δ
p

+
p− 2

2p

)
(γ(δ))2 +

(
(1− δ)κ1

p
+

1

p2

)(
p2δe

NLp

)N/p

for 0 < δ ≤ 1. We get d = d(1) ≥ m by taking δ = 1.

(2) For any u ∈ H2
0 (Ω) with ‖∆u‖2 6= 0 and δ > 0, there exists a unique λ = λ(δ) such

that Iδ(λu) = 0 by Lemma 2.5(3), thus λu ∈ Nδ. Further, we have

d(δ) ≤ J(λu) =
1

p
(1− δ)

(
λ2‖∆u‖22 + λp‖∇u‖pp

)
+

1

p
Iδ(λu) +

λp

p2
‖u‖pp +

(p− 2)λ2

2p
‖∆u‖22

≤
(

1− δ
p

+
p− 2

2p

)
λ2‖∆u‖22 +

(
1− δ
p

+
1

p2κ1

)
λp‖∇u‖pp.

Therefore, d(δ) ≤ 0. On the other hand, d = d(1) ≥ m, d(δ) is continuous with δ, so there

exists a unique b such that d(b) = 0 and d(δ) > 0 for 1 ≤ δ < b.

(3) Clearly, we only need to prove that for any 0 < δ′ < δ′′ < 1 or b > δ′ > δ′′ > 1 and

any u ∈ Nδ′′ , there exists a v ∈ Nδ′ and a constant ε(δ′, δ′′) such that J(u)−J(v) ≥ ε(δ′, δ′′).
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For u ∈ Nδ′′ , we get Iδ′′(u) = 0 (This implies λ(δ′′) = 1) and ‖∆u‖2 ≥ γ(δ′′) by

Lemma 2.6(3). For any u ∈ H2
0 (Ω) with ‖∆u‖2 6= 0 and δ > 0, there exists a unique

λ = λ(δ) such that Iδ(λu) = 0 by Lemma 2.5(3). Then, we have

δ =
λp
∫

Ω |u|p log |u| dx+ λp log λ‖u‖pp
λ2‖∆u‖22 + λp‖∇u‖pp

:= f(λ).

By a direct computation, then

(2.10) f ′(λ) =
λp+1

(λ2‖∆u‖22 + λp‖∇u‖pp)2
F (λ),

where

F (λ) =

[
(p− 2)

∫

Ω
|u|p log |u| dx+ (p− 2) log λ‖u‖pp + ‖u‖pp

]
‖∆u‖22 + λp−2‖u‖pp‖∇u‖pp.

Obviously,

F (λ)→ −∞ as λ→ 0+, F (λ)→ +∞ as λ→ +∞,

and

F ′(λ) =
(p− 2)‖u‖pp‖∆u‖22

λ
+ (p− 2)λp−3‖u‖pp‖∇u‖pp > 0

for λ > 0. Therefore, there exists a unique λ∗ such that F (λ∗) = 0. It is obvious from

(2.10) that f ′(λ∗) = 0, and f(λ) is decreasing on 0 < λ ≤ λ∗, increasing on λ∗ ≤ λ < ∞
and takes its minimum at λ = λ∗. A possible example of function f(λ) is given as shown

in Figure 2.1, where Q1

(
exp

(
−

∫
Ω |u|p log |u| dx
‖u‖pp

)
, 0
)
, Q2

(
0, exp

(
−

∫
Ω |u|p log |u| dx
‖u‖pp

))
.

8
Therefore, d(δ̄) 6 0. On the other hand, d = d(1) > m, d(δ) is continuous with δ, so there exists
a unique b such that d(b) = 0 and d(δ) > 0 for 1 6 δ < b.

(3) Clearly, we only need to prove that for any 0 < δ′ < δ′′ < 1 or b > δ′ > δ′′ > 1 and any
u ∈ Nδ′′ , there exists a v ∈ Nδ′ and a constant ε(δ′, δ′′) such that J(u)− J(v) > ε(δ′, δ′′).

For u ∈ Nδ′′ , we get Iδ′′(u) = 0(This implies λ(δ′′) = 1) and ‖∆u‖2 > γ(δ′′) by Lemma
2.5(3). For any u ∈ H2

0 (Ω) with ‖∆u‖2 6= 0 and δ > 0, there exists a unique λ = λ(δ) such that
Iδ(λu) = 0 by Lemma 2.4(3). Then, we have

δ =
λp
∫

Ω |u|p log |u|dx+ λp log λ‖u‖pp
λ2‖∆u‖22 + λp‖∇u‖pp

:= f(λ).

By a direct computation, then

f ′(λ) =
λp+1

(λ2‖∆u‖22 + λp‖∇u‖pp)2
F (λ), (2.11)

where

F (λ) =

[
(p− 2)

∫

Ω
|u|p log |u|dx+ (p− 2) log λ‖u‖pp + ‖u‖pp

]
‖∆u‖22 + λp−2‖u‖pp‖∇u‖pp.

Obviously,
F (λ)→ −∞ as λ→ 0+, F (λ)→ +∞ as λ→ +∞,

and

F ′(λ) =
(p− 2)‖u‖pp‖∆u‖22

λ
+ (p− 2)λp−3‖u‖pp‖∇u‖pp > 0

for λ > 0. Therefore, there exists a unique λ∗ such that F (λ∗) = 0. It is obvious from (2.11)
that f ′(λ∗) = 0, and f(λ) is decreasing on 0 < λ 6 λ∗, increasing on λ∗ 6 λ <∞ and takes its
minimum at λ = λ∗. A possible example of function f(λ) is given as shown in Figure 2.1, where

Q1

(
exp

(
−

∫
Ω |u|p log |u|dx
‖u‖pp

)
, 0
)

, Q2

(
0, exp

(
−

∫
Ω |u|p log |u|dx
‖u‖pp

))
.

λ∗

f(λ∗)
0◦

δ = f(λ)

λ = f−1(δ)

δ = λ

◦

◦

δ

λQ1

Q2

Figure 2.1: A possible example.

Next, we will prove that λ = λ(δ) is strictly increasing in (0,+∞). Since δ > 0, we only

consider function f(λ) with λ ∈
(

exp
(
−

∫
Ω |u|p log |u|dx
‖u‖pp

)
,+∞

)
, i.e. the blue solid line. Obviously,

Figure 2.1: A possible example.

Next, we will prove that λ = λ(δ) is strictly increasing in (0,+∞). Since δ > 0, we

only consider function f(λ) with λ ∈
(

exp
(
−

∫
Ω |u|p log |u| dx
‖u‖pp

)
,+∞

)
, i.e., the blue solid line.

Obviously, red solid line is the graph of inverse function corresponding to function f(λ).

By the property of inverse function, it easily follows that λ = f−1(δ) is strictly increasing

in (0,+∞).



984 Menglan Liao and Qingwei Li

Choosing v = λ(δ′)u, then we have v ∈ Nδ′ . Let g(λ) = J(λ(δ)u), then

dg(λ)

dλ
=

1

λ

[
(1− δ)λ2‖∆u‖22 + (1− δ)λp‖∇u‖pp + Iδ(λu)

]

= (1− δ)λ‖∆u‖22 + (1− δ)λp−1‖∇u‖pp.

If 0 < δ′ < δ′′ < 1, since λ is strictly increasing and λ(δ′′) = 1, then

J(u)− J(v) = g(1)− g(λ(δ′)) =

∫ 1

λ(δ′)

dg(λ)

dλ
dλ ≥

∫ 1

λ(δ′)
λ(1− δ)‖∆u‖22 dλ

≥ (1− δ′′)(γ(δ′′))2λ(δ′)(1− λ(δ′)) = ε(δ′, δ′′) > 0.

If b > δ′ > δ′′ > 1, then

J(u)− J(v) =

∫ 1

λ(δ′)

dg(λ)

dλ
dλ ≥ −

∫ λ(δ′)

1
λ(1− δ)‖∆u‖22 dλ

≥ (δ′′ − 1)(γ(δ′′))2λ(δ′′)(λ(δ′)− 1) = ε(δ′, δ′′) > 0.

Since d(δ) is continuous, d(δ) takes its maximum d = d(1) at δ = 1.

Define

d0 = lim
δ→0+

d(δ).

Lemma 2.7(1) implies d0 ≥ 0.

Lemma 2.8. Assume u ∈ H2
0 (Ω), 0 < J(u) < d, 1 ≤ δ < δ̂, and δ̂ ∈ (1, b) satisfying

d(δ̂) = J(u), then the sign of Iδ(u) does not change for 1 ≤ δ < δ̂.

Proof. Clearly, J(u) > 0 implies ‖∆u‖2 6= 0. If the sign of Iδ(u) changes for 1 ≤ δ < δ̂,

then there exists a δ̃ ∈ [1, δ̂) such that I
δ̃
(u) = 0. By the definition of d(δ), we get

J(u) ≥ d(δ̃), which contradicts J(u) = d(δ̂) < d(δ̃) by Lemma 2.7(3).

Obviously, the following corollary holds:

Corollary 2.9. Assume u ∈ H2
0 (Ω), d0 < J(u) < d, δ1 < 1 < δ2, and δ1, δ2 satisfy the

equation d(δ) = J(u), then the sign of Iδ(u) does not change for δ1 < δ < δ2.

Lemma 2.10. Assume that u is a weak solution of problem (1.1), then for 0 < J(u0) < d,

there exists a δ̂ ∈ (1, b) such that d(δ̂) = J(u0). Furthermore,

(1) if I(u0) > 0, then u(x, t) ∈Wδ for 1 ≤ δ < δ̂ and 0 < t < T ;

(2) if I(u0) < 0, then u(x, t) ∈ Vδ for 1 ≤ δ < δ̂ and 0 < t < T .
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Proof. Since 0 < J(u0) < d, there exists δ̂ ∈ (1, b) such that d(δ̂) = J(u0) by Lemma 2.7.

Possible situations are obtained as shown in Figure 2.2, and corresponding situations of

the following Corollary 2.11 are also given.

10
Proof. Since 0 < J(u0) < d, there exists δ̂ ∈ (1, b) such that d(δ̂) = J(u0) by Lemma 2.6.
Possible situations are obtained as shown in Figure 2.2, and corresponding situations of the
following Corollary 2.2 are also given.

d(δ̂)

δ̂

d

1

d(δ̂)

δ̂

d(δ1)

δ2δ1
0

d0

d0 > 0

b

◦

d(δ)

δ

d(δ̂)

δ̂

d

1

d(δ1)

δ2δ1
0

d0 = 0

b
◦

d(δ)

δ

Figure 2.2: Possible situations corresponding to different d0.

(1) For 1 6 δ < δ̂, we get

Iδ(u0) = (δ − 1)‖∆u0‖22 + (δ − 1)‖∇u0‖pp + I(u0) > 0.

It follows from Lemma 2.6(3) that

J(u0) = d(δ̂) < d(δ).

Therefore, u0 ∈ Wδ for δ ∈ [1, δ̂). Next, we prove u(x, t) ∈ Wδ for 1 6 δ < δ̂ and 0 < t < T .
Otherwise, there exists a t0 ∈ (0, T ) and a δ0 ∈ [1, δ̂) such that u(t0) ∈ ∂Wδ0 , i.e.

Iδ0(u(t0)) = 0, ‖∆u(t0)‖2 6= 0 or J(u(t0)) = d(δ0).

Clearly, J(u(t0)) < d(δ0) by (2.5). Therefore, Iδ0(u(t0)) = 0, ‖∆u(t0)‖2 6= 0. The definition of
d(δ0) implies J(u(t0)) > d(δ0), which contradicts (2.5).

(2) Firstly, we show u0 ∈ Vδ for δ ∈ [1, δ̂). If not, there exists a δ0 ∈ [1, δ̂) such that u0 ∈ Vδ
for δ ∈ [1, δ0) and u0 ∈ ∂Vδ0 , i.e.

Iδ0(u0) = 0 or J(u0) = d(δ0).

By Lemma 2.6(3), we have J(u0) = d(δ̂) < d(δ0). Therefore, we only have Iδ0(u0) = 0, then

Iδ(u0) = (δ − δ0)‖∆u0‖22 + (δ − δ0)‖∇u0‖pp + Iδ0(u0) < 0, for δ ∈ [1, δ0).

By Lemma 2.5(2), we get ‖∆u0‖2 > γ(δ) for δ ∈ [1, δ0). Further, Lemma 2.5(3) implies
‖∆u0‖2 > γ(δ0). Therefore, u0 ∈ Nδ0 is obvious. By the definition of d(δ0), we get d(δ̂) =
J(u0) > d(δ0), which is a contradiction.

Secondly, we show u(x, t) ∈ Vδ for 1 6 δ < δ̂ and 0 < t < T . If not, there exists a t0 ∈ (0, T )
and a δ0 ∈ [1, δ̂) such that u(t0) ∈ ∂Vδ0 , i.e.

Iδ0(u(t0)) = 0 or J(u(t0)) = d(δ0).

Figure 2.2: Possible situations corresponding to different d0.

(1) For 1 ≤ δ < δ̂, we get

Iδ(u0) = (δ − 1)‖∆u0‖22 + (δ − 1)‖∇u0‖pp + I(u0) > 0.

It follows from Lemma 2.7(3) that

J(u0) = d(δ̂) < d(δ).

Therefore, u0 ∈Wδ for δ ∈ [1, δ̂). Next, we prove u(x, t) ∈Wδ for 1 ≤ δ < δ̂ and 0 < t < T .

Otherwise, there exists a t0 ∈ (0, T ) and a δ0 ∈ [1, δ̂) such that u(t0) ∈ ∂Wδ0 , i.e.,

Iδ0(u(t0)) = 0, ‖∆u(t0)‖2 6= 0 or J(u(t0)) = d(δ0).

Clearly, J(u(t0)) < d(δ0) by (2.5). Therefore, Iδ0(u(t0)) = 0, ‖∆u(t0)‖2 6= 0. The

definition of d(δ0) implies J(u(t0)) ≥ d(δ0), which contradicts (2.5).

(2) First, we show u0 ∈ Vδ for δ ∈ [1, δ̂). If not, there exists a δ0 ∈ [1, δ̂) such that

u0 ∈ Vδ for δ ∈ [1, δ0) and u0 ∈ ∂Vδ0 , i.e.,

Iδ0(u0) = 0 or J(u0) = d(δ0).

By Lemma 2.7(3), we have J(u0) = d(δ̂) < d(δ0). Therefore, we only have Iδ0(u0) = 0,

then

Iδ(u0) = (δ − δ0)‖∆u0‖22 + (δ − δ0)‖∇u0‖pp + Iδ0(u0) < 0 for δ ∈ [1, δ0).

By Lemma 2.6(2), we get ‖∆u0‖2 > γ(δ) for δ ∈ [1, δ0). Further, Lemma 2.6(3) implies

‖∆u0‖2 ≥ γ(δ0). Therefore, u0 ∈ Nδ0 is obvious. By the definition of d(δ0), we get

d(δ̂) = J(u0) ≥ d(δ0), which is a contradiction.
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Secondly, we show u(x, t) ∈ Vδ for 1 ≤ δ < δ̂ and 0 < t < T . If not, there exist a

t0 ∈ (0, T ) and a δ0 ∈ [1, δ̂) such that u(t0) ∈ ∂Vδ0 , i.e.,

Iδ0(u(t0)) = 0 or J(u(t0)) = d(δ0).

Clearly, Iδ0(u(t0)) = 0. Assume that t0 is the first time such that Iδ0(u(t0)) = 0, then

Iδ0(u(t)) < 0 for 0 ≤ t < t0. By Lemma 2.6(2), we get ‖∆u‖2 > γ(δ) for 0 ≤ t < t0.

Further, Lemma 2.6(3) implies ‖∆u(t0)‖2 ≥ γ(δ0). Combining with Iδ0(u(t0)) = 0, we

get u(t0) ∈ Nδ0 . By the definition of d(δ0), we obtain J(u(t0)) ≥ d(δ0), which contradicts

(2.5).

Based on Lemma 2.7 and Corollary 2.9, the following corollary is obvious.

Corollary 2.11. Assume that u is a weak solution of problem (1.1), then for d0 < J(u0) <

d, there exists δ1, δ2 such that δ1 < 1 < δ2 and d(δ1) = d(δ2) = J(u0). Furthermore,

(1) if I(u0) > 0, then u(x, t) ∈Wδ for δ1 < δ < δ2 and 0 < t < T ;

(2) if I(u0) < 0, then u(x, t) ∈ Vδ for δ1 < δ < δ2 and 0 < t < T .

Lemma 2.12. Assume that u is a weak solution of problem (1.1), then for J(u0) = d, the

following statements hold:

(1) if I(u0) > 0, then I(u) ≥ 0 for 0 ≤ t < T ;

(2) if I(u0) < 0, then I(u) < 0 for 0 ≤ t < T .

Proof. (1) Otherwise, there exists t1 ∈ (0, T ) such that I(u(t1)) < 0. We can find t0 ∈
(0, t1) being the first point satisfying I(u) = 0, i.e.,

I(u(t0)) = 0 and I(u) > 0 for all 0 < t < t0.

Taking ϕ = u in (2.4), then we get

(2.11) I(u) = −(ut, u) > 0

for all 0 < t < t0. Therefore, we get
∫ t

0 ‖uτ‖22 dτ > 0. It follows from (2.5) that

(2.12) 0 < J(u) = J(u0)−
∫ t

0
‖uτ‖22 dτ < d

for all 0 < t ≤ t0. I(u(t0)) = 0 implies ‖∆u(t0)‖2 ≥ γ(1) by Lemma 2.6(3), then we have

J(u(t0)) ≥ d by the definition of d, which contradicts (2.12).

(2) Otherwise, there exists t0 ∈ (0, T ) such that

I(u(t0)) = 0 and I(u) < 0 for all 0 < t < t0.

Obviously, (2.12) still holds. I(u(t0)) = 0 implies ‖∆u(t0)‖2 ≥ γ(1) by Lemma 2.6(3).

Therefore, by the definition of d, we have J(u(t0)) ≥ d, which contradicts (2.12).
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3. The subcritical initial energy J(u0) < d

In this section, we consider the global existence, decay estimate and blow-up of weak

solution for problem (1.1) under J(u0) < d. First, we give the following global existence

theorem:

Theorem 3.1 (Global existence for J(u0) < d). Let condition (1.2) hold, u0 ∈ H2
0 (Ω).

If J(u0) < d, I(u0) > 0, then problem (1.1) admits a unique global weak solution u ∈
L∞(0, T ;H2

0 (Ω)) with ut ∈ L2(0, T ;L2(Ω)) and u(t) ∈W for 0 ≤ t < T .

Proof. The proof of this theorem is divided into two steps.

Step 1: Global existence. Choose a sequence {ϕi}i∈N, which is an orthonormal basis of

H2
0 (Ω). Consider the following Galerkin approximation:

un(x, t) =

n∑

i=1

cni (t)ϕi(x), n = 1, 2, . . . ,

where functions cni (t) : [0, T ] → R satisfy the following system of ordinary differential

equations:

(unt , ϕj) + (∆un,∆ϕj) + (|∇un|p−2∇un,∇ϕj) = (|un|p−2un log |un|, ϕj),

un(x, 0) =

n∑

j=1

(u(x, 0), ϕj)ϕj
(3.1)

for j = 1, 2, . . . , n, here

un(x, 0)→ u0 in H2
0 (Ω) as n→∞.

It follows from (3.1) that

dcnj (t)

dt
= −(∆un,∆ϕj)− (|∇un|p−2∇un,∇ϕj) + (|un|p−2un log |un|, ϕj).

Define

Fnj (cn) = −
(

n∑

i=1

cni (t)∆ϕi(x),∆ϕj

)
−



∣∣∣∣∣
n∑

i=1

cni (t)∇ϕi(x)

∣∣∣∣∣

p−2 n∑

i=1

cni (t)∇ϕi(x),∇ϕj




+



∣∣∣∣∣
n∑

i=1

cni (t)ϕi(x)

∣∣∣∣∣

p−2 n∑

i=1

cni (t)ϕi(x) log

∣∣∣∣∣
n∑

i=1

cni (t)ϕi(x)

∣∣∣∣∣ , ϕj


 ,

and

cn(·) = (cnj (·))nj=1, Fn(·) = (Fnj (·))nj=1, cn0 = (u0, ϕj)
n
j=1.
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Therefore, (3.1) can be rewritten as

dcn(t)

dt
= Fn(cn(t)),

cn(0) = cn0 .

(3.2)

Next, we aim to use the Peano’s theorem to prove the existence of (3.2). Multiplying

the first equality of (3.2) by cn(t), then we get

1

2

d|cn(t)|2
dt

= −




n∑

i=1

cni (t)∆ϕi(x),

n∑

j=1

cnj (t)∆ϕj




−



∣∣∣∣∣
n∑

i=1

cni (t)∇ϕi(x)

∣∣∣∣∣

p−2 n∑

i=1

cni (t)∇ϕi(x),

n∑

j=1

cnj (t)∇ϕj




+



∣∣∣∣∣
n∑

i=1

cni (t)ϕi(x)

∣∣∣∣∣

p−2 n∑

i=1

cni (t)ϕi(x) log

∣∣∣∣∣
n∑

i=1

cni (t)ϕi(x)

∣∣∣∣∣ ,
n∑

j=1

cnj (t)ϕj


 .

Clearly, the first and second terms on the right-hand side of the above are non-positive,

then similar to (2.3)

1

2

d|cn(t)|2
dt

≤



∣∣∣∣∣
n∑

i=1

cni (t)ϕi(x)

∣∣∣∣∣

p−2 n∑

i=1

cni (t)ϕi(x) log

∣∣∣∣∣
n∑

i=1

cni (t)ϕi(x)

∣∣∣∣∣ ,
n∑

j=1

cnj (t)ϕj




≤ e−1

ρ1

∥∥∥∥∥
n∑

i=1

cni (t)ϕi(x)

∥∥∥∥∥

p+ρ1

p+ρ1

≤ e−1

ρ1

n∑

i=1

|cni (t)|p+ρ1

n∑

i=1

‖ϕi(x)‖p+ρ1
p+ρ1

≤ (C(n))p+ρ1

n∑

i=1

|cni (t)|p+ρ1

n∑

i=1

‖∆ϕi(x)‖p+ρ1
2 ≤ (C(n))p+ρ1 |cn(t)|2(p+ρ1),

here C(n) > 0 is a constant. Solving the above ordinary differential inequality, we get

|cn(t)| ≤ 1
(
|cn0 |−2p − 2p(C(n))p+ρ1t

)1/(2p) , ∀ t ∈ [0, T̃ ),

here T̃ = |cn0 |−2p/[2p(C(n))p+ρ1 ]. There exists a sufficiently small ε > 0 such that ∀ t ∈
[0, T̃ −ε], |cn(t)| ≤ C, where C > 0 is a constant. Further, F(cn(t)) is bounded, we denote

by G0 the boundedness. Denote

T0 = 0, E :=
{

(t, cn(t)) ∈ R× Rn | |t− T0| ≤ T̃ , |cn(t)− cn0 | ≤ C
}
, ∀ t ∈ [0, T̃ ).

Peano’s theorem implies that there exists a solutions cn(t) of (3.2) on [0, T1], where

T1 = min

{
T̃ − ε, cn0

G0

}
.
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For t ∈ [0, T1], the following inequality (3.4) still holds, then we have

|cnj (t)|2 ≤
n∑

j=1

|cnj (t)|2 =
n∑

j=1

|cnj (t)|2
∫

Ω
|ej |2 dx = ‖un‖22 ≤ S2‖∆un‖22 < S2 2pd

p− 2

by embedding H2
0 (Ω) to L2(Ω). Further, F(cn(t)) is bounded. Denote by T1 the new initial

point, Peano’s theorem implies that there exists a global solution cn(t) of the ordinary

differential equation (3.2) by repeating the similar argument.

Multiplying (3.1) by
dcni (t)
dt , and summing for i from 0 to n, and then integrating with

respect to t from 0 to t, we get
∫ t

0
‖unτ ‖22 dτ + J(un) = J(un(0)).

It follows from un(x, 0)→ u0(x) strongly in H2
0 (Ω) that

J(un(x, 0))→ J(u0(x)) < d and I(un(x, 0))→ I(u0(x)) > 0 as n→∞.

Therefore, for sufficiently large n, we get

(3.3)

∫ t

0
‖unτ ‖22 dτ + J(un) = J(un(0)) < d and I(un(x, 0)) > 0,

which implies that un(x, 0) ∈W .

Next, we prove un(x, t) ∈ W for sufficiently large n. Otherwise, there exists a t0 ∈
(0, T ) such that un(x, t0) ∈ ∂W , i.e.,

I(un(x, t0)) = 0, ‖∆u(x, t0)‖2 6= 0 or J(un(x, t0)) = d.

Clearly, J(un(x, t0)) 6= d by (3.3). If I(un(x, t0)) = 0, ‖∆u(x, t0)‖2 6= 0, then J(un(x, t0)) ≥
d by the definition of d, which contradicts (3.3). Therefore, un(x, t) ∈ W and I(un) > 0.

Recalling (3.3) and (2.2), we get
∫ t

0
‖unτ ‖22 dτ +

1

p
I(un) +

1

p2
‖un‖pp +

p− 2

2p
‖∆un‖22 < d,

which implies

‖un‖2H2
0 (Ω) <

2pd

p− 2
,(3.4)

∫ t

0
‖unτ ‖22 dτ < d.

Therefore, there exist a u and a subsequence of {un}n∈N (still denoted by {un}n∈N)

such that as n→∞,

un
∗
⇀ u weakly * in L∞(0, T ;H2

0 (Ω));

unt ⇀ ut weakly in L2(0, T ;L2(Ω)).
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Since compact embedding H2
0 (Ω) to W 1,p

0 (Ω), further we have

un → u strongly in L∞(0, T ;W 1,p
0 (Ω)).

According to the continuous embedding W 1,p
0 (Ω) to L2(Ω), then we get

(3.5) un → u strongly in C([0, T ];W 1,p
0 (Ω)) as n→∞

by the Simon’s theorem [25]. Clearly, this implies

Φ(un)→ Φ(u) a.e. (x, t) ∈ Ω× (0, T )

where Φ(un) = |un|p−2un log |un|.
By a direct computation, we get

∫

Ω
|Φ(un)|p′ dx ≤

∫

{x∈Ω:|un|≥1}
|Φ(un)|p′ dx+

∫

{x∈Ω:|un|<1}
|Φ(un)|p′ dx

≤
(
e−1

ρ

)p′ ∫

{x∈Ω:|un|≥1}
|un|p∗ dx+ [e(p− 1)]−p

′ |Ω|

≤
(
e−1

ρ

)p′
Sp
∗‖∆un‖p∗2 + [e(p− 1)]−p

′ |Ω| ≤ C(d),

where p′ = p/(p − 1), ρ2 > 0 is chosen such that 2N/(N − 4) > p∗ := (p − 1 + ρ2)p′ as

p < N and ρ2 is positive as p ≥ N .

Therefore, as n→∞, we have

Φ(un)
∗
⇀ Φ(u) weakly * in L∞(0, T ;Lp

′
(Ω)).

Finally, we show that the limit u is a weak solution. Fix k ∈ N and choose a function

v ∈ C1([0, T ];C∞0 (Ω)) with the following form:

v =

k∑

j

lj(t)ϕj ,

here lj(t) ∈ C1([0, T ]) with j = 1, 2, . . . , k. Taking n ≥ k in (3.1), multiplying the first

equality of (3.1) by lj(t), summing for j from 1 to k, and then integrating with respect to

t from 0 to T , we have

∫ T

0
(unt , v) +

∫ T

0
(∆un,∆v) dt+

∫ T

0
(|∇un|p−2∇un,∇v) dt =

∫ T

0
(|un|p−2un log |un|, v) dt.

Letting n→∞, the following equality holds:

(3.6)

∫ T

0
(ut, v) +

∫ T

0
(∆u,∆v) dt+

∫ T

0
(|∇u|p−2∇u,∇v) dt =

∫ T

0
(|u|p−2u log |u|, v) dt.
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Since C1([0, T ];C∞0 (Ω)) is dense in L2(0, T ;H2
0 (Ω)), it follows that (3.6) holds for v ∈

L2(0, T ;H2
0 (Ω)). Moreover, by the arbitrariness of T > 0, it follows that

(ut, ϕ) + (∆u,∆ϕ) + (|∇u|p−2∇u,∇ϕ) = (|u|p−2u log |u|, ϕ) a.e. t > 0

for any ϕ ∈ H2
0 (Ω). In view of (3.5) and un(x, 0) → u0(x) strongly in H2

0 (Ω), then

u(x, 0) = u0(x). Assume that u is sufficiently smooth such that ut ∈ L2(0, T ;H2
0 (Ω)),

taking v = ut in (3.6), then (2.5) holds. Since L2(0, T ;H2
0 (Ω)) is dense in L2(0, T ;L2(Ω)),

(2.5) holds for weak solutions of problem (1.1).

Step 2: Uniqueness of weak solution. Assume that both u, v are two weak solutions

for problem (1.1), then by the definition of weak solution, for ϕ ∈ H2
0 (Ω), we obtain

(ut, ϕ) + (∆u,∆ϕ) + (|∇u|p−2∇u,∇ϕ) = (|u|p−2u log |u|, ϕ),

(vt, ϕ) + (∆v,∆ϕ) + (|∇v|p−2∇v,∇ϕ) = (|v|p−2v log |v|, ϕ).

Subtracting the above two equalities, taking ϕ = u− v ∈ H2
0 (Ω), and then integrating for

t from 0 to t, we have

∫ t

0
(∆u−∆v,∆u−∆v) dt+

∫ t

0
(|∇u|p−2∇u− |∇v|p−2∇v,∇u−∇v) dt+

∫ t

0
(ϕt, ϕ) dt

=

∫ t

0

∫

Ω
(|u|p−2u log |u| − |v|p−2v log |v|)ϕdxdt.

Clearly, the first and second terms on the left-hand side of the above equality are non-

negative. By the Lipschitz continuity of |u|p−2u log |u|, we get

∫ t

0
(ϕt, ϕ) dt ≤ C

∫ t

0

∫

Ω
ϕ2 dxdt,

here C > 0 is the Lipschitz constant. Further,

‖ϕ‖22 ≤ C
∫ t

0

∫

Ω
ϕ2 dxdt

by ϕ(x, 0) = 0. Gronwall’s inequality implies

‖ϕ‖22 = 0.

Therefore, ϕ = 0 a.e. in Ω× (0, T ).

Here, we consider the decay estimate. Before stating the result, we need the following

lemma:
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Lemma 3.2. [18] Let E : R → R+ be a non-increasing function and φ : R → R+ be a

strictly increasing function of class C1 such that

φ(0) = 0 and φ(t)→ +∞ as t→ +∞.

Assume that there exist σ ≥ 0 and ω > 0 such that

∫ +∞

t
(E(s))1+σφ′(s) ds ≤ 1

ω
(E(0))σE(t),

then E has the following decay property:

(1) if σ = 0, then E(t) ≤ E(0)e1−ωφ(t) for all t ≥ 0;

(2) if σ > 0, then E(t) ≤ E(0)
(

1+σ
1+ωσφ(t)

)1/σ
for all t ≥ 0.

Theorem 3.3 (Decay estimate for J(u0) < d). Assume that u is a global weak solution

for problem (1.1), 0 < J(u0) < d, I(u0) > 0, then we have

‖u‖2
W 1,p

0

≤ ‖u0‖2W 1,p
0

(
p

2 + ω(p− 2)t

)2/(p−2)

for all t ≥ 0,

here ω > 0 is obtained later.

Proof. Recalling Lemma 2.10, we know that u(x, t) ∈ Wδ for 1 ≤ δ < δ̂ and 0 < t < T .

Particularly, I(u) > 0 for 0 < t < T . Therefore, it follows from (2.2), (2.11) and (2.5) that

‖u‖pp ≤ p2J(u) < p2J(u0) < p2d.

Taking δ = 1 in (2.7), for
NLp
pe (p2d)p

2/N < µ < p, we get

I(u) ≥ ‖∆u‖22 +

(
1− µ

p

)
‖∇u‖pp +

(
N

p2
log

(
pµe

NLp

)
− 1

p
log ‖u‖pp

)
‖u‖pp

≥
(

1− µ

p

)
‖∇u‖pp +

(
N

p2
log

(
pµe

NLp

)
− 1

p
log p2J(u0)

)
‖u‖pp

≥ α

2
‖u‖p

W 1,p
0

,

(3.7)

where

α = min

{
1− µ

p
,
N

p2
log

(
pµe

NLp

)
− 1

p
log p2J(u0)

}
> 0.

Integrating (2.11) from t to T , then we have

(3.8)

∫ T

t
I(u) dτ =

1

2
‖u(t)‖22 −

1

2
‖u(T )‖22 ≤

1

2
Ŝ2‖u‖2

W 1,p
0

,
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where Ŝ is the optimal constant of the embedding W 1,p
0 (Ω) to L2(Ω). Combining (3.7)

and (3.8), we obtain ∫ T

t
‖u‖p

W 1,p
0

dτ ≤ Ŝ2

α
‖u‖2

W 1,p
0

.

Letting T → +∞, it follows that
∫ +∞

t
(E(t))p/2 dτ ≤ Ŝ2

α
E(t) =

1

ω
(E(0))σE(t),

where E(t) = ‖u‖2
W 1,p

0

, ω = α/
(
Ŝ2‖u0‖2σW 1,p

0

)
, σ = p/2 − 1. By Lemma 3.2, we have the

following estimates:

‖u‖2
W 1,p

0

≤ ‖u0(x)‖2
W 1,p

0

(
p

2 + ω(p− 2)t

)1/σ

for all t ≥ 0.

Theorem 3.4 (Blow-up for J(u0) < d). Let condition (1.2) hold, u0 ∈ H2
0 (Ω). If u is a

weak solution of problem (1.1), J(u0) < d, I(u0) < 0, then there exists a finite time T ∗

such that u blows up in the sense of limt→T ∗
∫ t

0 ‖u‖22 dτ = +∞.

Proof. Assume that u is a global weak solution of problem (1.1) with J(u0) < d, I(u0) < 0,

and define

M(t) =

∫ t

0
‖u‖22 dτ, ∀ t ≥ 0,

then M ′(t) = ‖u‖22, and

(3.9) M ′′(t) = 2(ut, u) = −2I(u).

Using (2.5), (3.9), (2.2) and the embedding H2
0 (Ω) to L2(Ω), we get

M ′′(t) =
2

p
‖u‖pp + (p− 2)‖∆u‖22 − 2pJ(u)

≥ p− 2

S2
‖u‖22 + 2p

∫ t

0
‖uτ‖22 dτ − 2pJ(u0)

=
p− 2

S2
M ′(t) + 2p

∫ t

0
‖uτ‖22 dτ − 2pJ(u0).

Noticing that

(M ′(t))2 = 4

(∫ t

0

∫

Ω
uτu dxdτ

)2

+ 2‖u0‖22M ′(t)− ‖u0‖42,

then we have

M ′′(t)M(t)− p

2
(M ′(t))2 ≥ p− 2

S2
M ′(t)M(t)− 2pM(t)J(u0)

+ 2p

∫ t

0
‖u‖22 dτ

∫ t

0
‖uτ‖22 dτ +

p

2
‖u0‖42

− 2p

(∫ t

0

∫

Ω
uτu dxdτ

)2

− p‖u0‖22M ′(t).
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By Cauchy-Schwarz inequality

(∫ t

0

∫

Ω
uτu dxdτ

)2

≤
∫ t

0
‖u‖22 dτ

∫ t

0
‖uτ‖22 dτ,

then

(3.10) M ′′(t)M(t)− p

2
(M ′(t))2 ≥ p− 2

S2
M ′(t)M(t)− 2pM(t)J(u0)− p‖u0‖22M ′(t).

Now, we discuss the following two cases:

Case 1: J(u0) ≤ 0. For J(u0) ≤ 0, (3.10) implies

M ′′(t)M(t)− p

2
(M ′(t))2 ≥ p− 2

S2
M ′(t)M(t)− p‖u0‖22M ′(t).

Now we show that I(u) < 0 for t > 0. Otherwise, there exists a t0 > 0 such that

I(u(t0)) = 0 and I(u) < 0 for 0 ≤ t < t0. By Lemma 2.6(2)(3), we get ‖∆u‖2 > γ(1)

for 0 ≤ t < t0, and ‖∆u(t0)‖2 ≥ γ(1). Therefore, J(u(t0)) ≥ d, which contradicts (2.5).

Moreover, (3.9) implies M ′′(t) > 0 for t ≥ 0. Since M ′(0) = ‖u0‖22 ≥ 0, there exists a

t0 > 0 such that M ′(t0) > 0. Thus, we get

M(t) = M(t0) +

∫ t

t0

M ′(τ) dτ ≥M ′(t0)(t− t0),

then for any

t ≥ t∗ := max

{
t0,

p‖u0‖22 + p−2
S2 M

′(t0)t0
p−2
S2 M ′(t0)

}
,

we have

M ′′(t)M(t)− p

2
(M ′(t))2 ≥M ′(t)

(
p− 2

S2
M(t)− p‖u0‖22

)

≥M ′(t)
(
p− 2

S2
M ′(t0)(t− t0)− p‖u0‖22

)

≥ 0.

Case 2: 0 < J(u0) < d. By Lemma 2.10(2), we have u(x, t) ∈ Vδ for 1 ≤ δ < δ̂ and

0 < t < T . Lemma 2.8 implies I
δ̂
(u) ≤ 0. Furthermore, Lemma 2.6 implies ‖∆u‖2 ≥ γ(δ̂)

for t ≥ 0. It follows from (3.9) that for t ≥ 0, we get

M ′′(t) = −2I(u) = 2(δ̂ − 1)‖∆u‖22 + 2(δ̂ − 1)‖∇u‖pp − 2I
δ̂
(u) ≥ C∗ := 2(δ̂ − 1)(γ(δ))2,

which implies

M ′(t) ≥ C∗t, M(t) ≥ C∗
2
t2,
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and M ′(t) > 0, M(t) > 0 for any t > 0. Considering (3.10), for any

t ≥ t∗ := max





2pJ(u0)
p−2
2S2C∗

,

(
p‖u0‖22
p−2
4S2

C∗
2

)1/2


 ,

we have

M ′′(t)M(t)− p

2
(M ′(t))2 ≥M(t)

(
p− 2

2S2
M ′(t)− 2pJ(u0)

)

+M ′(t)
(
p− 2

2S2
M(t)− p‖u0‖22

)

≥ 0.

Based on the above discussion, for t∗, we get M(t∗) > 0, M ′(t∗) > 0, thus M(t)→∞ as

t→ T ∗ ≤ t∗+ M(t∗)
(p/2−1)M ′(t∗) by the Levine’s concavity method [9,12,14], which contradicts

our assumption. This proof is complete.

4. The critical initial energy J(u0) = d

For critical initial energy J(u0) = d, we still have the following global existence of weak

solution by using the method of approximation.

Theorem 4.1 (Global existence for J(u0) = d). Let condition (1.2) hold, u0 ∈ H2
0 (Ω).

If J(u0) = d, I(u0) ≥ 0, then problem (1.1) admits a unique global weak solution u ∈
L∞(0, T ;H2

0 (Ω)) with ut ∈ L2(0, T ;L2(Ω)) and u(t) ∈W ∪ ∂W for 0 ≤ t < T .

Proof. Let λk = 1− 1/k, k = 1, 2, . . .. Consider the following initial value problem:

(4.1)





ut + ∆2u− div(|∇u|p−2∇u) = |u|p−2u log |u| if (x, t) ∈ Ω× (0, T ),

u = ∂u
∂ν = 0 if (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = λku0(x) := uk0 if x ∈ Ω.

Noticing that I(u0) ≥ 0, by Lemma 2.5(3), there exists a unique λ∗ = λ∗(u0) ≥ 1 such that

I(λ∗u0) = 0. Using λk < 1 ≤ λ∗ and Lemma 2.5(2)(3), we get I(uk0) = I(λku0) > 0 and

J(uk0) = J(λku0) < J(u0) = d. In view of Theorem 3.1, for each k, problem (4.1) admits

a global weak solution uk ∈ L∞(0, T ;H2
0 (Ω)) with ukt ∈ L2(0, T ;L2(Ω)) and uk ∈ W

satisfying ∫ t

0
‖ukτ‖22 dτ + J(uk) = J(uk0) < d.

Applying the similar argument in Theorem 3.1, there exist a subsequence of {uk}k∈N and

a function u such that u is a weak solution of problem (1.1) with I(u) ≥ 0 and J(u) ≤ d

for 0 ≤ t < T . The proof of uniqueness for weak solution is the same as that one in

Theorem 3.1.
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Theorem 4.2 (Decay estimate for J(u0) = d). Assume that u is a global weak solution

for problem (1.1), J(u0) = d, I(u0) > 0, then the following statements hold:

(1) if I(u) > 0 for 0 < t < T , then

‖u‖2
W 1,p

0

≤ ‖u0‖2W 1,p
0

(
p

2 + ω1(p− 2)t

)2/(p−2)

for all t ≥ t0 > 0,

here ω1 is obtained later;

(2) if I(u) > 0 for 0 < t < t∗ and I(u(t∗)) = 0, then weak solution u(x, t) vanishes in

finite time t∗.

Proof. Recalling Lemma 2.12, we have I(u) ≥ 0 for 0 < t < T .

(1) For I(u) > 0 for 0 < t <∞, by the same argument of (2.12), we have

0 < J(u(t0)) = J(u0)−
∫ t0

0
‖uτ‖22 dτ < d

for any t0 > 0. Taking t = t0 as the initial time, by the same argument of Theorem 3.3,

we get

‖u‖2
W 1,p

0

≤ ‖u0‖2W 1,p
0

(
p

2 + ω1(p− 2)t

)2/(p−2)

for all t ≥ t0 > 0,

where the value of α1 in ω1 = α1/
[
Ŝ2(E(0))σ

]
is as follows:

α1 = min

{
1− µ

p
,
N

p2
log

(
pµe

NLp

)
− 1

p
log p2J(u(t0))

}
> 0.

(2) Assume that I(u) > 0 for 0 < t < t∗ and I(u(t∗)) = 0, then (2.11) implies ut 6= 0

for 0 < t < t∗. Therefore, (2.5) implies

J(u(t∗)) = d−
∫ t∗

0
‖uτ‖22 dτ < d.

By the definition of d, we easily know ‖∆u(t∗)‖2 = 0, which implies u(t∗) = 0. Therefore,

u(t) ≡ 0 for t ≥ t∗, i.e., weak solution u(x, t) vanishes in finite time t∗.

Theorem 4.3 (Blow-up for J(u0) = d). Let condition (1.2) hold, u0 ∈ H2
0 (Ω). If u is a

weak solution of problem (1.1), J(u0) = d, I(u0) < 0, then there exists a finite time T ∗

such that u blows up in the sense of limt→T ∗
∫ t

0 ‖u‖22 dτ = +∞.

Proof. By the same argument in (3.10), we get

M ′′(t)M(t)− p

2
(M ′(t))2 ≥ p− 2

S2
M ′(t)M(t)− 2pdM(t)− p‖u0‖22M ′(t).
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Since J(u0) = d, I(u0) < 0, by the continuity of J(u) and I(u) with respect to t, there

exists a t0 such that J(u(x, t)) > 0 and I(u(x, t)) < 0 for 0 < t ≤ t0. By the same

argument of (2.12), we have

0 < J(u(t0)) = d−
∫ t0

0
‖uτ‖22 dτ < d.

Taking t = t0 as the initial time, then we get u(x, t) ∈ Vδ for 1 ≤ δ < δ̂ and t0 < t

by Lemma 2.10(2). Therefore, Iδ(u) < 0, ‖∆u‖2 > γ(δ) for 1 ≤ δ < δ̂ and t0 < t by

Lemma 2.6(2). Furthermore, recalling Lemma 2.8, we get I
δ̂
(u) ≤ 0 and ‖∆u‖2 ≥ γ(δ̂)

for t0 < t. The rest of this proof is the same as that one of Case 2 in Theorem 3.4, here

we omit the specific process.

5. The supercritical initial energy J(u0) > d

In this section, we will give some sufficient conditions for global existence of weak solutions

and blow-up in finite time. Before stating our theorem, we need some sets and lemmas.

Define

N+ = {u ∈ H2
0 (Ω) | I(u) > 0}, N− = {u ∈ H2

0 (Ω) | I(u) < 0},

and the (open) sublevels of J

J ς = {u ∈ H2
0 (Ω) | J(u) < ς}.

Obviously, by the definition of J(u), N , J ς and d, we get

N ς := N ∩ J ς =

{
u ∈ N

∣∣∣ 1

p2
‖u‖pp +

p− 2

2p
‖∆u‖22 < ς

}
6= ∅, ∀ ς > d.

For ς > d, define

λς = inf{‖u‖2 | u ∈ N ς}, Λς = sup{‖u‖2 | u ∈ N ς}.

Clearly, λς is non-increasing and Λς is non-decreasing.

For convenience, we introduce the following sets:

B = {u0 ∈ H2
0 (Ω) | the solution u = u(t) of problem (1.1) blows up in finite time};

G0 = {u0 ∈ H2
0 (Ω) | u(t)→ 0 in H2

0 (Ω) as t→∞}.

Lemma 5.1. If condition (1.2) holds, then

(1) 0 is away from both N and N−, i.e., dist(0,N ) > 0 and dist(0,N−) > 0;
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(2) for any ς > 0, the set J ς ∩N+ is bounded in H2
0 (Ω).

Proof. (1) For u ∈ N , by the definition of d, (2.2), and the embedding H2
0 (Ω) to Lp(Ω),

we have

d ≤ 1

2
‖∆u‖22 +

1

p
‖∇u‖pp −

1

p

∫

Ω
|u|p log |u| dx+

1

p2
‖u‖pp

=
1

p2
‖u‖pp +

p− 2

2p
‖∆u‖22 ≤

Sp

p2
‖∆u‖p2 +

p− 2

2p
‖∆u‖22,

which implies that there exists a constant ρ > 0 such that dist(0,N ) = infu∈N ‖∆u‖2 ≥ ρ.

For u ∈ N−, we get ‖∆u‖2 6= 0, and similar to (2.3), we have

‖∆u‖22 + ‖∇u‖pp <
∫

Ω
|u|p log |u| dx ≤ e−1

ρ1
Sp+ρ1‖∆u‖p+ρ1

2

which implies ‖∆u‖2 >
(

1
(e−1/ρ1)Sp+ρ1

)1/(p+ρ1−2)
. Therefore, dist(0,N−) = infu∈N− ‖∆u‖2

> 0.

(2) For any u ∈ J ς ∩N+, then J(u) < ς and I(u) > 0. Therefore, it follows from (2.2)

that

ς > J(u) =
1

p
I(u) +

1

p2
‖u‖pp +

p− 2

2p
‖∆u‖22 >

p− 2

2p
‖∆u‖22,

which yields ‖∆u‖22 < 2p
p−2 ς. Therefore, the set J ς ∩N+ is bounded in H2

0 (Ω).

Lemma 5.2. For any ς > d, λς and Λς satisfy

0 < λς ≤ Λς < +∞.

Proof. If u ∈ N ς , then by (2.3) and Gagliardo-Nirenberg inequality, we obtain

‖∆u‖22 + ‖∇u‖pp =

∫

Ω
|u|p log |u| dx ≤ e−1

ρ1
‖u‖p+ρ1

p+ρ1

≤ e−1

ρ1
C(N, p)‖∆u‖α(p+ρ1)

2 ‖u‖(1−α)(p+ρ1)
2 ,

(5.1)

where α ∈ (0, 1) due to p < 2N/(N − 4) − ρ1 when N ≥ 5, C(N, p) > 0 is a constant.

(5.1) can be written as

(5.2) ‖u‖(1−α)(p+ρ1)
2 ≥ ρ1

e−1

1

C(N, p)
‖∆u‖2−α(p+ρ1)

2 .

Clearly, the left-hand side of (5.2) is bounded and away from 0 by Lemma 5.1(1) and the

definition of N ς . Therefore, we get λς > 0 by the definition of λς . Using the embedding

H2
0 (Ω) to L2(Ω), then ‖u‖22 ≤ S2‖∆u‖22. Recalling the definition of N ς , it is obvious that

Λς < +∞.
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Theorem 5.3. Let condition (1.2) hold, u0 ∈ H2
0 (Ω). If J(u0) > d, then the following

statements hold:

(1) if u0 ∈ N+ and ‖u0‖2 ≤ λJ(u0), then u0 ∈ G0;

(2) if u0 ∈ N− and ‖u0‖2 ≥ ΛJ(u0), then u0 ∈ B.

Proof. Denote by T (u0) the maximal existence time of the solutions for problem (1.1). If

there exists a global solution, i.e., T (u0) =∞, we denote by

ω(u0) =
⋂

t≥0

{u(ι) : ι ≥ t}H
2
0 (Ω)

the ω-limit of u0 ∈ H2
0 (Ω).

(1) If u0 ∈ N+ and ‖u0‖2 ≤ λJ(u0), then we claim that u ∈ N+ for all t ∈ [0, T (u0)). By

contradiction, there exists a t0 ∈ (0, T (u0)) such that u ∈ N+ for t ∈ [0, t0) and u(t0) ∈ N .

Therefore, ut 6= 0 for Ω× (0, t0) from (2.11). It follows from (2.5) that J(u(t0)) < J(u0),

which implies u(t0) ∈ JJ(u0). Further, u(t0) ∈ N J(u0). By the definition of λJ(u0), we

obtain

(5.3) ‖u(t0)‖2 ≥ λJ(u0).

Noticing that I(u(t)) > 0 for t ∈ [0, t0), it follows from (2.11) that

‖u(t0)‖2 < ‖u0‖2 ≤ λJ(u0),

which contradicts (5.3). Therefore, u ∈ N+ for all t ∈ [0, T (u0)), which implies u(t) ∈
JJ(u0) for all t ∈ [0, T (u0)) by (2.11) and (2.5). Lemma 5.1(2) shows that u(t) remains

bounded in H2
0 (Ω) for t ∈ [0, T (u0)), and the boundedness of ‖u‖H2

0 (Ω) is independent of

t, moreover, T (u0) = +∞, u ∈ N+ ∩ JJ(u0) for 0 ≤ t <∞. For any ω ∈ ω(u0), then

‖ω‖2 < λJ(u0), J(ω) < J(u0),

by (2.5) and (2.11). Noticing that the definition of λJ(u0), we obtain ω(u0) ∩ N = ∅.
Therefore, ω(u0) = {0}, i.e., u0 ∈ G0.

(2) If u0 ∈ N− and ‖u0‖2 ≥ ΛJ(u0), then we claim that u ∈ N− for all t ∈ [0, T (u0)).

By contradiction, there exists a t0 ∈ (0, T (u0)) such that u ∈ N− for t ∈ [0, t0) and

u(t0) ∈ N . Similar to Case (1), we get J(u(t0)) < J(u0), which implies u(t0) ∈ JJ(u0).

Further, u(t0) ∈ N J(u0). By the definition of ΛJ(u0), we obtain

(5.4) ‖u(t0)‖2 ≤ ΛJ(u0).

Noticing that I(u(t)) < 0 for t ∈ [0, t0), it follows from (2.11) that

‖u(t0)‖2 > ‖u0‖2 ≥ ΛJ(u0),
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which contradicts (5.4). Suppose T (u0) =∞, then for any ω ∈ ω(u0),

‖ω‖2 > ΛJ(u0), J(ω) < J(u0),

by (2.5) and (2.11). Recalling the definition of ΛJ(u0), we obtain ω(u0)∩N = ∅. Therefore,

ω(u0) = {0}, which contradicts dist(0,N−) > 0 in Lemma 5.1(1). Therefore, ω(u0) = ∅,
T (u0) <∞.

Corollary 5.4. Let condition (1.2) hold, u0 ∈ H2
0 (Ω), J(u0) > d. If p2|Ω|(p−2)/2J(u0) <

‖u0‖p2, then u0 ∈ N− ∩ B.

Proof. By Hölder’s inequality, we get

(5.5) p2|Ω|(p−2)/2J(u0) < ‖u0‖p2 ≤ ‖u0‖pp|Ω|(p−2)/2.

Combining (2.2) and (5.5), we obtain

J(u0) =
1

p
I(u0) +

1

p2
‖u0‖pp +

p− 2

2p
‖∆u0‖22

≥ 1

p
I(u0) +

1

p2
‖u0‖pp >

1

p
I(u0) + J(u0),

which implies I(u0) < 0, i.e., u0 ∈ N−.

To prove u0 ∈ B, we only need to prove ‖u0‖2 ≥ ΛJ(u0) by Theorem 5.3(2). For any

u ∈ N J(u0), it follows from (2.2) that

‖u‖p2 ≤ ‖u‖pp|Ω|(p−2)/2 < |Ω|(p−2)/2p2

(
1

p
I(u) +

1

p2
‖u‖pp +

p− 2

2p
‖∆u‖22

)

= |Ω|(p−2)/2p2J(u) < |Ω|(p−2)/2p2J(u0).

Therefore, taking the supremum of above inequality over N J(u0), we easily obtain

ΛpJ(u0) < |Ω|
(p−2)/2p2J(u0) < ‖u0‖p2,

i.e., ‖u0‖2 > ΛJ(u0). Therefore, u0 ∈ N− ∩ B.

The following theorem indicates that there exist blow-up solutions to problem (1.1)

for any supercritical initial energy.

Theorem 5.5. Let condition (1.2) hold, u0 ∈ H2
0 (Ω). For any M > d, then there exists

uM ∈ N− such that J(uM ) = M and uM ∈ B.

Proof. Assume that M > d and Ω1, Ω2 are two arbitrary disjoint open subdomains of Ω.

Furthermore, we assume that ν ∈ H2
0 (Ω1) is an arbitrary nonzero function, then we take

ζ large enough such that

J(ζν) =
ζ2

2
‖∆u‖22 +

ζp

p
‖∇u‖pp −

ζp

p

∫

Ω
|u|p log |u| dx− ζp

p
log |ζ|

∫

Ω
|u|p dx+

ζp

p2
‖u‖pp ≤ 0,
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and

‖ζν‖p2 > |Ω|(p−2)/2p2M.

We fix such a number ζ > 0 and choose a function µ ∈ H2
0 (Ω2) satisfying M = J(µ) +

J(ζν). Extend ν and µ to be 0 in Ω \ Ω1 and Ω \ Ω2. Set uM = ζν + µ, then M =

J(µ+ ζν) = J(uM ) and it follows that

‖uM‖p2 ≥ ‖ζν‖p2 > |Ω|(p−2)/2p2J(uM ).

By Corollary 5.4, then uM ∈ N− ∩ B. This completes the proof of this theorem.
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