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A Note on Special Fibers of Shimura Curves and Special Representations

Yih-Jeng Yu

Abstract. We study the geometry of the special fibers of certain Shimura curves and

give a direct proof of global-to-local Jacquet-Langlands compatibility by Čerednik-

Drinfel’d uniformizations theorem.

1. Introduction

Let F be a number field with absolute Galois group GF , and let Fv be the completion at

some place v with Weil group WFv . The Langlands program for GL2 predicts the existence

of a diagram of the following form:

“Rep2(GF )” “{Automorphic repres of GL2(AF )}”

Rep2(WFv)
F -ss {Irreducible admissible repres of GL2(Fv)}

Global Langlands

Res
GF
WFv

⊗wπw 7→πv
Local Langlands

where Rep2(WFv)
F -ss is the collection of two dimensional Frobenius semi-simple contin-

uous representations of WFv over Q` (v - `), and Rep2(GF ) is the collection of two di-

mensional continuous GF -representations over Q`. The local Langlands correspondence

is often stated in terms of Weil-Deligne representations; however, Grothendieck’s `-adic

monodromy theorem says that these are the same as Frobenius semi-simple continuous

WFv -representations.

The first row of the above diagram, that is, the global Langlands correspondence, is

still conjectural even for 2-dimensional representations with F = Q. For example, one

knows that most of the time there is no corresponding Galois representation for Maass

forms. There are certain cases in which the upper arrow is defined, e.g., for automorphic

or Galois representations corresponding to cusp forms. In this case, whether or not the

local and global Langlands correspondences could be normalized so that the above dia-

gram commutes? The existence and description of such a normalization is the local-global

compatibility.
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One of the first monumental examples of Langlands program is the Jacquet-Langlands

correspondence which is a correspondence between automorphic forms on GL2 and its

twisted forms [19, §16]. Roughly speaking, two groups sharing many conjugacy classes

should share a large part of their representation theory. For the moment, let F be a local

field, and B a quaternion algebra over F ; let TrB/F and NmB/F be the reduced trace and

norm on B respectively. Let ω : F× → C× be a smooth character.

Theorem 1.1 (Local Jacquet-Langlands Correspondence). There is a unique bijection

{irreducible smooth repres π′ of B× with central character ω}

←→ {irreducible discrete series repres π of GL2(F ) with central character ω}

such that for π′ ↔ π the characters Θπ′ and Θπ of π′ and π satisfy the relation

Θπ′(t′) = −Θπ(t),

each time t′ and t are regular semi-simple elements of B× and GL2(F ) related by the

identities

TrB/F (t′) = Tr(t), NmB/F (t′) = det(t).

Since F is a non-Archimedean local field, the discrete series representations of GL2(F )

are special (or twisted Steinberg) representations and supercuspidal representations. The

trivial representation of B× corresponds to the Steinberg representation of GL2(F ). More

generally, each one dimensional character of B× corresponds to special (or twisted Stein-

berg) representation of GL2(F ).

The correspondence between division algebras of dimension n2 and GLn was proved

by Jacquet and Langlands in both the local and global settings in [19], hence the name.

Rogawski [25] extended the local Jacquet-Langlands correspondence to division algebras

of higher dimension in characteristic 0. Deligne, Kazhdan and Vignéras in [10] carried

out the case of a general inner form of GLn(F ) in characteristic 0, and Badulescu [1] in

characteristic p. Each of these cases was accomplished by embedding the local problem

into a global one and then applying Selberg trace formula methods.

Now let F be a number field and B be a quaternion algebra over F ramified exactly

at places S. Let ω : F× \ A×F → C be a smooth character.

Theorem 1.2 (Global Jacquet-Langlands Correspondence). There is a unique injection

{irreducible automorphic repres π′ of A×B of dim > 1 with central character ω}

↪→ {irreducible cuspidal automorphic repres π of GL2(AF ) with central character ω}

such that for π′ ↔ π if and only if π′v ' πv for all v /∈ S, and π′v ↔ πv for all v ∈ S in

the sense of local Jacquet-Langlands correspondence. The image of this injection consists

of those cuspidal automorphic π of GL2(AF ) with πv in the discrete series for all v ∈ S.
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In other words, global Jacquet-Langlands correspondence defines a bijection between

the cuspidal automorphic representations of B and the set of cuspidal automorphic rep-

resentations π of GL2 such that πv is in the discrete series for all v ∈ S. The statement

about the local components of π at the end of the above theorem is exactly what is meant

by “local-global compatibility”. The proof of the global Jacquet-Langlands correspondence

is now considered the simplest non-trivial application of the Selberg trace formula to

Langlands functoriality.

Let N = p1 · · · pn be a product of distinct primes with n odd. Let BQ be the definite

quaternion algebra ramified at primes dividing N . Global Jacquet-Langlands correspon-

dence gives a bijection between normalized cuspidal Hecke eigen newforms of weight 2

and of level Γ0(N), and automorphic representations π′ of A×B of dimension > 1, with the

fixed central character (the norm map | · | : A×B → R>0) such that π′∞ is trivial on SU(2)

and π′p is trivial when restricted to O×Bp at p | N , and unramified elsewhere. Let OBp be a

maximal order in Bp (unique if p | N), and let h(B) be the class number of B (the number

of maximal orders in B up to left multiplication by B×). Counting numbers of newforms

for GL2 and all forms for B, we obtain

dimSnew
2 (Γ0(N)) = g(X0(N))new = #

(
B×A×Q \A

×
B,f/

∏
p

O×Bp

)
− 1 = h(D)− 1.

We subtract by one in the end of the right-hand side in order to exclude the unique 1-

dimensional representation with given central character | · |. For indefinite quaternion

algebra BQ ramified at primes dividing N = p1 · · · pn with n even, we can similarly get a

relation between the new part of the genus of X0(N) and the genus of a certain Shimura

curve.

The aim of this paper is to give a direct proof of global-to-local Jacquet-Langlands

compatibility (cf. Theorem 7.2). To this end, we need to study the cohomology of certain

Shimura curves using the spectral sequence of vanishing cycles. In §2 and §3, we will

be recalling constructions of Shimura curves and of Čerednik-Drinfel’d uniformizations.

The uniformization theorem of Čerednik-Drinfel’d will be used to study the generic fiber

of Shimura curves in question (cf. Theorem 3.2). Moreover, the cohomology of Shimura

curves in question can be interpreted as the cohomology of the dual graph associated with

Shimura curves (cf. Corollary 3.3). This dual graph can be uniformized by a Schottky

group which is associated with the open compact subgroup defining the Shimura curve.

Therefore, we will establish a comparison isomorphism between the group cohomology of

Schottky groups and the equivariant cohomology of dual graphs in §4 (cf. Proposition 4.2).

After recollecting the theory of vanishing cycles in §6, the cohomology of Shimura curves

in question can be determined by the exact sequence of specialization (cf. Proposition 6.3)

and harmonic cocycles (cf. Lemma 7.1).
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2. Shimura curves

In this and next sections, we will be recalling constructions of Shimura curves and of

Čerednik-Drinfel’d uniformizations, and we then take up the study of the reduction modulo

a prime of the Shimura curves. We rely on Boutot [2], Boutot-Carayol [3], Diamond-

Taylor [11, Chapter 4], and Rapoport [22, Chapter 1] for the basic theory used in this

section.

Fix a prime p. Let D > 1 be a product of an even number of primes, and let M be

a square-free integer prime to D. Suppose that N = MD. We let B be an indefinite

quaternion algebra over Q with discriminant D.

We fix a maximal order OB of B, and an isomorphism B ⊗Q R ' M2(R). For any

` - D, we choose an isomorphism φ` : B`
∼−→ M2(Q`) such that φ`(OB`) = M2(Z`). Let

uM : Ô×B → GL2(Z/MZ) induced by φ`. We let

• Γ̂D0 (M) denote the preimage of
{(

a b
c d

)
∈ GL2(Z/MZ)

∣∣ c = 0
}

under uM ;

• Γ̂D1 (M) denote the preimage of
{(

a b
c d

)
∈ GL2(Z/MZ)

∣∣ c = 0, d = 1
}

under uM ;

• Γ̂D(M) denote the kernel of uM .

We associate with the quaternion algebra B an algebraic group G = B× defined over

Q as follows:

B×(R) := (B ⊗Q R)× for all Q-algebras R.

We may extend B× to a group scheme G = O×B defined over Z by

O×B(R) := (OB ⊗Z R)× for all Z-algebras R.

Accordingly, G extends to a group scheme over Z by

G/Z = O×B.

The center Z of G is a group scheme satisfying Z(R) = (Z⊗Z R)×.

Let G(R)+ be the identity component of G(R). The group G(R)+ = GL2(R)+ acts

on the Poincaré upper half-plane H by the linear fractional transformation. Denote by Ci

the stabilizer of i =
√
−1 in (B ⊗Q R)×. Note that we have H ' G(R)+/Ci. Let RM,D be

the Eichler order of level M . We see that R̂×M,D = Γ̂D0 (M). The Shimura curve XD(M)

associated with these data is the following:

XD(M) := X(R̂M,D)(C) = G(Q) \G(A)/R×R̂×M,D · Ci.

By Shimura’s theory (see Shimura [26, Chapter 8]), the curve XD(M) has a canonical

model XD(M) defined over Q: XD(M) ×Q SpecC = XD(M)(C). Since D > 1, this

model is already proper.
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2.1. Moduli problems

Let S be a Z[1/D]-scheme. A false elliptic curve over S is a pair (A, ι) where A is an

abelian scheme of relative dimension two over S, and ι : OB ↪→ EndS(A) is an action of

OB on A/S . Note that once we have fixed u ∈ OB with u2 = −D, any false elliptic curve

admits a canonical principal polarization.

If (A1, ι1) and (A2, ι2) are false elliptic curves, then by an isogeny π : A1 → A2 of

false elliptic curves, we mean an isogeny π : A1 → A2 over S in the usual sense, such that

ι2(x) ◦ π = π ◦ ι1(x) for all x ∈ OB. If π : A1 → A2 is an isogeny of false elliptic curves,

then π induces a dual isogeny π∨ : A∨2 → A∨1 which, because we have defined principal

polarisations on A1 and A2, induces a map πt : A2 → A1 which is also an isogeny of false

elliptic curves, and we call it the dual isogeny. The composite πt ◦ π : A1 → A1 is locally

multiplication by an integer; if this integer is constant on S, we call it the false degree of

π.

Let S be a Z[1/MD]-scheme. A (naive) full level M structure on a false elliptic curve

(A/S, ι) is an isomorphism

α : (OB ⊗ Z/MZ)S
'−→ A[M ]

of schemes which preserves the left action of OB. Let H ⊆ (OB⊗Z/MZ)× be a subgroup.

Consider the contravariant functor FA/S,M from S-schemes to sets, sending T/S to the

set of full level M -structures on AT . Then FA/S,M is represented by a closed subscheme

of A[M ], and this representing scheme is an étale (OB ⊗ Z/MZ)×-torsor. For each T ,

there is a left action of (OB ⊗Z/MZ)×, and hence of H, on FA/S,M (T ). If H \FA/S,M (T )

denotes the orbit space, then define FA/S,H to be the sheafification with respect to the

étale topology of the functor T  H \FA/S,M (T ) from S-schemes to sets. Then FA/S,H is

represented by a quotient of the S-scheme representing FA/S,M and is again a finite étale

covering of S. If α ∈ FA/S,M (S), we say that it is a naive level H structure on (A/S, ι).

2.2. Representability

Suppose that U is an open compact subgroup of Ô×B satisfying the following three prop-

erties:

(i) det(U) = Ẑ×.

(ii) U is maximal at primes dividing D; that is, U =
∏
p|D(OB ⊗Zp)××UD, where UD

is the projection of U onto
∏
p-D(OB ⊗ Zp)×.

(iii) U ⊂ Γ̂D1 (l) for some l ≥ 4 prime to D.
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Remark 2.1. The assumption (i) implies that the complex curve attached to U is con-

nected. The assumption (iii) is a smallness criterion which will be needed for repre-

sentability results.

Let MU denote the smallest positive prime-to-D integer such that Γ̂D(MU ) ⊆ U ,

and let S be a Z[1/MUD]-scheme. We consider the following moduli problem XD(U)

which associates with Z[1/DMU ]-scheme S the category of isomorphism classes of triples

(A, ι, ν)/S such that

XD(U) : SchemesZ[1/DMU ]  Sets

S  (A, ι, ν)/S/'

(a) (A, ι) is a false elliptic curve over S.

(b) ν ∈ FA/S,U (S) is a level U structure.

Theorem 2.2. Let U be an open compact subgroup of Ô×B, and satisfy properties (i)–

(iii) as stated earlier. Let MU denote the smallest positive integer M prime to D such

that Γ̂D(M) ⊆ U . The moduli problem XD(U) is representable by a scheme XD(U)

which is flat of relative dimension one over SpecZ. The scheme XD(U) is smooth over

SpecZ[1/DMU ]. If B is a division algebra (i.e., D > 1), then XD(U) is proper over

SpecZ.

Proof. For the representability of XD(U), the key point is to show the existence and the

uniqueness of a polarization of (A, ι) of a certain type (cf. [3]). To construct XD(U),

one imposes a level structure and use the relative representability over the principally

polarized abelian varieties of dimension two with level MU structure (also cf. [3]).

The smoothness of XD(U) over SpecZ[1/DMU ] can be shown by using deformation

theory and Serre-Tate theorem (cf. Katz [20]). If D > 1, using the semi-stable reduc-

tion theorem one can show the properness of XD(U) through the valuative criterion for

properness. For the projectivity of XD(U) if D > 1, one can use the quasi-projectivity of

the moduli space of principally polarized abelian varieties.

Corollary 2.3. Let U be an open compact subgroup of Ô×B. Suppose that U satisfies

properties (i)–(ii) only. Then the moduli problem XD(U) may not be representable but

admits a coarse moduli scheme XD(U) which can be defined as the quotient of XD(Ũ) by

U/Ũ for any normal subgroup Ũ ⊂ U satisfying (iii). XD(U) is smooth over Z[1/DMU ].

Suppose that r is a prime not dividing MD. We fix an isomorphism φr : OB ⊗ Zr '
M2(Zr), and let e be the idempotent in OB/rOB corresponding to ( 1 0

0 0 ) by φr. Following

Buzzard [7], we define a Γ0(r)-structure (resp. Γ1(r)-structure) on a false elliptic curve A
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as a finite flat group scheme K1 of rank r inside (1 − e)A[r] (resp. a Drinfel’d generator

of this subgroup).

Let U be an open compact subgroup of Ô×B of level M , and let Γi = U ∩ Γ̂Di (r) for

i = 0, 1. The Shimura curve XD(Γ0) is proper and semisteble over Zr. In fact, there

are exactly two smooth irreducible components, Xm and Xe, in the special fiber; they

can be described as the Zariski closure of the locus Xm,0 where K1 is of multiplicative

type, resp. of Xe,0 where K1 is étale (cf. [29, §3.2]). The map π : XD(Γ0) → XD(Γ)

forgetting the Γ0-structure is finite and flat (see [29, Proposition 3.3]). Moreover, one can

use Tate-Oort theory to show the followings:

Proposition 2.4. (1) The model XD(Γ1) of XD(Γ1)Qr is regular and flat over Zr.

(2) The map π10 : XD(Γ1) → XD(Γ0) is finite flat; the special fiber of XD(Γ1) is a di-

visor with normal crossings, with exactly two irreducible components Y e = π−1
10 (Xe)

and Y m = π−1
10 (Xm) with multiplicity 1 and r − 1 respectively, whose underlying

reduced subschemes are smooth.

(3) The two components cross (transversally) at the supersingular points and nowhere

else.

Proof. Let us consider the finite group scheme C = Ku
1 of rank r over the Zr-scheme

XD(Γ0) and C+ the complement of the zero section in C.

If s ∈ Xe,0, then C+ is étale over XD(Γ0) in a neighbourhood of s by [29, Proposi-

tion 3.3]. If s ∈ Xm,0, then C+ is of multiplicative type, hence is isomorphic to µr on an

étale neighbourhood of s. Hence, the statement about multiplicities is obvious, as the map

π10 is an isomorphism. Let s ∈ Xm ∩Xe. By [29, Proposition 3.3] again, the completed

local ring ÔXD(Γ0),s at s is isomorphic to R = Zr[[u, v]]/(uv − r) in such a way that

(2.1) the completion at s of Xe (resp. Xm) has equation v = 0 (resp. u = 0).

Tate-Oort theory [28] classifies finite flat group schemes of rank r over any Zr-algebra;

in particular, the pull-back CR of C over Spf R is isomorphic to GR(x, y), the Tate-Oort

group scheme of rank r over R for some parameters x, y ∈ R, where, in the notations of

Tate-Oort, a = νx, b = y and wr = νr = ab, where wr ∈ Zr is an explicit Gauss sum.

Note that GR(x, y) ' GR(x′, y′) if and only if x′x−1 is the (r − 1)st power of a unit in

R. As in [17, Corollary 3.3.5], we deduce from (2.1) that x = αu and y = α−1v for some

α ∈ R×.

Therefore, CR ' GR(u, v) if and only if the unit α is a (r − 1)th power in R. Now

the extension R[(α)1/(r−1)] is finite étale over R. Since the problem is local in the étale

topology, we may assume CR ' GR(u, v).
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Now we recall the Tate-Oort equations for GR(u, v) over R. Put X1 = νu, X2 = v,

then GR(u, v) = Spf(R[Y ][[X1, X2]]/(X1X2 − wr, Y r −X1Y )) (see [28, p. 13]).

Now the factorization Y r−X1Y = Y (Y r−1−X1) provides an embedding of the algebra

of formal functions on GR(u, v) into the ring R0 ×R∗, where

R0 = Zr[[X1, X2]]/(X1X2 − wr), R∗ = Zr[[X2, Y ]]/(Y r−1X2 − wr).

Dually, we have a surjective morphism

Spf(R0) t Spf(R∗)→ GR(u, v).

The image of Spf(R0) corresponds to the zero section, while the image of Spf(R∗) is the

scheme-theoretic closure of C+. It follows that Spf(R∗) is a local model for C+ over a

neighbourhood of the singular point s. Obviously, Spf(R∗) has the properties required.

Moreover Spf(R∗) is normal, and it follows that Spf(R∗) is a formal local model for

XD(Γ1).

2.3. The moduli problem for primes dividing the discriminant

Fix a maximal order OB of B which is stable under the main involution of B. Let p be a

prime dividing D.

Definition 2.5. Let κ be an algebraic closed field of characteristic p. Let A be an abelian

surface over κ, and ι : OB → Endκ(A) an OB-action on A/κ. We say that the pair (A, ι)

is special if the induced action of the Witt ring W (Fp2) ⊂ OBp on Lie(A) decomposes into

two direct summands where W (Fp2) acts via the two embeddings

W (Fp2)⊗Zp Fp ↪→ κ.

In other words, the characteristic polynomial of ι(b) on Lie(A) can be written as follows:

char(ι(b)|Lie(A))(T ) = (T − b) · (T − b′).

Remark 2.6. (a) By the Honda-Tate’s theorem, there exists only one isogeny class over Fp
of special pairs (A, ι). Let (A0, ι0) be a fixed member of this class. We have

EndOB (A0)⊗Z Q ' B′

where B′ is the quaternion Q-algebra obtained by interchanging the local invariants p and

∞, i.e., B` ' B′` for ` /∈ {p,∞} and B` 6' B′` for ` ∈ {p,∞}.
(b) For a scheme S flat over Zp, the action of OB on an abelian surface A/S is always

special over all geometric points of S over Fp.
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Let V = B and W = OB the standard lattice of V stable by left multiplication by OB.

We consider the following moduli problem over Zp. Let U be an open compact subgroup of

Ô×B satisfying the three conditions described in §2.2. Let MU denote the smallest positive

integer M prime to D such that Γ̂(M) ⊆ U . The moduli problem SU associates with

Zp-scheme S the set of isomorphism classes of triples (A/S , ι, ν) such that

SU : SchemesZp → Sets

S  (A/S , ι, ν)/∼

(i) A is an abelian scheme of relative dimension two over S;

(ii) ι : OB → EndS(A) is an action of OB which is special over each characteristic p

geometric point s of S;

(iii) ν is a level U structure.

We then recall the following theorem in [3, Theorem 3.4, Chapter III]:

Theorem 2.7. Let U be an open compact subgroup of Ô×B, and satisfying condition (i)–

(iii) as in §1.2. Let MU denote the smallest positive integer M prime to D such that

Γ̂D(M) ⊆ U . Then the moduli problem SU is representable by a projective flat Zp-scheme

SU .

As a consequence, the generic fiber of the Zp-scheme SU is the base change to Qp of

the Shimura curve XD(U) of level U :

SU ⊗Qp ' XD(U)⊗Qp.

3. Čerednik-Drinfel’d uniformization

Čerednik was the first who observed that the Shimura curves associated with the quater-

nion division algebra B admit a p-adic uniformization in the sense of Mumford’s construc-

tion of degenerating curves over complete local rings. Drinfel’d clarified and improved

the result of Čerednik by constructing a universal family of formal groups over the p-adic

upper half-plane which corresponds to the formal group of the universal abelian scheme

over the Shimura curves. Čerednik-Drinfel’d uniformization theorem will be used to study

the generic fiber of Shimura curves. We refer to the original papers [8,12,13] of Čerednik

and Drinfel’d, and to the paper of Boutot and Carayol [3] for details and proofs.

Let M ′ = pM and D′ = D/p. Let B′ be the definite quaternion algebra ramified

precisely at the primes dividing D′, and the archimedean place. Let G′ be the group

scheme over Z associated with B′×. We fix an isomorphism φp : B′ ⊗Q Qp
'−→ M2(Qp).
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There is a unique Eichler Z[1/p]-order RM,D′ of level M in B′, up to conjugation by B′×.

Let r ≥ 4 be an integer prime to N , and put Γ′ = R̂×M,D′ ∩ Γ̂D
′

1 (r). The group Γ′ is torsion-

free. Write Γ′+ to be the subgroup of Γ′ consisting of elements whose p-adic valuation of

its reduced norm is even. We see that Γ′+ is a normal subgroup of Γ′ of index two. Let

Γ′/Γ′+ = {1,Wp}. Hence Wp may be represented by an element of reduced norm p. We

write ∆ for the image by φp of Γ′+∩G′(Q)+. It is a Schottky group in the sense of [14,15].

Via the isomorphism φp, the group ∆ acts properly discontinuously on p-adic upper

half-plane Ω := P1(Cp) \ P1(Qp) with compact quotient, and this quotient ∆ \Ω is a rigid

curve defined over Qp. We denote the curve ∆ \ Ω by X.

We write Ap∞ for the ring of finite adèles without p-component. From the definition

of B′, we have an anti-isomorphism

(3.1) Bopp ⊗Q Ap∞ ' B′ ⊗Q Ap∞.

We thus obtain a group isomorphism

B×(Ap∞) ' B′×(Ap∞)

after composition of (3.1) by the inversion g 7→ g−1. We write Γ̂(M) = U0
p · U

p
M (= U for

short) where U0
p denotes the group of units in the maximal ideal OBp and UpM is an open

compact subgroup of B×(Ap). We may consider UpM as a subgroup of B′×(Ap). Define

ZU = UpM \ B̂′
×
/B′×.

The group GL2(Qp) acts naturally on the left on the Bruhat-Tits tree T , the rigid analytic

space Ωrig, the formal scheme Ω̂, and on ZU . Let Qnr
p be the maximal unramified extension

of Qp and Ẑnr
p the completion of the ring of integers in Qnr

p . An element g ∈ GL2(Qp) acts

on Qnr
p and Ẑnr

p via F̂rob
−vp(det g)

p where F̂robp denotes the arithmetic Frobenius automor-

phism.

We have defined a scheme SU representing a Kottwitz moduli problem SU in §1.3. We

denote by ŜU the completion of SU along its special fiber and by San
U the rigid analytic

space over Qp associates with ŜU .

Theorem 3.1 (Čerednik-Drinfel’d). There is a canonical isomorphism of formal schemes

over Zp

(3.2) GL2(Qp) \ [(Ω̂⊗̂ZpẐnr
p )× ZU ]

'−→ ŜU

and a canonical isomorphism of rigid analytic spaces over Qp

GL2(Qp) \ [(Ω⊗Qp Qnr
p )× ZU ]

'−→ Ŝan
U .
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Proof. The details of the proof could be found in [3, Chapter III, §6]. We only sketch it

right now.

Let S be a Zp-scheme where the image of p is nilpotent, and Φ be a formal special OBp-
module over S. An algebrization of Φ is a pair (A, ε) where A is an abelian scheme over

S with an OB-action, and ε : Â → Φ is an OB-equivariant isomorphism from the formal

group associated with A to Φ. If A is equipped with a level U structure, we call the pair

(A, ε) an algebrization with level U -structure. Let AlgU (Φ) be the set of isomorphism

classes of algebrizations with level U structure of Φ.

The group B̂′× = B′×p × B′×(Ap∞) acts on AlgU (Φ) from the left: B′×p acts by com-

position with ε and B′(Ap∞)× acts by composition with ν. Given a triple (A0, ε0, ν0) ∈
AlgU (Φ), the stabilizer of (A0, ε0, ν0) is B′×. Hence, we can deduce a bijection

AlgU (Φ)
∼−→ UpM \ B̂′

×
/B′× = ZU .

Following Chapter II §8.4 and Chapter III §6.2 of [3], a section of (Ω̂⊗ Fp)× ZU over

a connected scheme S = Spec k of characteristic p is given by:

(a) A homomorphism φ : Fp → k.

(b) An isomorphism class of pairs (X, ρ), where X is a formal special OB-module over

S, and ρ : φ∗Φ→ X is a quasi-isogeny of height zero.

(c) An algebrization (A, ε, ν) of Φ with level U structure.

This datum gives a point in SU (k). Hence we obtain a morphism of Fp-schemes

Θ: (Ω̂⊗ Fp)× ZU → SU ⊗ Fp.

Note that Θ is invariant under the left action of GL2(Qp); thus Θ factors through a

morphism of Fp-schemes:

Θ: GL2(Qp) \ [(Ω̂⊗ Fp)× ZU ]→ SU ⊗ Fp.

One can also show that Θ is actual an isomorphism (cf. [3, Chapter III §6.4]). By de-

formation theory and Serre-Tate theorem (cf. Katz [20]), we may prolong the isomorphism

Θ to an isomorphism form the formal scheme GL2(Qp) \ [(Ω̂⊗̂ZpẐnr
p )× ZU ] to the formal

scheme ŜU as well.

3.1. Torsors

Let S be a scheme. Suppose that C → S is a curve over S, and T → S is a Galois étale

covering. Denote G by Gal(T/S). We briefly recall the definition and some properties of

torsor for G over C.
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Let χ ∈ H1(G,Aut(C ×S T/T )) be represented by a 1-cocycle χ̃. Define a torsor

Cχ : SchemesS → Sets by

Cχ : Schemes/S → Sets

Y/S  G \ (C ×S T )(Y ),

where σ ∈ G acts on the left on C ×S T by σ · (x, t) =
(
(1× σ) ◦ χ̃(σ)

)
(x, t). Then Cχ is

represented by a scheme Cχ/S . Such an Cχ is unique and is called the twist of C/S by χ.

We thus have

Cχ ×S T 'T C ×S T

and

Cχ(S) =
{
x ∈ C(T ) | χ̃(σ)x = σ · x for all σ ∈ G

}
.

3.2. Variant of Čerednik-Drinfel’d uniformization

The book of Gerritzen-Van der Put [15] provides the theory of p-adic Schottky groups and

Mumford’s theory of p-adic uniformization (see also Fresnel-Van der Put [14]). We also

refer to the origin papers by Mumford [21] and Tate [27].

The action of GL2(Qp) on ZU decomposes the latter space into finitely many orbits.

Each orbit contains an element xi whose p-component is one; the stabilizer Hi of xi is a

discrete cocompact subgroup of B′×(Qp) = GL2(Qp) containing the ni
th power of

(
p 0
0 p

)
for some ni � 0. Dividing by the action of the elements

(
p 0
0 p

)ni
, we get

GL2(Qp) \ [(Ω̂⊗̂ZpẐnr
p )× ZU ] =

∐
i

Hi \ (Ω̂⊗̂ZpZ(2ni)
p )

where Ẑ(2ni)
p is the ring of integers in the unramified extension Q(2ni)

p of degree 2ni of

Qp. Let H ′i be the image in PGL2(Qp) of the subgroup of all elements in Hi whose

determinant is a unit. Then H ′i is a Schottky group, since we always assume U satisfies

the condition (i)–(iii) as in §1.5 (cf. [21, 23, 24]). After a base extension to Z(2ni)
p , the

quotient

Hi \ (Ω̂⊗̂ZpZ(2ni)
p )

becomes as a Z(2ni)
p -scheme isomorphic to a finite union of Mumford quotients H ′i \ Ω̂.

Thus we may recover (3.2) from this finite union by Galois descent with respect to the

extension Z(2ni)
p of Zp. This shows that the left hand side in (3.2) is a Galois twisted form

of a finite disjoint union of Mumford curves.

Let Kp be the unique unramified quadratic extension of Qp. Let Γ = Γ̂D0 (M) ∩ Γ̂D1 (r)

and let XD(Γ) be the Shimura curve associated with Γ. Let XD(Γ)χ be the curve over
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Qp obtained by twisting XD(Γ) by the 1-cocyle

χ ∈ H1
(

Gal(Kp/Qp),Aut(XD(Γ))
)

which sends the generator of Gal(Kp/Qp) to the Atkin-Lehner operator Wp. Then we

have

Theorem 3.2 (Čerednik-Drinfel’d). Let X = ∆ \ Ω be the rigid analytic curve over Qp

associated with ∆ = φp(Γ
′
+ ∩G′(Q)+) (cf. second and third paragraphs in §3). The curve

XD(Γ)χ is isomorphic, as an rigid curve over Qp, to X. In particular, the rigid curve X

is isomorphic to XD(Γ) over Kp.

For a dual graph G of a semi-stable curve C over a strict henselian trait, since the

residue field is finite, the Frobenius morphism on the special fiber of C induces an au-

tomorphism of dual graphs F : G → G. By Mumford’s theory (cf. [14, §5.4]), the dual

graph of X is canonical isomorphic to the graph ∆ \ T∆ where T∆ is a locally finite tree

associated with ∆. Hence, the theorem of Čerednik-Drinfel’d shows that the dual graph

can be described by the following:

Corollary 3.3. There is an isomorphism of pairs

(G(XD(Γ)× Zp/Zp), F (XD(Γ)× Zp/Zp)) ' (∆ \ T ,Wp).

4. Equivariant cohomology theory

Let T be the Bruhat-Tits tree of PGL2(Qp), whose vertices corresponds to homothety

classes of rank two Zp-latices in Q2
p. Let ∆ be a discrete subgroup of PGL2(Qp) acting

on T properly discontinuously and freely. More precisely, we assume that ∆ does not

invert edges, and that stabilizers of vertices (and hence of edges) are finite. Let pr : T →
∆ \ T = G be the quotient map. Let O be a ring and let Λ be an O-module on which

∆ acts O-linearly. The goal of this section is to establish a comparison isomorphism

between the group cohomology H•(∆,Λ) and the equivariant cohomology H•∆(T ,Λ) (see

Proposition 4.2). The main references here are [4–6].

If G is any graph, we denote by Σi(G) the set of i-simplices of G for i = 0, 1. Hence,

Σ0(G) is the set of vertices Ver(G) of G and Σ1(G) is the set of edges Ed(G) of G.

Let G = ∆ \ T . For any i-simplex σ ∈ Σi(G), we denote by σ̃ ∈ Σi(T ) an i-simplex

of T lying above σ. We denote by ∆(σ̃) the stabilizer of σ̃ in ∆. We also denote by ∆σ̃

the ∆-orbit of any i-simplex σ̃. Let Σo
1(T ) = Edo T be the oriented edges of T . For every

oriented edge e ∈ Σo
1(T ), there is an opposite edge e ∈ Σo

1(T ). An oriented edge e ∈ Σo
1(T )
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has an initial vertex o(e) and a terminal vertex t(e). We set

C0(T ,Λ) := Functf (Σ0(T ),Λ),

C1(T ,Λ) :=
{
f ∈ Functf (Σo

1(T ),Λ) | f(e) = −f(e)
}
,

where Functf denotes the set of functions with finite support. A choice of an orientation

for T gives an identification of C1(T ,Λ) with Functf (Σ1(T ),Λ). We thus have the cochain

complex

(4.1)
d : C0(T ,Λ) −→ C1(T ,Λ)

f 7−→ e 7→ f(t(e))− f(o(e)).

We denote the equivariant cochain groups Ci∆(T ,Λ) by the ∆-invariant of Ci(T ,Λ)

for i = 1, 2. That is,

Ci∆(T ,Λ) := Ci(T ,Λ)∆.

Taking ∆-invariant of (4.1) gives the complex C•∆(T ,Λ)

d : C0
∆(T ,Λ)→ C1

∆(T ,Λ),

whose cohomology yields the equivariant cohomology H•∆(T ,Λ), i.e.,

(4.2) 0 −→ H0
∆(T ,Λ) −→ C0

∆(T ,Λ)
d−→ C1

∆(T ,Λ) −→ H1
∆(T ,Λ) −→ 0.

On the other hand, since T is contractible, the complex (4.1) gives an exact sequence

of ∆-modules

(4.3) 0 −→ Λ −→ C0(T ,Λ)
d−→ C1(T ,Λ) −→ 0.

Note that

Ci(T ,Λ) '
⊕

σi∈Σi(G)

Hom(∆σi,Λ).

We now recall Shapiro’s Lemma:

Lemma 4.1 (Shapiro’s Lemma). Let H be a subgroup of G, and let A be an H-module.

Then for all m ≥ 0,

Hm(G, IndGH(A)) ' Hm(H,A),

where IndGH(A) consists of all maps x : G→ A such that x(τγ) = τx(γ) for all τ ∈ H.

Applying Shapiro’s Lemma,

Hm(∆, Ci(T ,Λ)) '
⊕

σi∈Σi(G)

Hm(∆(σ̃),Λ)
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for m ≥ 1. Therefore, from (4.3) we get the following long exact sequence:

· · · → Hm(∆,Λ)→
⊕

σ0∈Σ0(G)

Hm(∆(σ̃),Λ)→
⊕

σ1∈Σ1(G)

Hm(∆(σ̃),Λ)→ Hm+1(∆,Λ)→ · · · .

Since ∆ acts without fixed points, Hm(∆, Ci(T ,Λ)) = 0 for m ≥ 1, and the long exact

sequences becomes

(4.4) 0 −→ H0(∆,Λ) −→ C0
∆(T ,Λ)

d−→ C1
∆(T ,Λ) −→ H1(∆,Λ) −→ 0.

Hence, by comparing (4.2) and (4.4), we obtain

Proposition 4.2. The group cohomology H•(∆,Λ) is canonical isomorphic to equivariant

cohomology H•∆(T ,Λ).

5. Harmonic cocycles

Let O be a subring of C preserved under complex conjugation. Let 〈 · , · 〉 be a positive

definite hermitian form on Λ, and suppose that ∆ acts on Λ unitarily. Define an O ⊗Q-

valued inner product 〈 · , · 〉i∆ on Ci∆(T ,Λ) by

〈f, g〉i∆ =
∑

σ∈Σi(G)

〈f(σ̃), g(σ̃)〉
|∆(σ̃)|

.

The inner product 〈 · , · 〉i∆, i = 0, 1, are positive definite.

Define δ : C1
∆(T ,Λ)→ C0

∆(T ,Λ) by

(δf)(ṽ) =
∑

ẽ∈St(ṽ)

f(ẽ)

for ṽ ∈ Σ0(T ) and f ∈ C1
∆(T ,Λ), where St(ṽ) = {ẽ ∈ Edo(T ) | t(ẽ) = ṽ}. We define the

laplacian �i by �i = dδ + δd. So �0 = δd and �1 = dδ. An i-cochain c ∈ Ci∆(T ,Λ) is

called harmonic if �ic = 0. We denote by Hi = Hi(Λ) ⊆ Ci∆(T ,Λ) the O-module of all

harmonic i-cochains.

Lemma 5.1. We have H0 = ker d and H1 = ker δ; hence H0 = H0(∆,Λ).

Proof. It is clear that ker d ⊆ H0 and ker δ ⊆ H1. Suppose c ∈ H0, then

〈dc, dc〉1∆ = 〈δdc, c〉0∆ = 0.

Hence dc = 0 and ker d ⊇ H0. Similarly, if c ∈ H1, then

〈δc, δc〉0∆ = 〈dδc, c〉1∆ = 0.

Thus, ker δ ⊇ H1.
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6. Vanishing cycles

Suppose that M ≥ 4 and let RM,D be an Eichler order of level M . Denote by XD(M)

the Shimura curve G(Q) \G(A)/R×R̂×M,DCi associated with RM,D. Let X be the proper

semi-stable model of XD(M) over Z[1/DM ]. Let Qp be an algebraic closure of Qp. We

denote by Zp the normalization of Zp in Qp. Let Ip = Gal(Qp/Qnr
p ) be the inertia subgroup

at p.

Let S = SpecZp, and η resp. s the generic resp. closed point of S. We still denote X

by the base change to S of X. We consider the commutative diagram

Xs X Xη

s S η

i j

We denote by G the dual graph of Xs, and by Σi the i-simplices of G for i = 0, 1. We

assume that a neighbourhood of each point x ∈ Σ1 in X is locally S-isomorphic to the

subscheme of A2
S = Zq[t1, t2] with t1t2 = p 6= 0.

Let Y = Xs. For each x ∈ Σ1, let Y(x) denote the henselization of Y at x, and let Cx

denote the set of the two branches of Y at x. As in Illusie [18, §1.1], we define Z(x) and

Z′(x) according to the following two dual exact sequences:

0 −→ Z (1)−→ ZCx −→ Z(x) −→ 0, 0 −→ Z′(x) −→ ZCx (2)−→ Z −→ 0

where (1) is the diagonal map, and (2) is the sum. Choosing an ordering for Cx for each

x ∈ Σ1 defines a base δ′x = (1,−1) for Z′(x) and the dual base for Z(x) will be denoted

by δx. Let

Λ = Z`, Λ(x) = Z(x)⊗ Λ, Λ′(x) = Z′(x)⊗ Λ.

Let F be a constructible Z`-sheaf on a proper semi-stable curve X/S. We have the

following well-known results, for which we refer to SGA7 [9,16], especially to the Exposés

I, XIII, XIV, XV by Deligne.

(1) We have the Leray spectral sequence

Hm(X,Rnj∗F) =⇒ Hm+n(Xη,F),

which is Ip-equivariant.

(2) By the Proper Base Change Theorem, the morphism of functors i∗ induces an

isomorphism

Hm(X,Rnj∗F) ' Hm(Xs, i
∗Rnj∗F).

Let

RnΨ(F) := i∗Rnj∗F
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be the nth sheaf of nearby cycles.

(3) The following facts are well-known:

(i) R0Ψ(F) = F .

(ii) τ≥1R•Ψ(F) = R•Φ(F), where RΦ(F) = Cone(F → RΨ(F)) is the sheaf of vanishing

cycles.

(iii) R1Φ(F) is a sheaf concentrated on the set Σ1 of singular points of Xs.

(iv) RnΨ(F) = 0 for n ≥ 2.

(4) Let F = Λ. For any singular point x ∈ Σ1, Hn
x(Xs,RΨ(Λ)) = 0 for n 6= 1, 2, and

for n = 2 we have the trace isomorphism:

Tr: H2
x(Xs,RΨ(Λ))

'−→ Λ(−1)

whereas for n = 1 we have

H1
x(Xs,RΨ(Λ))

'−→ Λ(x).

So for any singular points x ∈ Σ1, we get a vanishing cycle δx ∈ H1
x(Xs,RΨ(Λ)). Similarly,

we have

Λ′(x)
'−→ R1Φ(Λx)(1),

and δ′x ∈ R1Φ(Λx)(1). These cycles are perpendicular to each other with respect to the

canonical pairing on H1(Xηs ,Λ) to Λ(−1). That is, this pairing

R1Φ(Λ)x ×H1
x(Xs,(x),RΨ(Λ)) −→ Λ(−1)

(a, b) 7−→ Tr(ab)

is perfect between free rank one modules.

(5) Picard-Lefschetz formula: If It ⊂ Ip denotes the subgroup corresponding to the

maximal tamely ramified field extension of Qp, one has the isomorphism

ε : Ip/It −→ Zp(1) via the maps

Ip/It −→ µpn

σ 7−→
σ( p

n√
π)

( p
n√
π)

for some uniformizing element π. Then Ip acts on a ∈ H1(Xηs ,Λ) via

σ(a) = a−
∑
x∈Σ1

(εx(σ)〈a, δx〉δx),

where εx is the isomorphism Ip/It ' Zp(1) at the singular point x, and 〈 · , · 〉 is the pairing

on H1(Xη,Λ) to Λ(−1).
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Using these results, for any constructible Z`-sheaf F on X/S we obtain the following

exact sequence of specialization:

0 −→ H1(Xs,R
0Ψ(F))(1)

sp−→ H1(Xη,F)(1)
β−→ H0(Xs,R

1Φ(F))(1)

d2−→ H2(Xs,R
0Ψ(F))(1)

sp−→ H2(Xη,F)(1) −→ 0.

We thus have the following:

Proposition 6.1. One has

(i) H1(Xs,R
0Ψ(Λ)) ' H1(∆,Λ) with a trivial action of inertia.

(ii) H0(Xs,R
1Ψ(Λ)) =

⊕
x∈Σ1

Λ(−1).

(iii) H2(Xs,R
0Ψ(Λ)) =

⊕
x∈Σ0

Λ(−1).

Proof. (ii) and (iii) are clear from (1)–(5) above. (i) follows, because we have the following

isomorphism

H1(Xs,R
0Ψ(Λ)) ' H1(G,Λ).

Recall that G = ∆ \ T . We hence have

H1(G,Λ) = H1(∆ \ T ,Λ).

Since T is contractible, the Hochschild-Serre spectral sequence degenerates at E1 and

H1(∆ \ T ,Λ) = H1(∆,Λ).

Let us consider φ :
⊕

x∈Σ1
Λ(−1)→

⊕
y∈Σ0

Λ(−1) for x ∈ Σ1 with vertices y1, y2:

φ(1x) = εx(y1)y1 + εx(y2)y2

with εx(yi) = ±1 for i = 1, 2 and εx(y1) + εx(y2) = 0 holds, where 1x denotes the constant

function supported at x.

Lemma 6.2. Via the identifications of Proposition 6.1(ii) and (iii), we have the following

commutative diagram:

H0(Xs,R
1ΨΛ) H2(Xs,R

0ΨΛ)

⊕
x∈Σ1

Λ(−1)
⊕
x∈Σ0

Λ(−1)

d2

φ

Proof. We put an orientation on each edge x ∈ Σ1 by putting x = (y1, y2), if εx(y1) = −1,

εx(y2) = +1. This lemma is nothing but the Picard-Lefschetz formula.
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By the exact sequence of specialization, Proposition 6.1, and Lemma 6.2, it is easy to

derive the following result:

Proposition 6.3. We have the following exact sequence:

0 −→ H1(∆,Λ) −→ H1(Xη,Λ) −→
⊕
x∈Σ1

Λ(−1)
d2−→

⊕
x∈Σ0

Λ(−1)
deg−→ Λ(−1) −→ 0.

7. Applications to the cohomology of special fibers

According to Corollary 3.3, Lemma 5.1 and Proposition 6.3, we have

Lemma 7.1. One has these two isomorphisms

H1 ' ker(d2) and H1(∆,Q`(−1)) ' H1.

Proof. Consider the map

H1(Λ(−1)) −→ ker(d2)

c 7−→
⊕
x∈Σ1

c(x)1x

where we use the orientation imposed on x ∈ Σ1. By Lemma 6.2 (in fact, the Picard-

Lefschetz formula), this map is an isomorphism.

Any element of H1 induces a 1-cochain on T which is ∆-invariant. Hence it induces a

cohomology class in H1(∆,Q`(−1)).

Recall that we have the following exact sequence of Galois groups:

1→ Gal(Qt
p/Qnr

p )→ Gal(Qt
p/Qp)→ Gal(Qnr

p /Qp)→ 1.

Let σ be a lifting of Frobp. Consider the module M = Z` ⊕ Z`(−1), where σ acts on M

by
(

1 0
0 Frobp

)
. The action of Gal(Qt

p/Qnr
p ) is trivial on M . Consider the bilinear pairing

Ip × Z`(−1) −→ Z`
(τ, α) 7−→ τ(α)− α.

It turns out that this pairing would be

Z`(1)× Z`(−1)
'−→ Z`

(τ, α) 7−→ τ(α)− α,

where τ ∈ It and α ∈ Z`(−1). This gives an action of Gal(Qt
p/Qp) on M ⊗ Q` which is

called the special representation Vsp.
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Theorem 7.2. We have the following isomorphism as Gal(Qp/Qp)-modules:

H1(Xη,Q`) ' H1(∆,Q`)⊗ Vsp.

Proof. By Lemma 7.1, we have the following exact sequence

0 −→ H1(∆,Q`) −→ H1(Xη,Q`) −→ H1(∆,Q`)⊗Q`(−1) −→ 0.

We already know the Galois actions on the terms on the left and on the right, and we

ought to get an Ip/It-action.

Suppose that σ ∈ Ip/It and u ∈ H1(∆,Q`(−1)). Let ũ ∈ H1(Xη,Q`) be a lifting of u.

Consider

(σ, u) 7→ σ(ũ)− ũ,

which is a bilinear pairing from H1(∆,Q`(−1)) × Q`(1) into H1(∆,Q`). The Picard-

Lefschetz formula

σ(u)− u =
∑
x∈Σ1

εx(σ)〈u, δx〉δx

can be identified with the cohomology class in H1(∆,Q`) given by the 1-cochains cx:

cx(y) =

0 if y ∈ Σ, y 6= x,

1 if y = x.

The trace map restricted to H1(∆,Q`)× ker(d2) gives the required isomorphism.

Acknowledgments

We thank the anonymous referee for a careful reading of the original manuscript and many

helpful suggestions.

References

[1] A. I. Badulescu, Correspondance de Jacquet-Langlands pour les corps locaux de car-
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