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Optimality Conditions in Set-valued Optimization Problem with Respect to

a Partial Order Relation via Directional Derivative

Emrah Karaman, Mustafa Soyertem* and İlknur Atasever Güvenç

Abstract. In this study, a new directional derivative is defined by using Minkowski

difference. Some properties and existence theorems of this directional derivative are

given. Moreover, necessary and sufficient optimality conditions are presented for set-

valued optimization problems with respect to m1 order relation via directional deriva-

tive.

1. Introduction

Optimization is always used in our life. When optimization problems are represented in

a mathematical problem, an objective function arises. If the objective function is vector

valued then the problem is called vector optimization problem. If the objective function

is a set-valued map, then the problem is called set-valued optimization problem. Game

theory, finance, control theory, engineering are some examples of the research areas that

consist of some applications of set-valued optimization [4, 7, 15, 16, 24, 27]. So, set-valued

optimization has become a popular subject in optimization theory, recently. There are

different types of solution approaches in set-valued optimization problems such as set

approach [8, 10, 12, 14, 15, 18–20], vector approach [5, 8, 9] and lattice structure [22]. One

can find more information about set-valued optimization problem with respect to these

approaches in [1, 5, 8–10,12–15,17–20,22,23,28]. In this work we focus on set approach.

Kuroiwa introduced the set approach which depends on comparisons among values of

the set-valued objective map [18,19]. So, this approach requires order relations to compare

sets. In the literature, there are some order relations for this purpose [12,21]. None of these

order relations are partial order. Karaman et al. [14] introduced the first partial order

relation named m1-order relation on the family of nonempty bounded sets via Minkowski

difference. This partial order enables us to revise the definition of efficient set. By this

revision the process of finding efficient set in two steps is reduced to one step. In addition,

a scalarization was presented to obtain optimality conditions for (m1 − SOP). Ansari et

al. [2] studied minimal element theorem, Ekeland’s variational principle, Caristi’s fixed
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point theorem, Takahashi’s minimization theorem by using these partial order relations.

Also, they gave some characterizations of these partial order relations in terms of oriented

distance function.

Until now, by using directional derivative optimality conditions haven’t been obtained

for set-valued optimization problems with respect to m1 order relation. For this rea-

son, we define M -directional derivative. Optimality conditions of set-valued optimization

problems with respect to m1 partial order relation are obtained. Recently, some optimal-

ity conditions obtained by using other directional derivatives for set-valued optimization

problems with respect to set approach in [6, 11,26].

In this study, a directional derivative is defined by using Minkowski difference. Some

properties of this directional derivative are examined and some existence theorems are

obtained. Moreover, this directional derivative and the directional derivative, which is

defined by Dempe and Pilecka [6], are compared. Some optimality conditions are presented

via directional derivative for set-valued optimization with respect to m1 order relation,

which is a partial order. An application of one of the optimality conditions is explained

on an example.

Section 2 is reserved for preliminaries. Section 3 is dedicated to the definitions and

the properties of the directional derivative. Optimality conditions and the application are

given in Section 4.

2. Preliminaries

Throughout this paper, C ⊂ Rp is a convex, closed, pointed cone, containing 0 with

nonempty interior and Rp is ordered by C. The family of nonempty bounded subsets

of Rp and the family of nonempty subsets of Rp are denoted by B∗(Rp) and P0(Rp),

respectively. For a set A ⊂ Rp , we denote closure of A by cl(A), interior of A by int(A).

B(x, ε) is the open ball centered at x with radius ε for an x ∈ Rp. Open unit ball in Rp

is denoted by Bp.

Given A,B ⊂ Rp. We denote algebraic sum of A and B by A+B := {a+b | a ∈ A, b ∈
B}, algebraic difference of A and B by A − B := {a − b | a ∈ A, b ∈ B} and Minkowski

(Pontryagin) difference of A and B by A −̇B := {x ∈ X | x+B ⊂ A} =
⋂

b∈B(A− b) [25].

If A is closed, then A −̇B is also closed.

Now, we recall the definition of first partial order relation on family of sets.

Definition 2.1. [14] Let A,B ∈ P0(Rp). m1 order relation �m1
C is defined by

A �m1
C B ⇐⇒ (B −̇A) ∩ C 6= ∅.

Remark 2.2. �m1
C is a pre-order relation on P0(Rp) and it is a partial order relation on

B∗(Rp) [14].
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Definition 2.3. [14] Let A,B ∈ P0(Rp). Strict m1 order relation ≺m1
C is defined by

A ≺m1
C B ⇐⇒ (B −̇A) ∩ int(C) 6= ∅.

Since �m1
C is a partial order relation on B∗(Rp) definitions of efficient sets are given in

the following way.

Definition 2.4. [14] Let S ⊂ B∗(Rp) and A ∈ S. Then,

(i) A is m1-minimal (m1-maximal) set of S if there isn’t any B ∈ S such that B �m1
C A

(A �m1
C B) and A 6= B,

(ii) A is weakly m1-minimal (m1-maximal) set of S if there isn’t any B ∈ S such that

B ≺m1
C A (A ≺m1

C B).

Let F : Rn ⇒ Rp be a set-valued map. Domain of the set-valued map F is dom(F ) :=

{x ∈ Rn | F (x) 6= ∅}. If F (x) is a compact (convex) set for all x ∈ Rn, we say that F is

compact (convex) valued. Set-valued optimization problem is defined by

(SOP) min (max) F (x) s.t. x ∈ dom(F ).

In particular, if we consider (SOP) with respect to �m1
C , we denote it by (m1 − SOP).

We say that x0 is a solution of (m1 − SOP) if F (x0) is an m1-minimal (m1-maximal)

set of the image family F(Rn) = {F (x) | x ∈ Rn}. Similarly, we say that x0 is a weakly

solution of (m1 − SOP) if F (x0) is a weakly m1-minimal (weakly m1-maximal) set of

F(Rn). x0 ∈ Rn is called a local minimal (maximal) solution of (m1−SOP) if there exists

an ε > 0 such that x0 is a solution of the problem

min (max) F (x) s.t. x ∈ Bn(x0, ε) ∩ dom(F ).

x0 ∈ Rn is called a strictly minimal (maximal) solution of (m1− SOP) if F (x0) ≺m1
C F (x)

(F (x) ≺m1
C F (x0)) for all x ∈ dom(F ) \ {x0} and x0 ∈ Rn is called a strict local minimal

(maximal) solution of (m1 − SOP) if there exists an ε > 0 such that F (x0) ≺m1
C F (x)

(F (x) ≺m1
C F (x0)) for all x ∈ Bn(x0, ε) \ {x0}.

3. M -directional derivative

In this section, a directional derivative (M -directional derivative) is defined to obtain

optimality conditions for (m1 − SOP). In this definition we use Minkowski difference

because �m1
C is defined in terms of Minkowski difference of sets. Also, we show that the

directional derivative is positively homogeneous. Some existence theorems are presented.

Moreover, the directional derivative and a directional derivative given by Pilecka [26] are

compared.
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Definition 3.1. Let F : Rn ⇒ Rp be a set-valued map, x ∈ int(dom(F )) and d ∈ Rn.

The limit

DMF (x, d) := lim sup
t→0+

F (x+ td) −̇F (x)

t

is called M -directional derivative of F at x in direction d where lim supx′→x F (x′) := {y ∈
Rp | lim infx′→x d(y, F (x′)) = 0} denotes the upper limit of F at x. If DMF (x, d) 6= ∅ for

x ∈ int(dom(F )) and for all d ∈ Rn, then F is called M -directionally differentiable at x.

If F is a vector valued function, M -directional derivative and upper Dini directional

derivative of a vector valued function [3] defined as

FD(x; d) := lim sup
t→0+

F (x+ td)− F (x)

t

coincides. So, M -directional derivative is a generalization of the upper directional deriva-

tive of a vector valued function.

The following example shows how to calculate the M -directional derivative of a set-

valued map.

Example 3.2. Let a set-valued map F : R ⇒ R2 be defined as

F (x) = [x, 2x]× [x, 2x]

for all x ∈ R. Some image sets of F are given in Figure 3.1.

If F is a vector valued function, M-directional derivative and upper Dini

directional derivative of a vector valued function [3] defined as

FD(x̄; d) := lim sup
t→0+

F (x̄+ td)− F (x̄)

t

coincides. So, M-directional derivative is a generalization of the upper direc-

tional derivative of a vector valued function.

The following example shows how to calculate the M-directional derivative

of a set-valued map.

Example 3.2. Let set-valued map F : R ⇉ R2 defined as

F (x) = [x, 2x]× [x, 2x]

for all x ∈ R. Some image sets of F are given in Figure 1.

x

y

bF (0)

F (1)

F (2)

F (−1)

F (−2)

Figure 1: Some image sets of F (x) = [x, 2x]× [x, 2x]

Let’s start with the calculation of M-directional derivative of F at x = 0

and d > 0:

6

Figure 3.1: Some image sets of F (x) = [x, 2x]× [x, 2x].
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Let’s start with the calculation of M -directional derivative of F at x = 0 and d > 0:

DMF (0, d) = lim sup
t→0+

F (0 + td) −̇F (0)

t
= lim sup

t→0+

F (td) −̇F (0)

t

= lim sup
t→0+

[td, 2td]× [td, 2td]

t
= lim sup

t→0+
[d, 2d]× [d, 2d]

= [d, 2d]× [d, 2d].

In the case of x = 0 and d < 0:

DMF (0, d) = lim sup
t→0+

F (0 + td) −̇F (0)

t
= lim sup

t→0+

F (td) −̇F (0)

t

= lim sup
t→0+

[2td, td]× [2td, td]

t
= lim sup

t→0+
[2d, d]× [2d, d]

= [2d, d]× [2d, d].

Now, we will calculate DMF (x, d) for x ∈ R \ {0}. Let x > 0 and d > 0. Then,

DMF (x, d) = lim sup
t→0+

F (x+ td) −̇F (x)

t
= lim sup

t→0+

[td, 2td]× [td, 2td]

t

= lim sup
t→0+

[d, 2d]× [d, 2d] = [d, 2d]× [d, 2d].

Let x > 0 and d < 0. Then,

DMF (x, d) = lim sup
t→0+

F (x+ td) −̇F (x)

t
= lim sup

t→0+
∅ = ∅.

Let x < 0 and d < 0. Then,

DMF (x, d) = lim sup
t→0+

F (x+ td) −̇F (x)

t
= lim sup

t→0+

[td, 2td]× [td, 2td]

t

= lim sup
t→0+

[d, 2d]× [d, 2d] = [2d, d]× [2d, d].

Let x < 0 and d > 0. Then,

DMF (x, d) = lim sup
t→0+

F (x+ td) −̇F (x)

t
= lim sup

t→0+
∅ = ∅.

Therefore,

DMF (x, d) =





[d, 2d]× [d, 2d] if x ≥ 0, d > 0,

[2d, d]× [2d, d] if x ≤ 0, d < 0,

∅ otherwise.

So, the set-valued map F is M -directionally differentiable only at 0.
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The following proposition gives positive homogeneity of M -directional derivative.

Proposition 3.3. Let F : Rn ⇒ Rp be a set-valued map. If F is M -directionally differ-

entiable at x ∈ int(dom(F )), then DMF (x, λd) = λDMF (x, d) for all d ∈ Rn and for all

λ > 0.

Proof. Let d ∈ Rn and λ > 0. Then, we have

DMF (x, λd) = lim sup
t→0+

F (x+ λtd) −̇F (x)

t
= lim sup

t→0+
λ
F (x+ λtd) −̇F (x)

λt

= λ lim sup
s→0+

F (x+ sd) −̇F (x)

s
= λDMF (x, d).

Now, we give an existence theorem of M -directional derivative.

Theorem 3.4. Let F : Rn ⇒ Rp be compact valued map and x ∈ int(dom(F )). If there

exist a positive constant L and an ε > 0 such that

(3.1)
(
F (x) −̇F (x)

)
∩ L‖x− x‖Bp 6= ∅

for all x ∈ Bn(x, ε), then F is M -directionally differentiable at x and DMF (x, d) ∩
L‖d‖Bp 6= ∅ for all d ∈ Rn.

Proof. Let d ∈ Rp. There exists a t0 > 0 such that t0d ∈ Bn(0, ε). If we take x = x+ td,

then we get
(
F (x + td) −̇F (x)

)
∩ Lt‖d‖Bp 6= ∅ for all t ∈ (0, t0) from (3.1). Hence, we

obtain
F (x+ td) −̇F (x)

t
∩ L‖d‖Bp 6= ∅

for all t ∈ (0, t0). Let’s consider a net {zt}t∈(0,t0) such that zt ∈ F (x+td) −̇F (x)
t ∩ L‖d‖Bp

for all t ∈ (0, t0). Because zt ∈ L‖d‖Bp and L‖d‖Bp is bounded for all t ∈ (0, t0), there

exists an accumulation point of {zt}t∈(0,t0), say z. Since the upper limit of set-valued map

contains accumulation points, we get z ∈ lim supt→0+
F (x+td) −̇F (x)

t = DMF (x, d). So, we

have DMF (x, d) 6= ∅. Also, we get DMF (x, d) ∩ L‖d‖Bp 6= ∅.

The following definition, a generalization of local Lipschitzness, is used to obtain an

existence theorem of M -directional derivative.

Definition 3.5. Let F : Rn ⇒ Rp be a compact valued map and x ∈ int(dom(F )). If

there exist an ε > 0 and a positive constant L such that

F (x) −̇F (x) ⊂ L‖x− x‖Bp

for all x ∈ Bn(x, ε), then F is called locally upper M -Lipschitz at x.
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Theorem 3.6. Let F : Rn ⇒ Rp be a compact valued map which is locally upper M -

Lipschitz at x ∈ int(dom(F )). Let Bn(x, ε) be the neighborhood that F is locally upper

M -Lipschitz on. If F (x) −̇F (x) 6= ∅ for all x ∈ Bn(x, ε), then F is M -directionally

differentiable at x.

Proof. The proof is similar to that of Theorem 3.4. We omit it here.

Theorem 3.7. Let F : Rn ⇒ Rp be a compact valued map which is locally upper M -

Lipschitz at x ∈ int(dom(F )). If there exists a t > 0 such that

(3.2) F (x) �m1
C F (x+ td)

for all t ∈ (0, t) and for all d ∈ Rn, then F is M -directionally differentiable at x and

{0} �m1
C DMF (x, d).

Proof. Let us choose an arbitrary direction d ∈ Rn. Since F is M -Lipschitz at x, there

exists a t0 > 0 such that F (x+ td) −̇F (x) ⊂ Lt‖d‖Bp for all t ∈ (0, t0). Then,

F (x+ td) −̇F (x)

t
⊂ L‖d‖Bp

for all t ∈ (0, t0). From (3.2) we get
(
F (x + td) −̇F (x)

)
∩ C 6= ∅ for all t ∈ (0, t). Let

t′ := min{t, t0}. Then, we have F (x+td) −̇F (x)
t ∩ C ⊂ L‖d‖Bp for all t ∈ (0, t′). Consider

a net {zt}t∈(0,t′) such that zt ∈ F (x+td) −̇F (x)
t ∩ C ⊂ L‖d‖Bp for all t ∈ (0, t′). Since

L‖d‖Bp is bounded, there exists an accumulation point of {zt}t∈(0,t′). Assume that z is

an accumulation point of {zt}t∈(0,t0). Because the upper limit of set-valued map contains

accumulation points and C is closed, we have

z ∈ lim sup
t→0+

F (x+ td) −̇F (x)

t
∩ C = DMF (x, d) ∩ C.

Hence, DMF (x, d) 6= ∅ and {0} �m1
C DMF (x, d) for d ∈ Rn. Because d ∈ Rn is arbitrary,

DMF (x, d) 6= ∅ for all d ∈ Rn. So F is M -directionally differentiable at x.

Remark 3.8. Let F : Rn ⇒ Rp compact valued map be locally upper M -Lipschitz at

x ∈ int(dom(F )). If

F (x+ t1d) �m1
C F (x+ t2d)

for all d ∈ Rn and t1, t2 ∈ R such that 0 ≤ t1 < t2, then F is M -directionally differentiable

at x and {0} �m1
C DMF (x, d).

Pilecka [26] defined a directional derivative by using ` difference in order to obtain

optimality conditions of set-valued optimization problem with respect to lower set less

order relation. Now, we give relation between this directional derivative and M -directional

derivative.
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Definition 3.9. [26] Assume that A,B ⊂ Rn. Then ` difference is defined as follows:

A	` B := {x ∈ Rn | x+B ⊂ A+ C} = (A+ C) −̇B.

Remark 3.10. There are following relations between ` difference and Minkowski difference:

(i) An ordering cone is required to define ` difference. However, Minkowski difference

is defined without using any cone.

(ii) A −̇B ⊂ A	` B.

(iii) If A, B are compact, convex and nonempty (convex bodies), we have (A −̇B) +

C ⊂ A 	` B. But A 	` B 6⊂ (A −̇B) + C. For example, let A = {(0, 0)} and

B = [0, 2]× [0, 2]. Then, we obtain C = A	` B 6⊂ (A −̇B) + C = ∅.

(iv) Although Minkowski difference of two bounded sets is bounded, ` difference of two

sets are either empty or unbounded. Also if ` difference of sets is empty from (ii)

Minkowski difference is empty.

Definition 3.11. [26] Let set valued map F : Rn ⇒ Rp be compact, convex valued. The

directional derivative of F at x ∈ int(dom(F )) in the direction d ∈ Rn is defined as

DF (x, d) := lim sup
t→0+

F (x+ td)	` F (x)

t
.

Remark 3.12. Convexity and an order cone are necessary to obtain directional derivative

via ` difference from Remark 3.10(i). Also, this directional derivative is larger than M -

directional derivative i.e., DMF (x, d) ⊂ DF (x, d) from Remark 3.10(ii).

Now, we calculateM -directional derivative and a directional derivative given by Pilecka

[26] of a set-valued map on an example.

Example 3.13. Let C = R2
+ and a set-valued map F : R ⇒ R2 be defined as

F (x) = conv{(x, x), (x+ 1, x)}

for all x ∈ R. Some image sets are seen in Figure 3.2. Then, we have

DMF (x, d) = lim sup
t→0+

F (x+ td) −̇F (x)

t
= lim sup

t→0+

{(td, td)}
t

= lim sup
t→0+

{(d, d)} = {(d, d)} = {d(1, 1)},

DF (x, d) = lim sup
t→0+

F (x+ td)	` F (x)

t
= lim sup

t→0+

{(td, td)}+ C

t

= lim sup
t→0+

{(d, d)}+ C = {(d, d)}+ C = [d,∞]× [d,∞].
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1

2

3

4

5

−1

−2

−3

−4

1 2 3 4 5−1−2−3−4
x

y

b b
F (0)

b b
F (1)

b b
F (2)

b b
F (3)

b b
F (4)

b
b

b

b b

F (−1)

b
b

b

Figure 2: Some image sets of F (x) = conv{(x, x), (x+ 1, x)}

4. Optimality Conditions via M-directional Deriva-

tive

In this section, we obtain necessary and sufficient optimality conditions for

(m1 − SOP ) via M-directional derivative.

A sufficient condition for strictly minimal solutions of (m1−SOP ) is given

in the following theorem.

Theorem 4.1. Let F : Rn ⇉ Rp be compact valued map, x̄ ∈ int(dom(F )). If

there exists an ε > 0 and a positive constant L such that

L||x− x̄||Bp ⊂ F (x)−̇F (x̄) (7)

for all x ∈ Bn(x̄, ε) \ {x̄}, then x̄ is strictly minimal solution of (m1 − SOP )

and {0} ≺m1
C DMF (x̄, d) for all d ∈ Rn \ {0}.

Proof. Since L||x − x̄||Bp ⊂ F (x)−̇F (x̄) for all x ∈ Bn(x̄, ε) \ {x̄}, we have
(
F (x)−̇F (x̄)

)
∩int(C) 6= ∅ for all x ∈ Bn(x̄, ε)\{x̄}. Then, F (x̄) ≺m1

C F (x) for

13

Figure 3.2: Some image sets of F (x) = conv{(x, x), (x+ 1, x)}.

4. Optimality conditions via M -directional derivative

In this section, we obtain necessary and sufficient optimality conditions for (m1 − SOP)

via M -directional derivative.

A sufficient condition for strictly minimal solutions of (m1 − SOP) is given in the

following theorem.

Theorem 4.1. Let F : Rn ⇒ Rp be a compact valued map, x ∈ int(dom(F )). If there

exist an ε > 0 and a positive constant L such that

(4.1) L‖x− x‖Bp ⊂ F (x) −̇F (x)

for all x ∈ Bn(x, ε) \ {x}, then x is strictly minimal solution of (m1− SOP) and {0} ≺m1
C

DMF (x, d) for all d ∈ Rn \ {0}.

Proof. Since L‖x−x‖Bp ⊂ F (x) −̇F (x) for all x ∈ Bn(x, ε)\{x}, we have
(
F (x) −̇F (x)

)
∩

int(C) 6= ∅ for all x ∈ Bn(x, ε) \ {x}. Then, F (x) ≺m1
C F (x) for all x ∈ Bn(x, ε) \ {x}.

Therefore, x is strictly minimal solution of (m1 − SOP).

Let us choose an arbitrary d ∈ Rn. From (4.1), there exists a t0 > 0 such that

(4.2) Lt‖d‖Bp ⊂ F (x+ td) −̇F (x)

for all t ∈ (0, t0). From (4.2) we have

(4.3) L‖d‖Bp ⊂
F (x+ td) −̇F (x)

t
.

Let z ∈ L‖d‖Bp be an arbitrary element. If we set zt = z for all t ∈ (0, t0) from (4.3) we get

z ∈ DMF (x, d). So, we have L‖d‖Bp ⊂ DMF (x, d). Thus we obtain DMF (x, d)∩int(C) 6=
∅ and {0} ≺m1

C DMF (x, d).
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Now, we give an illustrative example for Theorem 4.1.

Example 4.2. Let a set-valued map F : R ⇒ R2 be defined as

F (x) = {(a, b) ∈ R2 | a2 + b2 ≤ x2 + 1}

for all x ∈ R and consider set-valued optimization problem

(m1− SOP) minF (x), x ∈ R.

x

y

b

b

√
x2 + 1

F (1) = F (−1)

F (0)

√
2

F (x) = F (−x)

Figure 3: Some image sets of F (x) = {(a, b) ∈ R2 | a2 + b2 ≤ x2 + 1}

DMF (0, d) = lim sup
t→0+

F (0 + td)−̇F (0)

t

= lim sup
t→0+

F (td)

t

= lim sup
t→0+

{(a, b) ∈ R2 | a2 + b2 ≤ (td)2}
t

= lim sup
t→0+

{(a, b) ∈ R2 | a2 + b2 ≤ d2}

= B2((0, 0), |d|)

for d ∈ R \ {0}. Then, we get DMF (0, d) ∩ int(C) 6= ∅.

A necessary condition for local maximal solution of (m1 − SOP ) is given

in the following theorem.

Theorem 4.3. Let set-valued map F : Rn ⇉ Rp be compact valued and x̄ ∈
int(dom(F )). If x̄ is a local maximal solution of (m1 − SOP ) and F is M-

directionally differentiable at x̄, then {0} 6≺m1
C DMF (x̄, d) for all d ∈ Rn.

Proof. Because x̄ is a local maximal solution of (m1 − SOP ), there exists an

ε > 0 such that F (x̄) 6�m1
C F (x) for all x ∈ Bn(x̄, ε) \ {x̄}. Let us choose

15

Figure 4.1: Some image sets of F (x) = {(a, b) ∈ R2 | a2 + b2 ≤ x2 + 1}.

As seen in Figure 4.1, F (x) is compact valued for all x ∈ R and 0 ∈ int(dom(F )). For

L ∈ (0, 1] and for all ε > 0 we have

L‖x‖B2 ⊂ F (x)

for all x ∈ B(0, ε) \ {0}. Hence, the conditions of Theorem 4.1 are satisfied. Then, 0 is

strictly minimal solution of (m1− SOP). Also, we can see {(0, 0)} ≺m1
C DMF (0, d) for all

d ∈ R \ {0}:

DMF (0, d) = lim sup
t→0+

F (0 + td) −̇F (0)

t

= lim sup
t→0+

F (td)

t

= lim sup
t→0+

{(a, b) ∈ R2 | a2 + b2 ≤ (td)2}
t

= lim sup
t→0+

{(a, b) ∈ R2 | a2 + b2 ≤ d2}

= B2((0, 0), |d|)

for d ∈ R \ {0}. Then, we get DMF (0, d) ∩ int(C) 6= ∅.
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A necessary condition for local maximal solution of (m1−SOP) is given in the following

theorem.

Theorem 4.3. Let a set-valued map F : Rn ⇒ Rp be compact valued and x ∈ int(dom(F )).

If x is a local maximal solution of (m1 − SOP) and F is M -directionally differentiable at

x, then {0} 6≺m1
C DMF (x, d) for all d ∈ Rn.

Proof. Because x is a local maximal solution of (m1 − SOP), there exists an ε > 0 such

that F (x) 6�m1
C F (x) for all x ∈ Bn(x, ε) \ {x}. Let us choose d ∈ Rn. Then, there exists a

t0 > 0 such that x+ td ∈ Bn(x, ε) for all t ∈ (0, t0). Hence, we have F (x) 6�m1
C F (x+ td)

for all t ∈ (0, t0). We get
(
F (x+ td) −̇F (x)

)
∩C = ∅ from the definition of �m1

C . Because

C is cone, we obtain (
F (x+ td) −̇F (x)

t

)
∩ C = ∅

and lim supt→0+
F (x+td) −̇F (x)

t ∩ int(C) = ∅. Then we have DMF (x, d) ∩ int(C) = ∅ i.e.,(
DMF (x, d) −̇ {0}

)
∩ int(C) = ∅. So, {0} 6≺m1

C DMF (x, d).

A sufficient condition for local maximal solution of (m1−SOP) is given in the following

theorem.

Theorem 4.4. Let a set-valued map F : Rn ⇒ Rp be compact valued and M -directionally

differentiable at x ∈ int(dom(F )). Let d ∈ Rn satisfy

(4.4) ∅ 6= lim sup
k→∞

F (x+ tkdk) −̇F (x)

tk
∩ C ⊂ DMF (x, d),

where dk and tk are sequence such that dk → d and tk → 0+. If {0} 6�m1
C DMF (x, d) for

all d ∈ Rn, then x is a local maximal solution of (m1 − SOP).

Proof. Since {0} 6�m1
C DMF (x, d) for all d ∈ Rn, we have

(
DMF (x, d) −̇ {0}

)
∩C = ∅, i.e.,

(4.5) DMF (x, d) ∩ C = ∅.

Assume that x isn’t a local maximal solution of (m1−SOP). Then, there exists a sequence

xk ∈ Bn(x, 1/k) such that F (x) �m1
C F (xk) for all k ∈ N. Also xk → x. So, there exists a

{dk} ⊂ Rn with ‖dk‖ = 1 and tk → 0+ with xk = x + tkdk for all k ∈ N. Because {dk}
is bounded, it has a convergent subsequence. Without loss of generality say dk → d. We

obtain F (x) �m1
C F (x+ tkdk) i.e.,

(
F (x+ tkdk) −̇F (x)

tk

)
∩ C 6= ∅

for all k ∈ N. Therefore, we get DMF (x, d) ∩C 6= ∅ from (4.4). This contradicts to (4.5).

Thus, x is local maximal solution of (m1 − SOP).
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References
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