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On Orthogonality of Elementary Operators in Norm-attainable Classes

Nyaare Benard Okelo

Abstract. Various notions of orthogonality of elementary operators have been char-

acterized by many mathematicians in different classes. In this paper, we characterize

orthogonality of these operators in norm-attainable classes. We first give necessary

and sufficient conditions for norm-attainability of Hilbert space operators then we give

results on orthogonality of the range and the kernel of elementary operators when they

are implemented by norm-attainable operators in norm-attainable classes.

1. Introduction

Norm-attainability is one of the aspects which has been given attention in studies on

Hilbert space operators for along period of time with nice results obtained [5]. Let H

be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all

bounded linear operators on H. An operator S ∈ B(H) is said to be norm-attainable if

there exists a unit vector x0 ∈ H such that ‖Sx0‖ = ‖S‖. The class of all norm-attainable

operators is denoted by NA(H). For an operator S ∈ B(H) we define a numerical range

by W (S) = {〈Sx, x〉 : x ∈ H, ‖x‖ = 1} and the maximal numerical range by W0(S) = {β ∈
C : 〈Sxn, xn〉 → β, where ‖xn‖ = 1, ‖Sxn‖ → ‖S‖}. The second aspect in consideration

is orthogonality which is a concept that has been analyzed for quite a period of time

(see [13, 36–38]). Benitez [4] described several types of orthogonality which have been

studied in real normed spaces namely: Robert’s orthogonality, Birkhoff’s orthogonality,

Orthogonality in the sense of James, Isoceles, Pythagoras, Carlsson, Diminnie, Area among

others. Some of these orthogonalities are described as follows. For x ∈ M and y ∈ N
where M and N are subspaces of E which is a normed linear space, we have

(i) Roberts: ‖x− λy‖ = ‖x+ λy‖, ∀λ ∈ R;

(ii) Birkhoff: ‖x+ λy‖ ≥ ‖x‖;

(iii) Isosceles: ‖x− y‖ = ‖x+ y‖;

(iv) Pythagorean: ‖x− y‖2 = ‖x‖2 + ‖y‖2;
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(v) a-Pythagorean: ‖x− ay‖2 = ‖x‖2 + a2‖y‖2, a 6= 0;

(vi) Diminnie: sup{f(x)g(y)− f(y)g(x) : f, g ∈ S′} = ‖x‖‖y‖ where S′ denotes the unit

sphere of the topological dual of E;

(vii) Area: ‖x‖‖y‖ = 0 or they are linearly independent and such that x, −x, y, −y divide

the unit ball of their own plane (identified by R2) in four equal areas.

In this paper we will consider the orthogonality of elementary operators when they

are implemented by norm-attainable operators. Consider a normed algebra A and let

TA,B : A → A. T is called an elementary operator if it has the following representation:

T (X) =
∑n

i=1AiXBi, ∀X ∈ A, where Ai, Bi are fixed in A. Let A = B(H). For

A,B ∈ B(H) we define the particular elementary operators: The left multiplication oper-

ator LA : B(H)→ B(H) by LA(X) = AX, ∀X ∈ B(H); the right multiplication operator

RB : B(H) → B(H) by RB(X) = XB, ∀X ∈ B(H); the generalized derivation (imple-

mented by A, B) by δA,B = LA −RB; the basic elementary operator (implemented by A,

B) by MA,B(X) = AXB, ∀X ∈ B(H); the Jordan elementary operator (implemented by

A, B) by UA,B(X) = AXB +BXA, ∀X ∈ B(H).

Regarding orthogonality involving elementary operators, Anderson [1] established the

orthogonality of the range and kernel of normal derivations. Others who have also worked

on orthogonality include: Kittaneh [21], Mecheri [29] among others. For details see [1–27,

30–35]. We shall investigate the orthogonality of the range and the kernel of several types

of important elementary operators in Banach spaces. Anderson [1] in his investigations

proved that if N and S are operators in B(H) such that N is normal and NS = SN then

for all X ∈ B(H), ‖δN (X) + S‖ ≥ ‖S‖. If S (above) is a Hilbert-Schmidt operator then

Kittaneh [21] (see also the references therein) showed that ‖δN (X) + S‖22 = ‖δN (X)‖22 +

‖S‖22. We extend this study to norm-attainable classes. Very similar researches have

been made by Chmieliski, Mal, Paul, Sain, Stypula and Wójcik for Birkhoff orthogonality

(see [37,38]) and for approximate Birkhoff orthogonality (see [13,33,36]).

2. Preliminaries

In this section, we give some preliminary results. We begin by the following proposition.

Proposition 2.1. Let H be an infinite dimensional separable complex Hilbert space. Let

S ∈ B(H), β ∈W0(S) and α > 0. Then the following conditions hold:

(i) There exists Z ∈ B(H) such that ‖S‖ = ‖Z‖, with ‖S − Z‖ < α.

(ii) There exists a vector η ∈ H such that ‖η‖ = 1, ‖Zη‖ = ‖Z‖ with 〈Zη, η〉 = β.
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Proof. Let ‖S‖ = 1 and also that 0 < α < 2. Let xn ∈ H (n = 1, 2, . . .) be such

that ‖xn‖ = 1, ‖Sxn‖ → 1 and also limn→∞〈Sxn, xn〉 = β. Let S = GL be the po-

lar decomposition of S. Here G is a partial isometry and we write L =
∫ 1
0 β dEβ, the

spectral decomposition of L = (S∗S)1/2. Since L is a positive operator with norm 1,

for any x ∈ H we have that ‖Lxn‖ → 1 as n tends to ∞ and limn→∞〈Sxn, xn〉 =

limn→∞〈GLxn, xn〉 = limn→∞〈Lxn, G∗xn〉. Now for H = Ran(L)⊕Ker(L), we can choose

xn such that xn ∈ Ran(L) for large n. Indeed, let xn = x
(1)
n ⊕ x(2)n , n = 1, 2, . . .. Then we

have that Lxn = Lx
(1)
n ⊕ Lx(2)n = Lx

(1)
n and that limn→∞ ‖x(1)n ‖ = 1, limn→∞ ‖x(2)n ‖ = 0

since limn→∞ ‖Lxn‖ = 1. Replacing xn with x
(1)
n

‖x(1)n ‖
, we get limn→∞

∥∥L 1

‖x(1)n ‖
x
(1)
n

∥∥ =

limn→∞
∥∥S 1

‖x(1)n ‖
x
(1)
n

∥∥ = 1, limn→∞
〈
S 1

‖x(1)n ‖
x
(1)
n , 1

‖x(1)n ‖
x
(1)
n

〉
= β. Next let xn ∈ Ran(L).

Since G is a partial isometry from Ran(L) onto Ran(S), we have that ‖Gxn‖ = 1

and limn→∞〈Lxn, G∗xn〉 = β. Since L is a positive operator, ‖L‖ = 1 and for any

x ∈ H, 〈Lx, x〉 ≤ 〈x, x〉 = ‖x‖2. Replacing x with L1/2x, we get that 〈L2x, x〉 ≤
〈Lx, x〉, where L1/2 is the positive square root of L. Therefore we have that ‖Lx‖2 =

〈Lx,Lx〉 ≤ 〈Lx, x〉. It is obvious that limn→∞ ‖Lxn‖ = 1 and that ‖Lxn‖2 ≤ 〈Lxn, xn〉 ≤
‖Lxn‖2 = 1. Hence, limn→∞〈Lxn, xn〉 = 1 = ‖L‖. Moreover, Since I − L ≥ 0, we have

limn→∞〈(I − L)xn, xn〉 = 0, thus limn→∞ ‖(I − L)1/2xn‖ = 0. Indeed, limn→∞ ‖(I −
L)xn‖ ≤ limn→∞ ‖(I − L)1/2‖ · ‖(I − L)1/2xn‖ = 0. For α > 0, let γ = [0, 1 − α/2] and

let ρ = (1 − α/2, 1]. We have L =
∫
γ µdEµ +

∫
ρ µdEµ = LE(γ) ⊕ LE(ρ). Next we show

that limn→∞ ‖E(γ)xn‖ = 0. If there exists a subsequence xni , (i = 1, 2, . . .) such that

‖E(γ)xni‖ ≥ ε > 0 (i = 1, 2, . . .), then since limi→∞ ‖xni − Lxni‖ = 0, it follows that

limi→∞ ‖xni −Lxni‖2 = limi→∞
(
‖E(γ)xni −LE(γ)xni‖2 + ‖E(ρ)xni −LE(ρ)xni‖2

)
= 0.

Hence, we have that limi→∞ ‖E(γ)xni−LE(γ)xni‖2 = 0. Now, it is clear that ‖E(γ)xni−
LE(γ)xni‖ ≥ ‖E(γ)xni‖ − ‖LE(γ)‖ · ‖E(γ)xni‖ ≥ (I − ‖LE(γ)‖)‖E(γ)xni‖ ≥ α

2 ε > 0.

This is a contradiction. Therefore, limn→∞ ‖E(γ)xn‖ = 0. Since limn→∞〈Lxn, xn〉 =

1, we have that limn→∞〈LE(ρ)xn, E(ρ)xn〉 = 1 and limn→∞〈E(ρ)xn, G
∗E(ρ)xn〉 = β.

It is easy to see that limn→∞ ‖E(ρ)xn‖ = 1, limn→∞
〈
L E(ρ)xn
‖E(ρ)xn‖ ,

E(ρ)xn
‖E(ρ)xn‖

〉
= 1 and

limn→∞
〈
L E(ρ)xn
‖E(ρ)xn‖ , G

∗ E(ρ)xn
‖E(ρ)xn‖

〉
= β Replacing x with E(ρ)xn

‖E(ρ)xn‖ , we can assume that

xn ∈ E(ρ)H for each n and ‖xn‖ = 1. Let J =
∫
γ µdEµ +

∫
ρ µdEµ = J1 ⊕ E(ρ).

Then it is evident that ‖J‖ = ‖S‖ = ‖L‖ = 1, Jxn = xn, and ‖J − L‖ ≤ α/2. If we can

find a contraction V such that ‖V −G‖ ≤ α/2 and ‖V xn‖ = 1 and 〈V xn, xn〉 = β, for a

large n then letting Z = V J , we have that ‖Zxn‖ = ‖V Jxn‖ = 1, and that 〈Zxn, xn〉 =

〈V Jxn, xn〉 = 〈V xn, xn〉 = β, ‖S − Z‖ = ‖GL − V J‖ ≤ ‖GL − GJ‖ + ‖GJ − V J‖ ≤
‖G‖ · ‖L − J‖ + ‖G − V ‖ · ‖J‖ ≤ α/2 + α/2 = α. Lastly, we now construct the desired

contraction V . Clearly, limn→∞〈xn, G∗xn〉 = β, because limn→∞〈Lxn, G∗xn〉 = β and

limn→∞ ‖xn−Lxn‖ = 0. Let Gxn = φnxn+ϕnyn, (yn⊥xn, ‖yn‖ = 1) then limn→∞ φn = β,

because limn→∞〈Gxn, xn〉 = limn→∞〈xn, G∗xn〉 = β but ‖Gxn‖2 = |φn|2 + |ϕn|2 = 1, so
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we have that limn→∞ |ϕn| =
√

1− |β|2. Now without loss of generality, there exists

an integer M such that |φM − β| < α/8. Choose ϕ0
M such that |ϕ0

M | =
√

1− |β|2,
|ϕM − ϕ0

M | < α/8. We have that GxM = φMxM + ϕMyM − βxM + βxM − ϕ0
MyM +

ϕ0
MyM = (φ − β)xM + (ϕM − ϕ0

M )yM + βxM + ϕ0
MyM . Let qM = βxM + ϕ0

MyM ,

GxM = (φ − β)xM + (ϕM − ϕ0
M )yM + qM . Suppose that y⊥xM , then 〈GxM , Gy〉 =

(φ−β)〈xM , Gy〉+ (ϕM −ϕ0
M )〈yM , Gy〉+ 〈qM , Gy〉 = 0, because G∗G is a projection from

H to Ran(L). It follows that |〈qM , Gy〉| ≤ |φM − β| · ‖y‖+ |ϕM −ϕ0
M | · ‖y‖ ≤

α
4 ‖y‖. If we

suppose that Gy = φqM + y0, (y0⊥qM ) then y0 is uniquely determined by y. Hence we

can define V as follows: V : xM → qM , y → y0, φxM +ϕMy → φqM +ϕMy
0, with both φ,

ϕ being complex numbers. V is a linear operator. We prove that V is a contraction. Now,

‖V xM‖2 = ‖qM‖2 = |β|2 = |ϕ0
M |2 = 1, ‖V y‖2 = ‖Gy‖2−|φy|2 ≤ ‖Gy‖2 ≤ ‖y‖2. It follows

that ‖V φ‖2 = ‖φ‖2‖V xM‖2 + |ϕ|2‖V y‖2 ≤ |φ|2 + |ϕ|2 = 1, for each x ∈ H satisfying that

x = φxM +ϕMy, ‖x‖ = 1, xM⊥y, which is equivalent to that V is a contraction. From the

definition of V , we can show that ‖GxM−V xM‖2 = |φ−β|2+ |ϕM−ϕ0
M |2 ≤

2α2

16 = 1
8α

2. If

y⊥xM , ‖y‖ ≤ 1 then obtain ‖Gy − V y‖ = |φ|‖V xM‖ = |〈Gy, V xM 〉| = |〈qM , Gy〉| < α/4.

Hence for any x ∈ H, x = φxM + ϕMy, ‖x‖ = 1, ‖Gx − V x‖2 = ‖φ(G − V )xM + ϕ(G −
V )y‖2 = |φ|2‖(G−V )xM‖2 + |ϕ|2‖(G−V )y‖2 < |φ|2 · α2

16 + |ϕ|2 · α2

16 < α2/8, which implies

that ‖(G − V )x‖ < α/2, ‖x‖ = 1, and hence ‖(G − V )‖ < α/2. Let Z = V J . Then Z is

what we desire and this completes the proof.

The next result gives the conditions for norm-attainability of an inner derivation. We

give the following proposition.

Proposition 2.2. Let H be an infinite dimensional separable complex Hilbert space and

S ∈ B(H). δS is norm-attainable if there exists a vector ζ ∈ H such that ‖ζ‖ = 1,

‖Sζ‖ = ‖S‖, 〈Sζ, ζ〉 = 0.

Proof. Define X by setting X : ζ → ζ, Sζ → −Sζ, x → 0, whenever x⊥{ζ, Sζ}. Since X

is a bounded operator on H and ‖Xζ‖ = ‖X‖ = 1, ‖SXζ − XSζ‖ = ‖Sζ − (−Sζ)‖ =

2‖Sζ‖ = 2‖S‖. It follows that ‖δS‖ = 2‖S‖ via the result in [28, Theorem 1], because

〈Sζ, ζ〉 = 0 ∈ W0(S). Hence we have that ‖SX −XS‖ = 2‖S‖ = ‖δS‖. Therefore, δS is

norm-attainable.

The next result gives the conditions for norm-attainability of a generalized derivation.

We give the following proposition.

Proposition 2.3. Let H be an infinite dimensional separable complex Hilbert space. Let

S, T ∈ B(H). If there exist vectors ζ, η ∈ H such that ‖ζ‖ = ‖η‖ = 1, ‖Sζ‖ = ‖S‖,
‖Tη‖ = ‖T‖ and 1

‖S‖〈Sζ, ζ〉 = − 1
‖T‖〈Tη, η〉, then δS,T is norm-attainable.
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Proof. By linear dependence of vectors, if η and Tη are linearly dependent, i.e., Tη =

φ‖T‖η, then it is true that |φ| = 1 and |〈Tη, η〉| = ‖T‖. It follows that |〈Sζ, ζ〉| = ‖S‖
which implies that Sζ = ϕ‖S‖ζ and |ϕ| = 1. Hence

〈 Sζ
‖S‖ , ζ

〉
= ϕ = −

〈 Tη
‖T‖ , η

〉
= −φ.

Defining X as X : η → ζ, {η}⊥ → 0, we have ‖X‖ = 1 and (SX−XT )η = ϕ(‖S‖+‖T‖)ζ,

which implies that ‖SX − XT‖ = ‖(SX − XT )η‖ = ‖S‖ + ‖T‖. By [3], it follows

that ‖SX − XT‖ = ‖S‖ + ‖T‖ = ‖δS,T ‖. That is δS,T is norm-attainable. If η and

Tη are linearly independent, then
∣∣〈 Tη
‖T‖ , η

〉∣∣ < 1, which implies that
∣∣〈 Sζ
‖S‖ , ζ

〉∣∣ < 1.

Hence ζ and Sζ are also linearly independent. Let us redefine X as follows: X : η → ζ,
Tη
‖T‖ → −

Sζ
‖S‖ , x → 0, where x ∈ {η, Tη}⊥. We show that X is a partial isometry. Let

Tη
‖T‖ =

〈 Tη
‖T‖ , η

〉
η + τh, ‖h‖ = 1, h⊥η. Since η and Tη are linearly independent, τ 6= 0.

So we have that X Tη
‖T‖ =

〈 Tη
‖T‖ , η

〉
Xη + τXh = −

〈 Sζ
‖S‖ , ζ

〉
ζ + τXh, which implies that〈

X Tη
‖T‖ , ζ

〉
= −

〈 Sζ
‖S‖ , ζ

〉
+ τ〈Xh, ζ〉 = −

〈 Sζ
‖S‖ , ζ

〉
.

It follows that 〈Xh, ζ〉 = 0, i.e., Xh⊥ζ (ζ = Xη). Hence we have that
∥∥〈 Sζ
‖S‖ , ζ

〉
ζ
∥∥2 +

‖τXh‖2 =
∥∥X Tη

‖T‖
∥∥2 =

∣∣〈 Tη
‖T‖ , η

〉∣∣2 + |τ |2 = 1, which implies that ‖Xh‖ = 1. Now it is

evident that X a partial isometry and ‖(SX −XT )ζ‖ = ‖SX −XT‖ = ‖S‖+ ‖T‖, which

is equivalent to ‖δS,T (X)‖ = ‖S‖+‖T‖. By Proposition 2.2 and [31], ‖δS,T ‖ = ‖S‖+‖T‖.
Hence δS,T is norm-attainable.

The next result is a consequence of Propositions 2.2 and 2.3. It gives the necessary

and sufficient conditions for norm-attainability of a basic elementary operator.

Corollary 2.4. Let S, T ∈ B(H). If both S and T are norm-attainable then the basic

elementary operator MS,T is also norm-attainable.

Proof. For any pair (S, T ) it is known that ‖MS,T ‖ = ‖S‖‖T‖. We can assume that

‖S‖ = ‖T‖ = 1. If both S and T are norm-attainable, then there exist unit vectors ζ

and η with ‖Sζ‖ = ‖Tη‖ = 1. We can therefore define an operator X by X = 〈 · , Tη〉ζ.

Clearly, ‖X‖ = 1. Therefore, we have ‖SXT‖ ≥ ‖SXTη‖ =
∥∥‖Tη‖2Sζ∥∥ = 1. Hence,

‖MS,T (X)‖ = ‖SXT‖ = 1, that is MS,T is also norm-attainable.

In the next section, we dedicate our work to orthogonality of elementary operators

on norm-attainable classes. From this point henceforth, all the elementary operators are

implemented by norm-attainable operators unless otherwise stated. First we note that Ω

denotes the algebra of all norm-attainable operators. In fact Ω is a Banach algebra. Let

T : Ω→ Ω be defined by T (X) =
∑n

i=1AiXBi, ∀X ∈ Ω, where Ai, Bi are fixed in Ω. We

define the range of T by Ran(T ) = {Y ∈ Ω : Y = T (X), ∀X ∈ Ω}, and the Kernel of T by

Ker(T ) = {X ∈ Ω : T (X) = 0,∀X ∈ Ω}. It is known [29] that for any of the examples of

the elementary operators defined in Section 1 (inner derivation, generalized derivation, ba-

sic elementary operator, Jordan elementary operator), the following implications hold for
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a general bounded linear operator T on a normed linear space W , i.e., Ran(T )⊥Ker(T )⇒
Ran(T ) ∩ Ker(T ) = {0} ⇒ Ran(T ) ∩ Ker(T ) = {0}. Here Ran(T ) denotes the closure of

the range of T and Ker(T ) denotes the kernel of T and Ran(T )⊥Ker(T ) means Ran(T )

is orthogonal to the Kernel of T in the sense of Birkhoff. Let A ∈ Ω. The algebraic

numerical range V (A) of A is defined by V (A) = {f(A) : f ∈ Ω′ and ‖f‖ = f(I) = 1}
where Ω′ is the dual space of Ω and I is the identity element in Ω. If V (A) ⊆ R, then A is

called a Hermitian element. Given two Hermitian elements S and R such that SR = RS,

then D = S +Ri is called normal [32].

3. Main results

Proposition 3.1. Let A,B,C ∈ Ω with CB = I (I is an identity element of Ω). Then for

a generalized derivation δA,B = AX−XB and an elementary operator ΘA,B(X) = AXB−
X, RB(Ran(δA,C) ∩ Ker(δA,C)) = Ran(ΘA,B) ∩ Ker(ΘA,B). Moreover, if Ran(δA,C) ∩
Ker(δA,C) = {0} then Ran(ΘA,B) ∩Ker(ΘA,B) = {0}.

Proof. First, we prove that if CB = I then RBδA,C = ΘA,B. To see this, ∀X ∈ Ω,

RBδA,C(X) = AXB − XCB = AXB − X = ΘA,B. Suppose that P ∈ RB(Ran(δA,C) ∩
Ker(δA,C)). Now, it is a fact that the uniform norm assigns to real- or complex-valued

continuous bounded operator RB defined on any set Ω the nonnegative number ‖RB‖∞ =

sup{‖RB(X)‖ : X ∈ Ω}. Since RBδA,C = ΘA,B and RB is continuous for the uniform

norm, then P ∈ Ran(ΘA,B) ∩Ker(ΘA,B). Conversely, since RC is continuous for the uni-

form norm, then by the same argument we prove that if P ∈ RB(Ran(ΘA,B)∩Ker(ΘA,B))

then P ∈ RB(Ran(δA,C) ∩Ker(δA,C)).

It is important to note the following. Let A,B,C ∈ Ω with CB = I (I is an identity

element of Ω). Then RB(Ran(δA,C)∩Ker(δA,C)) = Ran(ΘA,B)∩Ker(ΘA,B). Indeed, since

Ran(ΘA,B) ⊆ Ran(ΘA,B), then by Proposition 3.1, the equality holds.

Proposition 3.2. Let S and R be norm-attainable Hermitian elements. Then δS,R is also

norm-attainable Hermitian.

Proof. From [23], it is known that if X is a norm-attainable class then V (δS,R) = V (S)−
V (R) for all S,R ∈ B(X). Therefore, V (δS,R) ⊆ V (LS)−V (LR) = V (S)−V (R) ⊆ R.

Corollary 3.3. If D and E are norm-attainable and normal elements in Ω then δD,E is

also norm-attainable and normal.

Proof. Assume D = S +Ri and E = T +Ui where S, R, T , U are Hermitian elements in

Ω such that SR = RS and TU = UT . Then δD,E = δS,T + iδR,U with δS,T δR,U = δR,UδS,T .

Since S, R, T , U are Hermitian, then by Proposition 3.2 δR,U and δS,T are Hermitian and

so is δD,E .
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Remark 3.4. [23] Let X be a norm-attainable class and T ∈ B(X). If T is a norm-

attainable normal operator, then Ran(T )⊥Ker(T ). Moreover, if D and E are norm-

attainable normal elements in Ω then Ran(δD,E)⊥Ker(δD,E). Indeed, assume that D

and E are norm-attainable normal elements in Ω. Then by Corollary 3.3, δD,E is norm-

attainable normal and by Proposition 3.2 Ran(δD,E)⊥Ker(δD,E).

Corollary 3.5. If A,B ∈ Ω are norm-attainable normal and there exists C ∈ Ω such that

BC = I then Ran(ΘA,C) ∩Ker(ΘA,C) = {0}.

Proof. If A,B ∈ Ω are norm-attainable normal and self-adjoint elements, then by Corol-

lary 3.3, Ran(δA,B)⊥Ker(δA,B). This implies that Ran(δA,B) ∩ Ker(δA,B) = {0}. Using

Proposition 2.2, we conclude that Ran(ΘA,C) ∩Ker(ΘA,C) = {0}.

The next theorem gives a stronger result on power sequences of operators An, Bn ∈ Ω

for all n ∈ N.

Theorem 3.6. Let A,B ∈ Ω be norm-attainable normal and self-adjoint with C ∈ Ω

such that BC = I and ‖C‖ ≤ 1. If ‖A‖ ≤ 1 and ‖B‖ ≤ 1 for all n ∈ N then

Ran(δA,B)⊥Ker(δA,B).

Proof. It is well known [1] that AnX −XBn =
∑n−1

i=0 A
n−i−1(AX −XB)Bi and

AnX −XBn −
n−1∑
i=0

An−i−1(AX −XB − Y )Bi = nY Bn−1,

where Y ∈ Ker(δA,B). Multiplying this equality by Cn−1 we obtain

AnXCn−1 −XB −
n−1∑
i=0

An−i−1(AX −XB − Y )BiCn−1 = nY Bn−1Cn−1

which is equivalent to

nY = AnXCn−1 −XB −
n−1∑
i=0

An−i−1(AX −XB − Y )BiCn−1.

Now, the assumption that BC = I with ‖C‖ ≤ 1 and ‖B‖ ≤ 1 implies that ‖Cn‖ =

‖Bn‖ = 1 for all n ∈ N. This shows that dividing both sides by n and taking norms we

obtain

‖Y ‖ ≤ 1

n

{
‖An‖‖X‖‖C‖n−1 + ‖X‖‖B‖

}
+

1

n

n−1∑
i=0

‖A‖n−i−1‖AX −XB − Y ‖‖B‖i‖C‖n−1

=
1

n

{
‖An‖‖X‖+ ‖X‖

}
+

1

n

n−1∑
i=0

‖A‖n−i−1‖AX −XB − Y ‖.
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Hence, ‖Y ‖ ≤ 2
n‖X‖+ 1

n

∑n−1
i=0 ‖AX−XB−Y ‖. Taking limits as n→∞, we obtain that

‖Y ‖ ≤ ‖AX −XB − Y ‖. Therefore, Ran(δA,B)⊥Ker(δA,B).

The following theorem from Kittaneh [21] gives a general orthogonality condition for

linear operators. The proof is omitted.

Theorem 3.7. [21] Let Ω be a normed algebra with the norm ‖ · ‖ satisfying ‖XY ‖ ≤
‖X‖‖Y ‖ for all X,Y ∈ Ω and let δ : Ω → Ω be a linear map with ‖δ‖ ≤ 1. If δ(Y ) = Y

for some Y ∈ Ω, then ‖δ(X)−X + Y ‖ ≥ ‖Y ‖ for all X ∈ Ω.

We utilize the Theorem 3.7 to prove some results for general elementary operators.

Let T : Ω → Ω be an elementary operator defined by T (X) =
∑n

i=1AiXBi, ∀X ∈ Ω.

Now suppose that T (Y ) = Y for some Y ∈ Ω. If ‖T‖ ≤ 1, then ‖T (X)−X + Y ‖ ≥ ‖Y ‖
for all X ∈ Ω. The following theorem follows immediately.

Theorem 3.8. Suppose that T (Y ) = Y for some norm-attainable normal self-adjoint

Y ∈ Ω. If
∥∥∑n

i=1AiA
∗
i

∥∥1/2∥∥∑n
i=1B

∗
iBi
∥∥1/2 ≤ 1, then ‖T (X) − X + Y ‖ ≥ ‖Y ‖ for all

X ∈ Ω.

Proof. We only need to show that ‖T‖ ≤ 1. Let Z1 = [A1, . . . , An] and Z2 = [B1, . . . , Bn]T .

Taking Z1Z
∗
1 and Z∗2Z2 shows that ‖Z1‖ =

∥∥∑n
i=1AiA

∗
i

∥∥1/2 and ‖Z2‖ =
∥∥∑n

i=1B
∗
iBi
∥∥1/2.

From [10], it is known that T (X) = Z1(X ⊗ In)Z2, where In is the identity of Mn(C).

Therefore it follows that ‖T (X)‖ ≤ ‖Z1‖‖Z2‖‖X‖. Hence ‖T‖ ≤ 1.

Now, we consider the orthogonality of Jordan elementary operators. We later consider

the necessary and sufficient conditions for their normality. At this juncture a type of

norm, called the unitarily invariant norm comes in handy. A unitarily invariant norm is

any norm defined on some two-sided ideal of NA(H) and NA(H) itself which satisfies the

following two conditions. For unitary operators U, V ∈ NA(H) the equality |‖UXV ‖| =

|‖X‖| holds, and |‖X‖| = s1(X) for all rank one operators X. It is proved that any

unitarily invariant norm depends only on the sequence of singular values. Also, it is

known that the maximal ideal, on which |‖UXV ‖| has sense, is a Banach space with

respect to that unitarily invariant norm. Among all unitarily invariant norms there are

few important special cases. The first is the Schatten p-norm (p ≥ 1) defined by ‖X‖p =(∑+∞
j=1 sj(X)p

)1/p
on the set Cp = {X ∈ NA(H) : ‖X‖p < +∞}. For p = 1, 2 this norm is

known as the nuclear norm (Hilbert-Schmidt norm) and the corresponding ideal is known

as the ideal of nuclear (Hilbert-Schmidt) operators. The ideal C2 is also interesting for

another reason. Namely, it is a Hilbert space with respect to the ‖ · ‖2 norm. The other

important special case is the set of so-called Ky Fan norms ‖X‖k =
∑k

j=1 sj(X). The

well-known Ky Fan dominance property asserts that the condition ‖X‖k ≤ ‖Y ‖ for all

k ≥ 1 is necessary and sufficient for the validity of the inequality |‖X‖| ≤ |‖Y ‖| in all
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unitarily invariant norms. For further details refer to [19].We state the following theorem

from [19] on orthogonality.

Theorem 3.9. Let A,B ∈ NA(H) be normal operators such that AB = BA, and let

U(X) = AXB −BXA. Furthermore, suppose that A∗A+B∗B > 0. If S ∈ Ker(U), then

|‖U(X) + S‖| ≥ |‖S‖|.

We extend Theorem 3.9 to distinct operators A,B,C,D ∈ NA(H) in the theorem

below.

Theorem 3.10. Let A,B,C,D ∈ NA(H) be normal operators such that AC = CA,

BD = DB, AA∗ ≤ CC∗, B∗B ≤ D∗D. For an elementary operator U(X) = AXB−CXD
and S ∈ NA(H) satisfying ASB = CSD, then ‖U(X) + S‖ ≥ ‖S‖ for all X ∈ NA(H).

Proof. From AA∗ ≤ CC∗ and B∗B ≤ D∗D, let A = CU , and B = V D, where U , V

are contractions. So we have AXB − CXD = CUXVD − CXD = C(UXV − X)D.

Assume C and D∗ are injective, ASB = CSD if and only if USV = S. Moreover, C and

U commute. Indeed from A = CU we obtain AC = CUC. Therefore, C(A − UC) = 0.

Thus since C is injective A = CU . Similarly, D and V commute. So, ‖U(X) + S‖ =

‖[AXB−CXD]+S‖ = ‖[U(CXD)V −CXD]+S‖ ≥ ‖S‖, ∀X ∈ NA(H). Now, under the

condition of Theorem 3.10, A and C have operator matrices A =
(
0 0
0 A0

)
and C =

(
0 0
0 C0

)
with respect to the space decomposition H = R(C) ⊕ N (C), respectively. Here, A0 is

a normal operator on R(C) and C0 is an injective and normal operator on R(C). B

and D have operator matrices B =
(
B0 0
0 0

)
and D =

(
D0 0
0 0

)
with respect to the space

decomposition H = R(D)⊕N (D), respectively. Here, B0 is a normal operator on R(D)

and D0 is an injective and normal operator on R(D). X and S have operator matrices

X =
(
X11 X12
X21 X22

)
and S =

(
S11 S12
S21 S22

)
which are as operator from the space decomposition

H = R(D)⊕N (D) into the space decomposition H = R(C)⊕N (C), respectively.

In this case, U(X) = AXB−CXD =
(
A0X11B0−C0X11D0 0

0 0

)
and A0S11B0−C0S11D0 =

0. Therefore, ‖A0X11B0 − C0X11D0 + S11‖ ≥ ‖S11‖. Hence,

‖U(X) + S‖ =

∥∥∥∥∥∥
A0X11B0 − C0X11D0 0

0 0

+

S11 S12

S21 S22

∥∥∥∥∥∥
=

∥∥∥∥∥∥
A0X11B0 − C0X11D0 + S11 S12

S21 S22

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
S11 S12

S21 S22

∥∥∥∥∥∥ .
The result in Theorem 3.10 can be generalized in Banach algebras and other complex

spaces like operator spaces and function spaces.
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4. Conclusion

We conclude this paper by remarking that these results can be extended to give more

results on generalized finite operators in terms of orthogonality and norm-attainability in

C∗-algebras.
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[5] R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems, Linear

Algebra Appl. 287 (1999), no. 1-3, 77–85.

[6] D. K. Bhattacharya and A. K. Maity, Semilinear tensor product of Γ-Banach algebras,

Ganita 40 (1989), no. 1-2, 75–80.

[7] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York,

1973.

[8] J. O. Bonyo and J. O. Agure, Norm of a derivation and hyponormal operators, Int.

J. Math. Anal. (Ruse) 4 (2010), no. 13-16, 687–693.

[9] S. Bouali and Y. Bouhafsi, On the range of the elementary operator X 7→ AXA−X,

Math. Proc. R. Ir. Acad. 108 (2008), no. 1, 1–6.

[10] F. M. Brückler, Tensor products of C∗-algebras, operator spaces and Hilbert C∗-

modules, Math. Commun. 4 (1999), no. 2, 257–268.
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