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Existence of Nonnegative Solutions for Fourth Order Elliptic Equations of

Kirchhoff Type with General Subcritical Growth

Jianping Huang and Qi Zhang*

Abstract. This paper is dedicated to investigating the following fourth-order elliptic

equation with Kirchhoff-type∆2u−
(
a+ b

∫
RN

|∇u|2 dx
)

∆u+ cu = f(u) in RN ,

u ∈ H2(RN ),

where a > 0, b ≥ 0 and c > 0 are constants. By using cut-off functional and mono-

tonicity tricks, we prove that the above problem has a positive solution. Our result

cover the case where the nonlinearity satisfies asymptotically linear and superlinear

condition at the infinity, which extend the results of related literatures.

1. Introduction

In this paper, we consider the following fourth order elliptic equation of Kirchhoff type:

(1.1)

∆2u−
(
a+ b

∫
RN

|∇u|2 dx
)

∆u+ cu = f(u) in RN ,

u ∈ H2(RN ),

where N ≥ 5, ∆2 := ∆(∆) is the biharmonic operator, a, b, c are positive constants and

f : R→ R satisfies

(f1) f ∈ C(R+,R+) with R+ = [0,+∞), and limt→0+ f(t)/t = 0;

(f2) limt→+∞ f(t)/t2∗∗−1 = 0 with 2∗∗ = 2N/(N − 4);

(f3) there exists τ > 0 such that F (τ) > c
2τ

2, where F (τ) =
∫ τ

0 f(s) ds.

The problem (1.1) is related to the stationary analogue of the evolution of the equation

of Kirchhoff type

utt + ∆2u−
(
a+ b

∫
RN

|∇u|2 dx
)

∆u = g(x, u),
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which is used to describe some phenomena appeared in physics and engineering, due to it

is regarded as a good approximation for describing vibrations of beams or plates, see [1,2].

Obviously, the problem (1.1) is a nonlocal problem because of the appearance of the

term b
∫
RN |∇u|2 dx which causes some mathematical difficulties. In the same time, this

provokes the problem more interesting.

On the one hand, for the general case of the problem (1.1) with c = V (x), then this

problem is reduced to the following fourth-order elliptic equation of Kirchhoff type

(1.2)

∆2u−
(
a+ b

∫
RN

|∇u|2 dx
)

∆u+ V (x)u = g(x, u) in RN ,

u ∈ H2(RN ).

With the aid of variational methods, under various conditions of the potential V (x) and

the nonlinearity g(x, u), some valuable results for the problem (1.2) have been wide range

of investigated in the literature. For example, Zhang et al. [29] studied the existence of the

least energy sign-changing solution for the problem (1.2) by constraint variational method

and quantitative deformation lemma. Xu and Chen [23] dealt with problem (1.2) with sup-

cubic case, and the existence of infinitely many solutions for the problem is established by

using symmetric mountain pass theorem. For related works, one can see [11,12,16,18,21,22]

and the references therein.

There are also some works on the existence and multiplicity results for following elliptic

equation

(1.3)

∆2u−
(
a+ b

∫
RN

|∇u|2 dx
)

∆u = g(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with a smooth boundary. More precisely, in [19],

the authors using the mountain pass techniques and the truncation method studied the

existence of nontrivial solutions for the problem (1.3). In recent paper [17], Song and Shi

did with problem (1.3) with critical exponent case, the new results about the existence

and multiplicity of solutions for the problem are obtained by using the concentration com-

pactness principle and variational method. For more results related to elliptic equations

of Kirchhoff type, we refer the readers to [3–7,14,26,28] and the references therein.

We also note that the problem (1.1) with a ≡ 1 and b ≡ 0 has been studied for the

nonlinear biharmonic equation and system, which problem arises in the study of travelling

waves in suspension bridge (see [15]) and the study of the static deflection of an elastic

plate in a fluid. There are many works, see [13,20,24,25,27,30]. In particular, Zhang [30]

and Ye [24] studied the sublinear case; [27] and [25] studied the super-quadratic case.

Here, we do not try to review the huge bibliography.
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Inspired by the works mentioned above, in the present paper, our aim is to establish

the existence of nonnegative solutions for the problem (1.1) with the nonlinearity f asymp-

totically linear and superlinear at the infinity. Under some weaker assumption, we reach

the goal by using cut-off function and monotonicity tricks. To the best of our knowledge,

there has no works concerning this case up to now. Comparing the aforementioned results,

our result is different and extends them to some extent.

Since we are looking for positive solutions to the problem (1.1), without loss of gener-

ality, we suppose that f(t) = 0 for all t < 0.

Now, we are ready to state the main results of this paper.

Theorem 1.1. Assume that N ≥ 5, a, b, c are positive constants. Suppose that (f1)–(f3)

hold. Then there exists b0 > 0 such that for any b ∈ [0, b0), the problem (1.1) has a

nonnegative solution.

The conditions (f2) and (f3) are sometimes replaced by the following stronger asymp-

totically linear assumption.

(f4) limt→+∞ f(t)/t = Θ, where Θ ∈ (c,+∞).

To show that the condition (f4) implies (f2) and (f3) is easy. Indeed, from (f4), one has

lim
t→+∞

f(t)

t2∗∗−1
= lim

t→+∞

f(t)

tt2∗∗−2
= 0,

which shows that (f2) holds. On the other hand, from the condition (f4), there exists a

constant K > 0 such that for any t > K,

Θ + c

2
t < f(t).

Thus,

F (t) =

∫ t

0
f(s) ds =

∫ K

0
f(s) ds+

∫ t

K
f(s) ds ≥

∫ t

K
f(s) ds >

Θ + c

4
(t2 −K2),

and if only t ≥ K
(

Θ+c
Θ−c

)1/2
, there holds F (t) ≥ c

2 t
2, which implies that (f3) holds. Conse-

quently, we have the following corollary right away.

Corollary 1.2. Assume that N ≥ 5, a, b, c are positive constants. Suppose that (f1) and

(f4) hold. Then there exists b0 > 0 such that for any b ∈ [0, b0), the problem (1.1) has a

nonnegative solution.

Notations. Throughout this paper we make use of the following notations:

• H2(RN ) denotes the usual Hilbert space;
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• For 1 ≤ s < ∞, Ls(RN ) denotes the Lebesgue space with the norm ‖u‖s =( ∫
RN |u|s dx

)1/s
;

• L∞(RN ) denotes the Lebesgue space with the norm ‖u‖∞ = ess supx∈RN |u(x)|;

• X−1 denotes the dual space of a Banach space X;

• 〈 · , · 〉 denotes the duality pairing between X−1 and X;

• meas(·) denotes the Lebesgue measure in RN ;

• For any x ∈ RN and r > 0, Br(x) := {y ∈ RN : |x− y| < r};

• C1, C2, C3, C4, C5 denote positive constants possibly different in different places.

The rest of the paper is organized as follows. In Section 2, some preliminary results

are presented. Section 3 is devoted to finding a nonnegative solution for the problem (1.1).

2. Preliminaries

Because equation (1.1) is autonomous, according to the symmetric critical principle, any

critical point u ∈ H2
r (RN ) is also a critical point of H2(RN ). Hence to seek weak solutions

of problem (1.1), we need only discuss in H2
r (RN ). Let

E := {u ∈ H2(RN ) | u is radially symmetric},

equipped with the inner product

(u, v) =

∫
RN

(∆u∆v + a∇u∇v + cuv) dx, ∀u, v ∈ E

and the induced norm ‖u‖ = (u, u)1/2. Obviously, E is a Hilbert space. And the embed-

ding E ↪→ Ls(RN ) is continuous for 2 ≤ s ≤ 2∗∗, that is, there exists γs such that

(2.1) ‖u‖s ≤ γs‖u‖, ∀u ∈ E.

Furthermore, the embedding E ↪→ Ls(RN ) is compact for s ∈ (2, 2∗∗).

The energy functional Jb related to the problem (1.1) on E is

Jb(u) =
1

2
‖u‖2 +

b

4

(∫
RN

|∇u|2 dx
)2

−
∫
RN

F (u) dx.

From the conditions (f1) and (f2), for any ε > 0, there exists Cε > 0 such that

(2.2) F (t) ≤ εt2 + Cεt
2∗∗ , ∀ t ∈ R+.
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Consequently, the functional Jb is well defined and is of class C1(E,R). Moreover, for any

u, v ∈ E, one has

〈J ′b(u), v〉 = (u, v) + b

∫
RN

|∇u|2 dx
∫
RN

∇u∇v dx−
∫
RN

f(u)v dx.

In order to find a bounded (PS) sequence for the functional Jb, we adopt the method

introduced by [9, 10]. Hence we introduce the modified functional J Tb,λ : E → R

J Tb,λ(u) =
1

2
‖u‖2 +

b

4
hT (u)

(∫
RN

|∇u|2 dx
)2

− λ
∫
RN

F (u) dx

of Jb, where λ > 0 and hT (u) = ψ
(
‖u‖2/T 2

)
for any T > 0, with the cut-off function

ψ ∈ C∞(R+,R+) satisfying 

ψ(t) = 1 if t ∈ [0, 1],

0 ≤ ψ(t) ≤ 1 if t ∈ (1, 2),

ψ(t) = 0 if t ∈ [2,+∞),

‖ψ′‖∞ ≤ 2.

Now, to find a critical point u of Jb, we have to verify that the critical point of J Tb satisfies

‖u‖ ≤ T . To proceed we first present a useful proposition which developed by Jeanjean.

Proposition 2.1. (see [8, Theorem 1.1]) Let X be a Banach space equipped with a norm

‖ · ‖X and let I ⊂ R+ be an interval. We consider a family {Φλ}λ∈I of C1-functional on

X of the norm

Φλ(u) = A(u)− λB(u), ∀λ ∈ I,

where B(u) ≥ 0 for all u ∈ X, and such that either A(u) → +∞ or B(u) → +∞, as

‖u‖X → +∞. We assume that there are two points v1, v2 in X such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) > max{Φλ(v1),Φλ(v2)},

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then, for almost every λ ∈ I, there exists a sequence {un} ⊂ X such that

(i) {un} is bounded in X;

(ii) Φλ(un)→ cλ;

(iii) Φ′λ(un)→ 0 in X−1.
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By Proposition 2.1, in our case, X = E, Φλ = J Tb,λ, v1 = 0, v2 will be found in

Section 3,

A(u) =
1

2
‖u‖2 +

b

4
hT (u)

(∫
RN

|∇u|2 dx
)2

and B(u) =

∫
RN

F (u) dx.

The perturbed functional is

Φλ(u) = J Tb,λ(u) =
1

2
‖u‖2 +

b

4
hT (u)

(∫
RN

|∇u|2 dx
)2

− λ
∫
RN

F (u) dx.

In addition, for any u, v ∈ E,

〈(J Tb,λ)′(u), v〉 = (u, v) +
b

2T 2
ψ′
(
‖u‖2

T 2

)(∫
RN

|∇u|2 dx
)2

(u, v)

+ bψ

(
‖u‖2

T 2

)∫
RN

|∇u|2 dx
∫
RN

∇u∇v dx− λ
∫
RN

f(u)v dx.

To prove the boundedness of (PS) sequence, we need the following Pohoz̆aev identity.

Lemma 2.2. Let N ≥ 5. If u ∈ E is a critical point of J Tb,λ, namely, a week solution of[
1 +

b

2T 2
ψ′
(
‖u‖2

T 2

)(∫
RN

|∇u|2 dx
)2 ]

Hu− bψ
(
‖u‖2

T 2

)∫
RN

|∇u|2 dx∆u = λf(u),

where Hu = ∆2u− a∆u+ cu, then the following Pohoz̆aev type identity holds

λN

∫
RN

F (u) dx

=
1

2

[
(N − 4)

∫
RN

|∆u|2 dx+ a(N − 2)

∫
RN

|∇u|2 dx+ cN

∫
RN

u2 dx

]
+
b(2N − 4)

4
ψ

(
‖u‖2

T 2

)(∫
RN

|∇u|2 dx
)2

+
b

4T 2
ψ′
(
‖u‖2

T 2

)(∫
RN

|∇u|2 dx
)2

×
[
(N − 4)

∫
RN

|∆u|2 dx+ a(N − 2)

∫
RN

|∇u|2 dx+ cN

∫
RN

u2 dx

]
.

(2.3)

Proof. Let u ∈ E \ {0}. We make a transformation ut : E → E satisfying

ut(x) = u
(x
t

)
, t > 0.

Then

J Tb,λ(ut) =
1

2

[
tN−4

∫
RN

|∆u|2 dx+ atN−2

∫
RN

|∇u|2 dx+ tNc

∫
RN

u2 dx

]
+
bt2N−4

4
ψ

(∫
RN [tN−4|∆u|2 + atN−2|∇u|2 + tNcu2] dx

T 2

)(∫
RN

|∇u|2 dx
)2

− λtN
∫
RN

F (u) dx.
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Since u is a critical point of J Tb,λ, we can get

0 =
dJ Tb,λ(ut)

dt

∣∣∣∣
t=1

=

[
(N − 4)

∫
RN

|∆u|2 dx+ a(N − 2)

∫
RN

|∇u|2 dx+ cN

∫
RN

u2 dx

]
×
[

1

2
+

b

4T 2
ψ′
(
‖u‖2

T 2

)(∫
RN

|∇u|2 dx
)2 ]

+
b(2N − 4)

4
ψ

(
‖u‖2

T 2

)(∫
RN

|∇u|2 dx
)2

− λN
∫
RN

F (u) dx.

(2.4)

The desired identity (2.3) follows immediately from (2.4).

3. Proof of the main results

To prove the main results of the paper, we need the following lemmas.

Lemma 3.1. Suppose that (f1)–(f3) hold. Then there exist a constant σ ∈ (0, 1) and

v2 ∈ E such that J Tb,λ(v2) < 0 for all λ ∈ I := [σ, 1].

Proof. Let L > 0, τ as in (f3), define z : RN → R as

z(x) =


τ for |x| ≤ L,

τ(L+ 1− |x|) for L < |x| < L+ 1,

0 for |x| ≥ L+ 1.

Then z ∈ E, and it follows from (f3) that∫
RN

(
F (z)− c

2
z2
)
dx =

∫
BL

(
F (z)− c

2
z2
)
dx+

∫
BL+1\BL

(
F (z)− c

2
z2
)
dx

≥
(
F (τ)− c

2
τ2
)

meas(BL)

−meas(BL+1 −BL)

(
max
t∈[0,τ ]

∣∣∣F (t)− c

2
t2
∣∣∣)

≥ C1L
N − C2L

N−1.

(3.1)

From (3.1), for L > 1 big enough, we have∫
RN

(
F (z)− c

2
z2
)
dx > 0.

Further, there exists σ ∈ (0, 1) such that∫
RN

(
σF (z)− c

2
z2
)
dx > 0.
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On the other hand, setting v2(x) = z(x/t0) with t0 > 0 large enough, one has∫
RN

(
σF (v2)− c

2
v2

2

)
dx = tN0

∫
RN

(
σF (z)− c

2
z2
)
dx

>
tN−4
0

2

∫
RN

|∆z|2 dx+
atN−2

0

2

∫
RN

|∇z|2 dx

=
1

2

∫
RN

|∆v2|2 dx+
a

2

∫
RN

|∇v2|2 dx

(3.2)

and

(3.3) ‖v2‖2 = tN−4
0

∫
RN

|∆z|2 dx+ atN−2
0

∫
RN

|∇z|2 dx+ ctN0

∫
RN

z2 dx ≥ 2T 2.

Thus, by the definition J Tb,λ, the cut-off function ψ, (3.2) and (3.3), for all λ ∈ I := [σ, 1],

we obtain that

J Tb,λ(v2) =
1

2
‖v2‖2 − λ

∫
RN

F (v2) dx

≤ 1

2
‖v2‖2 − σ

∫
RN

F (v2) dx

=
1

2

∫
RN

(
|∆v2|2 + a|∇v2|2 + cv2

2

)
dx− σ

∫
RN

F (v2) dx

=
1

2

∫
RN

(
|∆v2|2 + a|∇v2|2

)
dx−

∫
RN

(
σF (v2)− c

2
v2

2

)
dx

< 0.

The proof is completed.

Lemma 3.2. Suppose that (f1)–(f3) hold. Then there exists a constant c0 > 0 such that

cλ ≥ c0 for all λ ∈ I.

Proof. For all u ∈ E and λ ∈ I, using (2.1) and (2.2) with ε = 1/(4τ2
2 ), we have

J Tb,λ(u) =
1

2
‖u‖2 +

b

4
hT (u)

(∫
RN

|∇u|2 dx
)2

− λ
∫
RN

F (u) dx

≥ 1

2
‖u‖2 −

∫
RN

F (u) dx

≥ 1

2
‖u‖2 − ε

∫
RN

u2 dx− Cε
∫
RN

|u|2∗∗ dx

≥ 1

4
‖u‖2 − Cεγ2∗∗

2∗∗
‖u‖2∗∗ .

Then, there exists α > 0 such that J Tb,λ(u) > 0 for all 0 < ‖u‖ ≤ α and any λ ∈ I.

Particularly, for ‖u‖ = α, there exists c0 > 0 such that J Tb,λ(u) ≥ c0. On the other hand,

from Lemma 3.1, we have J Tb,λ(γ(1)) = J Tb,λ(v2) < 0 for all γ ∈ Γ. So ‖γ(1)‖ > α. Due
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to γ(0) = v1 = 0 and the continuity of γ, there exists tγ ∈ (0, 1) such that ‖γ(tγ)‖ = α.

Consequently, for any λ ∈ I, there holds

max
t∈[0,1]

J Tb,λ(γ(t)) ≥ c0 > 0,

which shows that cλ ≥ c0.

Lemma 3.3. Suppose that (f1)–(f3) hold. Then for any λ ∈ I and b < 1/(8T 2), each

bounded (PS) sequence of the functional J Tb,λ at the level cλ admits a convergent subse-

quence in E.

Proof. Let λ ∈ I, suppose that {un} ⊂ E is a bounded (PS) sequence of the functional

J Tb,λ at the level cλ, namely

{un} is bounded and J Tb,λ(un)→ cλ; (J Tb,λ)′(un)→ 0 in E−1.

Subject to a subsequence, we can assume that there exists u in E such that

un ⇀ u in E,

un → u on Ls(RN ), ∀ s ∈ (2, 2∗∗),

un → u a.e. on RN .

Thus, in view of the definition J Tb,λ, one has

o(1) = 〈(J Tb,λ)′(un), un − u〉

=

[
1 +

b

2T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2 ]

(un, un − u)

+ bψ

(
‖un‖2

T 2

)∫
RN

|∇un|2 dx
∫
RN

∇un∇(un − u) dx

− λ
∫
RN

f(un)(un − u) dx.

Because (f1) and (f2), for any ε > 0, there exists Cε > 0 such that

|f(t)| ≤ ε|t|+ ε|t|2∗∗−1 + Cε|t|k0−1, ∀ t ∈ R+,

where k0 ∈ (2, 2∗∗). It follows from Hölder inequality and (2.1) that∣∣∣∣∫
RN

f(un)(un − u) dx

∣∣∣∣ ≤ ε∫
RN

|un||un − u| dx+ ε

∫
RN

|un|2∗∗−1|un − u| dx

+ Cε

∫
RN

|un|k0−1|un − u| dx

≤ ε‖un‖2‖un − u‖2 + ε‖un‖2∗∗−1
2∗∗

‖un − u‖2∗∗
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+ Cε‖un‖k0−1
k0
‖un − u‖k0

≤ εγ2
2‖un‖‖un − u‖+ εγ2∗∗

2∗∗
‖un‖2∗∗−1‖un − u‖

+ Cε‖un‖k0−1
k0
‖un − u‖k0

→ 0 as n→ +∞.

It is clear that

bψ

(
‖un‖2

T 2

)∫
RN

|∇un|2 dx
∫
RN

∇un∇(un − u) dx→ 0.

What’s more, since b < 1/(8T 2), one has

b

2T 2

∣∣∣∣ψ′(‖un‖2T 2

)∣∣∣∣ (∫
RN

|∇un|2 dx
)2

≤ b

2a2T 2

∣∣∣∣ψ′(‖un‖2T 2

)∣∣∣∣ ‖un‖4
≤ 4bT 2

a2
<

1

2a2
.

Hence, [
1 +

b

2T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2 ]

(un, un − u)→ 0 as n→ +∞,

which implies that un → u in E.

Lemma 3.4. Suppose that (f1)–(f3) hold. If b < 1/(8T 2), for almost every λ ∈ I, there

exists uλ ∈ E \ {0} such that (J Tb,λ)′(uλ) = 0 and J Tb,λ(uλ) = cλ.

Proof. The result follows immediately from Proposition 2.1 and Lemma 3.3.

Lemma 3.5. Let b < 1/(8T 2). Suppose that un is a critical point of the function J Tb,λn at

level cλn. Then there exist T > 0 and b0 ∈ (0, 1/(8T 2)) such that for all b ∈ [0, b0), up to

a subsequence, ‖un‖ ≤ T .

Proof. By Lemma 3.4, there exists a sequence {λn} ⊂ I and {un} ⊂ E such that

λn → 1−, J Tb,λn(un) = cλn and (J Tb,λn)′(un) = 0 as n→ +∞.

On the one hand, due to Lemma 2.2 and (J Tb,λn)′(un) = 0, one has[
(N − 4)

∫
RN

|∆un|2 dx+ a(N − 2)

∫
RN

|∇un|2 dx+ cN

∫
RN

u2
n dx

]
×
[

1

2
+

b

4T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2 ]

+
b(2N − 4)

4
ψ

(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2

= λnN

∫
RN

F (un) dx.

(3.4)
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On the other hand, since J Tb,λn(un) = cλn , we get

(3.5)
1

2
N‖un‖2 +

b

4
NhT (un)

(∫
RN

|∇un|2 dx
)2

− λnN
∫
RN

F (un) dx = Ncλn .

Combing (3.4) with (3.5) we obtain(
2

∫
RN

|∆un|2 dx+ a

∫
RN

|∇un|2 dx
)

≤
[
2 +

b

T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2 ] ∫

RN

|∆un|2 dx

+ a

[
1 +

b

2T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2 ] ∫

RN

|∇un|2 dx

=
N‖un‖2

2

[
1 +

b

2T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2 ]

+
b(2N − 4)

4
ψ

(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2

− λnN
∫
RN

F (un) dx

= Ncλn
+
Nb

4T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2

‖un‖2 +
b(N − 4)

4
ψ

(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2

.

Now we define a function ζ : [0, 1]→ E by

ζ(0) = 0 and ζ(t) = v2

(x
t

)
= z

(
x

tt0

)
, ∀ t ∈ (0, 1].

It is obvious that ζ ∈ Γ, and we have

cλn ≤ max
t∈[0,1]

J Tb,λn
(ζ(t))

≤ max
t∈[0,1]

{
1

2
‖ζ(t)‖2 +

b

4
ψ

(
‖ζ(t)‖2

T 2

)(∫
RN

|∇ζ(t)|2 dx
)2

− σ
∫
RN

F (ζ(t)) dx

}
≤ max
t∈[0,1]

{
1

2

∫
RN

[
(tt0)N−4|∆z|2 + a(tt0)N−2|∇z|2 + c(tt0)Nz2

]
dx− σ(tt0)N

∫
RN

F (z) dx

}
+
b

4
max
t∈[0,1]

{
ψ

(
‖ζ(t)‖2

T 2

)(∫
RN

|∇ζ(t)|2 dx
)2}

≤ max
t≥0

{
1

2

∫
RN

[
tN−4|∆z|2 + atN−2|∇z|2 + ctNz2

]
dx− σtN

∫
RN

F (z) dx

}
+
b

4
max
t∈[0,1]

{
ψ

(
‖ζ(t)‖2

T 2

)(∫
RN

|∇ζ(t)|2 dx
)2}

:= K1 + bK2(T ).

(3.6)

Since ψ
(
‖u‖2/T 2

)
= 0 for 2T 2 < ‖u‖2, from the definition of K2(T ) in (3.6) one has

bK2(T ) ≤ bT 4

a2
,

Nb

4T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2

‖un‖2 ≤
4bNT 4

a2
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and
b(N − 4)

4
ψ

(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2

≤ b(N − 4)T 4

a2
.

Then, we get(
2

∫
RN

|∆un|2 dx+ a

∫
RN

|∇un|2 dx
)
≤ NK1 +

5bNT 4

a2
+
b(N − 4)T 4

a2
.

Finally, it follows from (f1), (f2) and (J Tb,λn)′(un) = 0 that

[
1 +

b

2T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2 ]
‖un‖2 + bψ

(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2

= λn

∫
RN

f(un)un dx

≤ ε
∫
RN

|un|2 dx+ Cε

∫
RN

|un|2∗∗ dx,

together with (2.1) that

‖un‖2 ≤ εγ2
2‖un‖2 + Cε

∫
RN

|un|2∗∗ dx−
b

2T 2
ψ′
(
‖un‖2

T 2

)(∫
RN

|∇un|2 dx
)2

‖un‖2

≤ εγ2
2‖un‖2 + Cε

∫
RN

|un|2∗∗ dx+
8bT 4

a2

≤ εγ2
2‖un‖2 + C3

(∫
RN

|∇un|2 dx
)2∗∗/2

+
8bT 4

a2

≤ εγ2
2‖un‖2 + C4

[
NK1

a
+

5bNT 4

a3
+
b(N − 4)T 4

a3

]2∗∗/2

+
8bT 4

a2
.

Choosing ε = 1/(2γ2
2), there exists C5 > 0 such that

(3.7) ‖un‖2 ≤ C5

[
NK1

a
+

5bNT 4

a3
+
b(N − 4)T 4

a3

]2∗∗/2

+
16bT 4

a2
.

On the contrary, there exists no subsequence of {un} which is uniformly bounded by

T . Without loss of generality, we may suppose that T < ‖un‖, ∀n ∈ N. Then, by (3.7),

we have

(3.8) T 2 < ‖un‖2 ≤ C5

[
NK1

a
+

5bNT 4

a3
+
b(N − 4)T 4

a3

]2∗∗/2

+
16bT 4

a2
.

We can find T∗ > 0 such that

(3.9) 1 + C5

(
NK1

a

)2∗∗/2

≤ T 2
∗
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and b0 ∈ (0, 1/(8T 2
∗ )) with

(3.10) C5

[
NK1

a
+

5bNT 4
∗

a3
+
b(N − 4)T 4

∗
a3

]2∗∗/2

+
16bT 4

∗
a2

≤ C5

(
NK1

a

)2∗∗/2

+ 1.

Thus, for any b ∈ [0, b0), it follows from (3.8)–(3.10) that

C5

(
NK1

a

)2∗∗/2

+ 1 < C5

[
NK1

a
+

5b0NT
4
∗

a3
+
b0(N − 4)T 4

∗
a3

]2∗∗/2

+
16b0T

4
∗

a2

≤ C5

(
NK1

a

)2∗∗/2

+ 1,

which is a contradiction. Then we complete the proof.

Now we are in the position to complete proof of Theorem 1.1.

Proof of Theorem 1.1. Let T and b0 be defined as in Lemma 3.5. Suppose that un is a

critical point for J Tb,λn at the level cλn . From Lemma 3.5, we get that

‖un‖ ≤ T.

Further, we can obtain that

J Tb,λn(un) =
1

2
‖un‖2 +

b

4

(∫
RN

|∇un|2 dx
)2

− λn
∫
RN

F (un) dx

= Jb(un) + (1− λn)

∫
RN

F (un) dx.

From λn → 1−, it shows that Jb(un)→ c1. Moreover, we also have

〈(J Tb,λn)′(un), v〉 = (un, v) + b

∫
RN

|∇un|2 dx
∫
RN

∇un∇v dx− λ
∫
RN

f(un)v dx

= 〈J ′b(un), v〉+ (1− λn)

∫
RN

f(un)v dx.

Therefore, J ′b(un) → 0. Then {un} is a bounded (PS) sequence of Jb. By the similar

discuss as the proof of Lemma 3.3, we can get that {un} has a convergent subsequence.

We may suppose that un → u in E. Thus, J ′b(u) = 0. Moreover, by Lemma 3.2,

Jb(u) = lim
n→+∞

Jb(un) = lim
n→+∞

J Tb,λn(un) ≥ c0 > 0,

together with the condition (f1), we get that u is a nonnegative solution of the prob-

lem (1.1).
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