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Nonselfadjoint boundary value problems for second-order differential equations on a
finite interval with nonintegrable singularities inside the interval are considered under
additional sewing conditions for solutions at the singular point. We study properties of
the spectrum, prove the completeness of eigen- and associated functions, and investigate
the inverse problem of recovering the boundary value problem from its spectral charac-
teristics.

1. Introduction

We consider the differential equation

−y′′ +

(
ν0

(x− a)2
+ q(x)

)
y = λy, 0 < x < T , a∈ (0,T), (1.1)

with nonintegrable singularity inside the interval. Here, q(x) is a complex-valued func-
tion, and ν0 is a complex number. Let ν0 = ν2 − 1/4, and for definiteness, let Reν > 0,
ν /∈N. We will assume that q(x)|x− a|min(0,1−2Reν) ∈ L(0,T).

This paper deals with the boundary value problem L for the differential equation (1.1)
with the boundary conditions

U(y) := y′(0)−hy(0)= 0, V(y) := y′(T) +Hy(T)= 0, (1.2)

and with additional “sewing condition” for solutions at the singular point x = a. We con-
sider in some sense general sewing conditions defined by a transition matrix

A= [ajk] j,k=1,2, (1.3)

which connects solutions of (1.1) near the singular point (see Section 3 for details). In
the particular case of the absence of the singularity (ν = 1/2), these sewing conditions

Copyright © 2004 Hindawi Publishing Corporation
Abstract and Applied Analysis 2004:2 (2004) 165–182
2000 Mathematics Subject Classification: 34A55, 34B24, 34L05, 47E05
URL: http://dx.doi.org/10.1155/S1085337504310055

http://dx.doi.org/10.1155/S1085337504310055


166 Spectral analysis for differential operators with singularities

correspond to the following jump conditions

[
y
y′

]
(a+ 0)= A

[
y
y′

]
(a− 0). (1.4)

Problem (1.1), (1.2), and (1.4) without singularities (ν= 1/2), was studied in [10, 11, 26]
and other works. In another particular case when A= E (E is the identity matrix) and ν0

is an arbitrary complex number with Reν > 0, ν /∈ N, the sewing conditions considered
in this paper correspond (in the case when q(x) is a regular function) to sewing solutions
by the analytic continuation in the upper half-plane Imx > 0. This particular case was
studied in [24, 25].

Differential equations with singularities inside the interval play an important role in
various areas of mathematics as well as in its applications. Moreover, a wide class of differ-
ential equations with turning points can be reduced to equations with singularities. For
example, such problems appear in electronics for constructing parameters of heteroge-
neous electronic lines with desirable technical characteristics [7, 15, 18]. After reduction
of the corresponding mathematical model, we come to the inverse spectral problem for
the boundary value problem L where q(x) must be constructed from the given spectral
information which describes desirable amplitude and phase characteristics. Boundary
value problems with discontinuities in an interior point appear in geophysical models
for oscillations of the Earth [2, 13]. Furthermore, direct and inverse spectral problems
for equations with singularities and turning points are used for studying the blowup be-
havior of solutions for some nonlinear integrable evolution equations in mathematical
physics (see, e.g., [5]). Other classes of boundary value problems with discontinuities
were considered in [1, 6] and other works. We also note that in different problems of
natural sciences, we face different kind of sewing conditions defined by different matrices
A. This makes actual to study the boundary value problem L with an arbitrary sewing
condition.

In this paper, we study direct and inverse problems of spectral analysis for the bound-
ary value problem L defined by (1.1), (1.2) and a transition matrix A. Properties of the
spectrum are obtained, the completeness of eigen- and associated functions (e.a.f.) is
proved, and the inverse problem of recovering L form its spectral characteristics is inves-
tigated.

For the classical Sturm-Liouville operators (when ν = 1/2 and A = E), direct and in-
verse problems of spectral analysis have been studied fairly completely (see [9, 14, 16,
17, 19] and the references therein). The case when a singular point lies at the end of the
interval (a= 0) was investigated in [4, 8, 20, 21, 22, 23, 28] and in other works. The pres-
ence of singularity inside the interval produces essential qualitative modifications in the
investigation of direct and inverse problems. For studying the boundary value problem
L, an important role is played by special fundamental systems of solutions with necessary
analytic, asymptotic, and structural properties which gives us an opportunity to inves-
tigate the behavior of the corresponding Stokes multipliers and to study the character-
istic function and the so-called Weyl function. These fundamental systems of solutions
are constructed in Section 2. In Section 3, properties of the spectrum and the charac-
teristic function are studied. We introduce the so-called regularity condition for sewing.
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Under this condition, the completeness of e.a.f. is proved in Section 4. We also provide
a counterexample showing the importance of the regularity condition for studying the
boundary value problem L. In Section 5, the inverse spectral problem is considered for
the boundary value problem L.

2. Fundamental systems of solutions

2.1. Let λ= ρ2. Consider the functions

Cj(x,λ)= (x− a)µj
∞∑
k=0

cjk
(
ρ(x− a)

)2k
, j = 1,2, (2.1)

where

µj = (−1) jν +
1
2

, c10c20 = (2ν)−1,

cjk = (−1)kc j0

( k∏
s=1

((
2s+µj

)(
2s+µj − 1

)− ν0
))−1

.
(2.2)

Here and in the sequel, zµ = exp(µ(ln|z|+ iargz)), argz ∈ (−π,π]. For x > a and x < a,
the functions Cj(x,λ) are the solutions of the equation

−y′′ +
ν0

(x− a)2
y = λy. (2.3)

Let s j(x,λ), j = 1,2, be solutions of the following integral equations for x > a and x < a:

s j(x,λ)= Cj(x,λ) +
∫ x
a
g(x, t,λ)q(t)s j(t,λ)dt, (2.4)

where g(x, t,λ) = C1(t,λ)C2(x,λ)−C1(x,λ)C2(t,λ). The functions s j(x,λ) are entire in λ
of order 1/2, and form a fundamental system of solutions of (1.1). At that,

det
[
s(m−1)
j (x,λ)

]
j,m=1,2

≡ 1, (2.5)∣∣∣s(m)
j (x,λ)

∣∣∣≤C∣∣(x− a)µj−m
∣∣,

∣∣s j(x,λ)−Cj(x,λ)
∣∣≤C∣∣(x− a)2ν+µj

∣∣,
∣∣ρ(x− a)

∣∣≤1.
(2.6)

Here and below, one and the same symbol C denotes various positive constants in the
estimates. We will call s j(x,λ) the Bessel-type solutions for (1.1).

Let s j,−(x,λ), x > a, be the Bessel-type solutions for the equation

−y′′−(x) +

(
ν0

(x− a)2
+ q(2a− x)

)
y−(x)= λy−(x), x > a. (2.7)

Then, the functions sRj (x,λ) := s j,−(2a− x,λ), x < a, are solutions of (1.1). It is easily seen
that

sRj (x,λ)= exp
(− iπµj)s j(x,λ), x < a. (2.8)
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Denote Sk0 = {ρ : argρ ∈ (k0π/2,(k0 + 1)π/2)}, k0 =−2,1. In each sector Sk0 , the roots
Rk, k = 1,2 of the equation R2 + 1 = 0 can be numbered in such a way that Re(ρR1) <
Re(ρR2), ρ ∈ Sk0 . Clearly, Rk = (−1)k−1i for S0 and S1, and Rk = (−1)ki for S−1 and S−2.
For definiteness, let Reρ ≥ 0, that is, ρ ∈ S0∪ S−1. In [21], a special fundamental system
of solutions {yk(x,ρ)}k=1,2, x > a, ρ ∈ Sk0 , of the differential equation (1.1) in each sector
Sk0 is constructed having the following properties:

(1) for each x ∈ (a,T], the functions y(m)
k (x,ρ), m= 0,1, are regular with respect to ρ

for ρ∈ Sk0 , |ρ| ≥ ρ∗, are continuous for ρ∈ S̄k0 , |ρ| ≥ ρ∗, and

∣∣y(m)
k (x,ρ)

(
ρRk

)−m
exp

(− ρRk(x− a)
)− 1

∣∣
≤ C∣∣ρ(x− a)

∣∣ , x ∈ (a,T], ρ ∈ S̄k0 ,
∣∣ρ(x− a)

∣∣≥ 1;
(2.9)

(2) the relation

yk(x,ρ)=
2∑
j=1

b+
k j(ρ)s j(x,λ), x > a (2.10)

holds, where

b+
k j(ρ)= bk jρµj [1], |ρ| −→∞, (2.11)

where [1] := 1 +O(ρ−1), and the constants bk j depend on the sector. We will call
yk(x,ρ) the Birkhoff-type solutions for (1.1).

Let yk,−(x,ρ), x > a, be the Birkhoff-type solutions for (2.7). Then, the functions
yk(x,ρ) := yk,−(2a− x,ρ), x < a, are solutions of (1.1). Then, symmetrically to (2.10),

yk(x,ρ)=
2∑
j=1

b−k j(ρ)sRj (x,λ), x < a, (2.12)

where

b−k j(ρ)= bk jρµj [1], |ρ| −→∞ (2.13)

with the same constants bk j as in (2.11). By virtue of (2.8) and (2.12),

yk(x,ρ)=
2∑
j=1

B−k j(ρ)s j(x,λ), x < a, (2.14)

where

B−k j(ρ)= b−k j(ρ)exp
(− iπµj). (2.15)



Vjacheslav Anatoljevich Yurko 169

It follows from (2.10) and (2.14) that

s j(x,λ)=
2∑

k=1

d+
jk(ρ)yk(x,ρ), x > a,

s j(x,λ)=
2∑

k=1

D−jk(ρ)yk(x,ρ), x < a,

(2.16)

where

D−jk(ρ)= d−jk(ρ)exp
(
iπµj

)
, (2.17)

and [d±jk(ρ)] j,k=1,2 = ([b±k j(ρ)]k, j=1,2)−1. Using (2.11) and (2.13), we infer

d±jk(ρ)= djkρ−µj [1], |ρ| −→∞, (2.18)

where [djk] j,k=1,2 = ([bk j]k, j=1,2)−1. We rewrite (2.9) as follows:

y(m)
k (x,ρ)= (ρRk)m exp

(
ρRk(x− a)

)
[1]a, x ∈ (a,T], ρ∈ S̄k0 ,

∣∣ρ(x− a)
∣∣≥ 1,

(2.19)

where [1]a = 1 +O(1/|ρ(x− a)|), |ρ(x− a)| ≥ 1 (i.e. f (x,ρ)= [1]a means | f (x,ρ)− 1| ≤
C/|ρ(x− a)|, |ρ(x− a)≥ 1|). Similarly,

y(m)
k (x,ρ)= (− ρRk)m exp

(
ρRk(a− x)

)
[1]a, x ∈ [0,a), ρ∈ S̄k0 ,

∣∣ρ(x− a)
∣∣≥ 1.

(2.20)

In particular, (2.19) and (2.20) yield det[y(m−1)
k (x,ρ)]k,m=1,2 = ∓2iρ[1], x ∈ J±, where

J− := [0,a), J+ := (a,T].

2.2. Let a matrix

A=
[
a11 a12

a21 a22

]
, detA �= 0 (2.21)

be given, where ak j are complex numbers. We introduce the functions {σj(x,λ)} j=1,2,
x ∈ [0,a)∪ (a,T], by the formula

σj(x,λ)=



s j(x,λ), x < a,

2∑
k=1

ak jsk(x,λ), x > a.
(2.22)

The functions σj(x,λ) satisfy the differential equation (1.1) for x < a and x > a, and ac-
cording to (2.5),

det
[
σ (m−1)
j (x,λ)

]
j,m=1,2

≡

1, x < a,

detA, x > a.
(2.23)
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The fundamental system of solutions {σj(x,λ)} will be used for sewing together solutions
at the singular point x = a.

Using (2.10), (2.14), (2.16), and (2.22) we get

yk(x,ρ)=
2∑
j=1

B±k j(ρ)σj(x,λ), σj(x,λ)=
2∑

k=1

D±jk(ρ)yk(x,ρ), x ∈ J±, (2.24)

where

D+
jk(ρ)=

2∑
s=1

as jd
+
sk(ρ), B+

k j(ρ)= (−1) j−1

detA

2∑
s=1

a3−s,3− jb+
ks(ρ), (2.25)

and D−jk(ρ), B−k j(ρ) are defined by (2.15) and (2.17). Clearly,

[
D±jk(ρ)

]
j,k=1,2 =

([
B±k j(ρ)

]
k, j=1,2

)−1
. (2.26)

For definiteness, in the sequel we confine ourselves to the most important particular
case when a12 = 0. Substituting the asymptotics (2.11), (2.13), and (2.18) for b±k j(ρ) and

d±jk(ρ) into (2.15), (2.17), and (2.25), we calculate, for |ρ| →∞, ρ∈ S̄k0 ,

B+
k j(ρ)= bk j

(
aj j
)−1

ρµj [1], D+
jk(ρ)= djkaj jρ−µj [1],

B−k j(ρ)= bk j exp
(− iπµj)ρµj [1], D−jk(ρ)= djk exp

(
iπµj

)
ρ−µj [1].

(2.27)

3. Properties of the spectrum and the Weyl function

3.1. Suppose that

a11 exp(2πiν)− a22 �= 0. (3.1)

We will call (3.1) the regularity condition for sewing. Below, in Section 4 we provide a
counterexample showing the importance of the regularity condition (3.1) for studying
the boundary value problem L.

We denote

ϕ1(x,λ)= σ ′2(0,λ)σ1(x,λ)− σ ′1(0,λ)σ2(x,λ),

ϕ2(x,λ)= σ1(0,λ)σ2(x,λ)− σ2(0,λ)σ1(x,λ).
(3.2)

The functions ϕj(x,λ), j = 1,2, are solutions of the differential equation (1.1) for x ∈ J±,
and satisfy the initial conditions

ϕ(m−1)
j (0,λ)= δjm, j,m= 1,2 (3.3)

(δjm is the Kronecker delta). By virtue of (2.23),

det
[
ϕ(m−1)
j (x,λ)

]
j,m=1,2

≡

1, x < a,

detA, x > a.
(3.4)
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Lemma 3.1. For |ρ(x− a)| ≥ 1, m = 0,1, |ρ| → ∞, the following asymptotic formulae are
valid:

ϕ(m)
j (x,λ)= 1

2

(
(−iρ)m− j+1 exp(−iρx)[1]a + (iρ)m− j+1 exp(iρx)[1]a

)
, x ∈ J−, (3.5)

ϕ(m)
j (x,λ)= 1

2

(
(−iρ)m− j+1(ξ12 exp(−iρx)[1]a + (−1) j−1ξ22 exp

(− iρ(x− 2a)
)
[1]a

)
+ (iρ)m− j+1(ξ21 exp(iρx)[1]a + (−1) j−1ξ11 exp

(
iρ(x− 2a)

)
[1]a

))
, x ∈ J+,

(3.6)

where[
ξ11 ξ12

ξ21 ξ22

]

= 1
2sinπν

[
−a11 exp(2πiν) + a22 exp(−2πiν) −i(a11 exp(πiν)− a22 exp(−πiν)

)
−i(a11 exp(πiν)− a22 exp(−πiν)

)
a11− a22

]
.

(3.7)

We note that it follows from (3.1) that ξ12 �= 0, ξ21 �= 0.

Proof. Applying the fundamental system of solutions {yk(x,ρ)}k=1,2, we expand ϕj(x,λ)
for x ∈ J+ and x ∈ J− separately:

ϕj(x,λ)=
2∑

k=1

A±jk(ρ)yk(x,ρ), x ∈ J±. (3.8)

For definiteness, let ρ ∈ S̄0 (other ρ can be treated similarly). Then, Rk = (−1)k−1i. First
we calculate A−jk(ρ) using the initial conditions (3.3):

2∑
k=1

A−jk(ρ)y(m−1)
k (0,ρ)= δjm. (3.9)

Taking (2.20) into account, we get

A−jk(ρ)= 1
2

(
(−1)kiρ

)1− j
exp

(
(−1)kiρa

)
[1]. (3.10)

Together with (3.8) and (2.20), this yields (3.5).
In order to calculate A+

jk(ρ), we use sewing (matching) solutions with the help of the
fundamental system of solutions {σj(x,λ)} (see (3.2)). Substituting (2.24) into (3.8), we
get

ϕj(x,λ)=
2∑

k=1

A±jk(ρ)yk(x,ρ)=
2∑
s=1

σs(x,λ)
2∑

k=1

A±jk(ρ)B±ks(ρ), x ∈ J±, (3.11)

and hence,

2∑
k=1

A+
jk(ρ)B+

ks(ρ)=
2∑

k=1

A−jk(ρ)B−ks(ρ). (3.12)
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Since ([B±k j(ρ)]k, j=1,2)−1 = [D±jk(ρ)] j,k=1,2, the last equality yields

A±jk(ρ)=
2∑
s=1

A∓js(ρ)ξ±sk(ρ), (3.13)

where

ξ±sk(ρ)=
2∑

m=1

B∓sm(ρ)D±mk(ρ). (3.14)

It follows from (3.14) and (2.27) that

ξ+
sk(ρ)=

2∑
m=1

bsmdmkamm exp
(− iπµm)+O

(
1
ρ

)
. (3.15)

It was shown in [21] that

b2 j = b1 j exp
(
iπµj

)
, b11b12 = i

sinπν
, (3.16)

and consequently,

dj1 = dj exp
(− iπµj), dj2 = dj , d1d2 =− 1

4isinπν
, (3.17)

where d1 = b12/2i, d2 =−b11/2i. Together with (3.15), this yields

ξ+
sk(ρ)= ξsk +O

(
1
ρ

)
, (3.18)

where the numbers ξsk are defined by (3.7). Substituting (3.18) and (3.10) into (3.13), we
calculate

A+
jk(ρ)= 1

2

2∑
s=1

(
(−1)siρ

)1− j
exp

(
(−1)siρa

)(
ξsk +O

(
1
ρ

))
, (3.19)

hence, (3.8) and (2.14) yield (3.6). Lemma 3.1 is proved. �

We denote

ϕ(x,λ)= ϕ1(x,λ) +hϕ2(x,λ), (3.20)

∆(λ)=V(ϕ)= ϕ′(T ,λ) +Hϕ(T ,λ). (3.21)

The function ∆(λ) is entire in λ, and its zeros {λn}n≥0 coincide with the eigenvalues of
the boundary value problem L. Moreover, if λn is a zero of ∆(λ) of multiplicity κn, then
the functions ϕns(x) = (∂s/∂λs)ϕ(x,λ)|λ=λn , s = 0,κn− 1 form the chain of e.a.f. for the
eigenvalue λn. The function ∆(λ) is called the characteristic function for L. In view of
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(3.6), (3.20), and (3.21), we have

∆(λ)= ∆0(ρ)

(
1 +O

(
1
ρ

))
, (3.22)

where

∆0(ρ)= iρ

2

(
ξ21 exp(iρT)− ξ12 exp(−iρT) + ξ11 exp

(
iρ(T − 2a)

)
− ξ22 exp

(− iρ(T − 2a)
))
.

(3.23)

Using (3.22) and (3.23), by the well-known methods (see, e.g., [3]), one can obtain the
following properties of the characteristic function ∆(λ) and the eigenvalues {λn}n≥0 of
the boundary value problem L:

(1) for |ρ| →∞, ∆(λ)=O(|ρ|exp(|τ|T)) where τ := Imρ;
(2) there exist h > 0, Ch > 0, such that

∣∣∆(λ)
∣∣≥ Ch|ρ|exp

(|τ|T) (3.24)

for |τ| ≥ h. Hence, the eigenvalues λn = ρ2
n lie in the domain |Imρ| < h;

(3) the number Nξ of zeros of ∆(λ) in the rectangle Πξ = {ρ : |Imρ| ≤ h, Reρ ∈
[ξ,ξ + 1]} is bounded with respect to ξ;

(4) denote Gδ = {ρ : |ρ− ρn| ≥ δ}. Then,
∣∣∆(λ)

∣∣≥ Cδ|ρ|exp
(|τ|T), ρ ∈Gδ ; (3.25)

(5) there exist numbers rN →∞ such that for sufficiently small δ > 0, the circles |ρ| =
rN lie in Gδ for all N ;

(6) let {ρ0
n} be zeros of the function ∆0(ρ) of the form (3.23). Then for n→∞,

ρn = ρ0
n +O

(
1
ρ0
n

)
. (3.26)

3.2. We introduce the function

M(λ)= δ(λ)
∆(λ)

, (3.27)

where δ(λ) :=V(ϕ2)= ϕ′2(T ,λ) +Hϕ2(T ,λ). Then the function

Φ(x,λ) := ϕ2(x,λ) +M(λ)ϕ(x,λ) (3.28)

satisfies the differential equation (1.1), for x ∈ J±, and the boundary conditions U(Φ)=
1, V(Φ) = 0. The functions Φ(x,λ) and M(λ) are meromorphic in λ with poles on the
spectrum of the boundary value problem L. We will call M(λ) the Weyl function since it
is a generalization of the concept of the Weyl function for the classical Sturm-Liouville
operators (when ν= 1/2, A= E). Clearly,

Φ(x,λ)= ψ(x,λ)
∆(λ)

, (3.29)
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where ψ(x,λ)= V(ϕ)ϕ2(x,λ)−V(ϕ2)ϕ(x,λ). The function ψ(x,λ) is entire in λ and sat-
isfies the differential equation (1.1) and the initial conditions

ψ(T ,λ)=−detA, ψ′(T ,λ)=H detA. (3.30)

We note that by virtue of (3.4), (3.20), and (3.28),

〈
ϕ(x,λ),Φ(x,λ)

〉≡

1, x < a,

detA, x > a,
(3.31)

where 〈y,z〉 := yz′ − y′z.

Lemma 3.2. For |ρ(x− a)| ≥ 1, m = 0,1, |ρ| → ∞, the following asymptotic formulae are
valid:

ψ(m)(x,λ)

=−1
2

detA
(
(iρ)m exp

(− iρ(T − x)
)
[1]a + (−iρ)m exp

(
iρ(T − x)

)
[1]a

)
, x ∈ J+,

(3.32)

ψ(m)(x,λ)

=−1
2

(
(iρ)m

(
ξ12 exp

(− iρ(T − a)
)− ξ11 exp

(
iρ(T − a)

))
exp

(− iρ(a− x)
)
[1]a

+ (−iρ)m
(
ξ21 exp

(
iρ(T − a)

)
− ξ22 exp

(− iρ(T − a)
))

exp
(
iρ(a− x)

)
[1]a

)
, x ∈ J−.

(3.33)

Proof. Using the fundamental system of solutions {yk(x,ρ)}k=1,2, one can write

ψ(x,λ)=
2∑

k=1

A±k (ρ)yk(x,ρ), x ∈ J±. (3.34)

Taking (3.30) into account, we calculate

A+
1 (ρ)=−detA

w(ρ)
V
(
y2
)
, A+

2 (ρ)= detA
w(ρ)

V
(
y1
)
, w(ρ)= det

[
y(m−1)
k (T ,ρ)

]
k,m=1,2

.

(3.35)

For definiteness, let ρ ∈ S̄0. Then Rk = (−1)k−1i and, by virtue of (2.19),

A+
k (ρ)=−1

2
detAexp

(
(−1)kiρ(T − a)

)
[1]. (3.36)

Substituting (3.36) and (2.19) into (3.34), we arrive at (3.32).
Furthermore, repeating the arguments in the proof of Lemma 3.1 we infer similarly to

(3.13):

A−k (ρ)=
2∑
s=1

A+
s (ρ)ξ−sk(ρ). (3.37)
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Since [ξ−sk(ρ)]s,k=1,2 = ([ξ+
sk(ρ)]s,k=1,2)−1, it follows from (3.18), (3.36), and (3.37) that

A−k (ρ)= (−1)k

2

2∑
s=1

ξ3−k, j exp
(
(−1) j−1iρ(T − a)

)
[1]a, (3.38)

and we arrive at (3.33). �

Corollary 3.3. For ρ ∈Gδ ,
∣∣Φ(m)(x,λ)

∣∣≤ Cδ|ρ|m−1 exp
(−|τ|x), ∣∣ρ(x− a)

∣∣≥ 1, (3.39)∣∣M(λ)
∣∣≤ Cδ|ρ|−1. (3.40)

Indeed, (3.39) follows from (3.29), (3.25), and Lemma 3.2. By virtue of (3.28),M(λ)=
Φ(0,λ), and (3.40) follows from (3.39).

4. The completeness theorem

Let α be a real number, and let 1≤ p <∞. We consider the Banach spaces Bα,p = { f (x) :
f (x)x−α ∈�p(0,T)} with the norm ‖ f ‖α,p = ‖ f (x)x−α‖p, where ‖ · ‖p is the norm in
the space �p(0,T). We denote by B∗α,p the dual space. Clearly, B∗α,p = B−α,q (p−1 + q−1 = 1,
p > 1). We show that

Bα,p ⊆ Bβ,s, 1≤ s≤ p <∞, β−α < s−1− p−1 (4.1)

(here the symbol ⊆ denotes dense embedding [12, page 9]).
Indeed, for α≥ β, s≤ p, we have Bα,p ⊆ Bβ,p, Bβ,p ⊆ Bβ,s, and consequently (4.1) is ob-

vious. Assume now that α < β, s < p. We consider the function f (x) ∈ Bα,p. Let r = p/s,
r′ = p/(p− s). Then, r−1 + (r′)−1 = 1. Since β− α < s−1 < p−1, we have (α− β)sr′ > −1.
Applying Hölder’s inequality, we obtain ‖ f (x)x−β‖s ≤ ‖ f (x)x−α‖sr‖xα−β‖sr′ , and conse-
quently ‖ f ‖β,s ≤ C‖ f ‖α,p. Since Bα,p is dence in Bβ,s, it follows that (4.1) holds. In partic-
ular, it follows from (4.1) that Bα,p ⊆�s for 1≤ s≤ p <∞, α > p−1− s−1.

We set ω =−Reν + 1/2.

Theorem 4.1. The system of e.a.f. of the boundary value problem L is complete in the space
Bβ,s for 1≤ s <∞, β < ω+ 1/s.

Proof. Let {ϕ�(x)} be e.a.f. of L, and let a function f (x) be such that

f (x)(x− a)ω ∈�(0,T),
∫ T

0
f (x)ϕ�(x)dx = 0. (4.2)

We consider the function

Y(x,λ)=Φ∗(x,λ)
∫ x

0
f (t)ϕ(t,λ)dt+ϕ∗(x,λ)

∫ T
x
f (t)Φ(t,λ)dt, (4.3)

where

Φ∗(x,λ)= Φ(x,λ)
η(x)

, ϕ∗(x,λ)= ϕ(x,λ)
η(x)

, η(x)=

1, x < a,

detA, x > a.
(4.4)
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In view of (3.31), a direct computation yields

�Y − λY =− f (x), x ∈ J±. (4.5)

We now estimate the function Y(x,λ) for ρ ∈ Gδ . For this, we will use (3.39) and the
estimate

∣∣ϕ(m)(x,λ)
∣∣≤ C|ρ|m exp

(|τ|x), ∣∣ρ(x− a)
∣∣≥ 1, m= 0,1, (4.6)

which follows from (3.20) and Lemma 3.1.
Fix x ∈ [0,T] \ {a}. Then, |ρ(x− a)| ≥ 1 for sufficiently large ρ. Let x ∈ J+. We have

∣∣Y(x,λ)
∣∣≤ Cδ|ρ|−1 exp

(−|τ|x)
(∫ a−|ρ|−1

0
+
∫ a+|ρ|−1

a−|ρ|−1
+
∫ x
a+|ρ|−1

)∣∣ f (t)ϕ(t,λ)
∣∣dt

+C exp
(|τ|x)

∫ T
x

∣∣ f (t)Φ(t,λ)
∣∣dt,

(4.7)

and consequently,

∣∣Y(x,λ)
∣∣≤ Cδ

(
1
|ρ| exp

(−|τ|x)
∫
γρ

∣∣ f (t)ϕ(t,λ)
∣∣dt+

1
|ρ|

∫
Γρ

∣∣ f (t)
∣∣dt

)
, (4.8)

where |ρ(x− a)| ≥ 1, x ∈ J+, ρ ∈Gδ , γρ = {t : |ρ(t− a)| ≤ 1}, and Γρ = {t : |ρ(t− a)| ≥ 1}.
Analogously, for |ρ(x− a)| ≥ 1, x ∈ J−, ρ ∈Gδ ,

∣∣Y(x,λ)
∣∣≤ Cδ

(
exp

(|τ|x)
∫
γρ

∣∣ f (t)Φ(t,λ)
∣∣dt+

1
|ρ|

∫
Γρ

∣∣ f (t)
∣∣dt). (4.9)

In order to estimate the integrals on γρ in (4.8) and (4.9), we need the following assertion.

Lemma 4.2. For |ρ(x− a)| ≤ 1,

∣∣ϕ(x,λ)
∣∣≤ C∣∣ρ(x− a)

∣∣ω exp
(|τ|a),∣∣Φ(x,λ)

∣∣≤ Cδ|ρ|−1
∣∣ρ(x− a)

∣∣ω exp
(−|τ|a), ρ ∈Gδ.

(4.10)

Proof. It follows from (3.2), (3.20), and (3.30) that

ϕ(x,λ)=U(σ2
)
σ1(x,λ)−U(σ1

)
σ2(x,λ), x ∈ J±,

ψ(x,λ)= detA
(
V
(
σ1
)
σ2(x,λ)−V(σ2

)
σ1(x,λ)

)
, x ∈ J±.

(4.11)
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By virtue of (2.24), (2.27), (2.19), and (2.20),

∣∣σ (m)
j (0,λ)

∣∣≤ C|ρ|m−Reµj exp
(|τ|a),∣∣σ (m)

j (T ,λ)
∣∣≤ C|ρ|m−Reµj exp

(|τ|(T − a)
)
,

(4.12)

and consequently,

∣∣U(σj)∣∣≤ C|ρ|1−Reµj exp
(|τ|a),∣∣V(σj)∣∣≤ C|ρ|1−Reµj exp
(|τ|(T − a)

)
.

(4.13)

Since a12 = 0, it follows from (2.6) and (2.22) that

∣∣σj(x,λ)
∣∣≤ C∣∣(x− a)µj

∣∣,
∣∣ρ(x− a)

∣∣≥ 1, x ∈ J±. (4.14)

Using (4.11), (4.12), (4.13), (4.14), (3.25), and (3.29), we arrive at (4.10). �

We return to the proof of Theorem 4.1. Substituting (4.10) into (4.8) and (4.9), we get

∣∣Y(x,λ)
∣∣≤ Cδ

|ρ|

(∫
γρ

∣∣ρ(t− a)
∣∣ω∣∣ f (t)

∣∣dt+
∫
Γρ

∣∣ f (t)
∣∣dt

)
,

∣∣ρ(x− a)
∣∣≥ 1, ρ ∈Gδ.

(4.15)

If Reν≥ 1/2, then ω ≤ 0, and

∣∣Y(x,λ)
∣∣≤ Cδ

|ρ| ,
∣∣ρ(x− a)

∣∣≥ 1, ρ ∈Gδ. (4.16)

If Reν < 1/2, then ω > 0, and

∣∣Y(x,λ)
∣∣≤ Cδ

|ρ|Reν+1/2
,

∣∣ρ(x− a)
∣∣≥ 1, ρ ∈Gδ. (4.17)

Thus, we conclude that for each fixed x ∈ J±,

Y(x,λ)= o(1), |ρ| −→∞, ρ∈Gδ. (4.18)

Furthermore, taking (3.28) into account, one can rewrite Y(x,λ) as follows

Y(x,λ)=M(λ)ϕ∗(x,λ)
∫ T

0
f (t)ϕ(t,λ)dt+Y0(x,λ), (4.19)

where the function Y0(x,λ) is entire in λ for each fixed x �= a. By virtue of (4.2), the last
relation implies that y(x,λ) is entire in λ for each fixed x �= a. Together with (4.18), this
yields Y(x,λ)≡ 0. Using now (4.5), we conclude that f (x)= 0 a.e. on (0,T).
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Thus, we have proved that for each p (1≤ p <∞), the system of e.a.f. of L is complete
in Bω,p. Since β−ω < 1/s, we have β−ω < 1/s− 1/p for sufficiently large p, and according
to (4.1), Bω,p ⊆ Bβ,s. Consequently, the system of e.a.f. of L is complete in Bβ,s for 1≤ s <
∞, β < ω+ 1/s. Theorem 4.1 is proved. �

Corollary 4.3. The system of e.a.f. of L is complete in �s(0,T) for 1/s > Reν− 1/2.

Remark 4.4. We provide here a counterexample showing the importance of the regularity
condition (3.1). We consider the boundary value problem L with ν0 = 0, q(x)≡ 0, T = π,
h = H = 0, a = 3π/4, a11 = −a22 = 1, a21 = a12 = 0, that is, we consider the boundary
value problem

−y′′ = λy, 0 < x < π,

y′(0)= y′(π)= 0,

y(m)(a+ 0)= (−1)my(m)(a− 0), m= 0,1, a= 3π
4
.

(4.20)

For this problem, the regularity condition (3.1) is not fulfilled. The characteristic function
for (4.20) has the form

∆(λ)= ρ sinρ(2a−T). (4.21)

The eigenvalues λn = ρ2
n are ρn = 2n, n≥ 0, and the eigenfunctions have the form

yn(x)=




cos2nx, x ≤ 3π
4

,

(−1)n cos2nx, x >
3π
4
.

(4.22)

The system of functions {yn(x)}n≥0 is not complete in Bβ,s for 1≤ s <∞, β < 1 + 1/s.

5. Inverse problems

In this section, we study the inverse problem of recovering the boundary value problem L
from its spectral characteristics. We consider two formulations of the inverse problems: to
construct L from the Weyl function and from discrete spectral characteristics. These in-
verse problems are the generalization of the well-known inverse problems for the classical
Sturm-Liouville operators (see [16]).

We formulate the uniqueness theorem for the solution of the inverse problem of recov-
ering L from the Weyl function M(λ). For this, we agree that together with L, we consider
a boundary value problem L̃ of the same form but with different coefficients q̃(x), ν̃0,
h̃, and H̃ . If a certain symbol α denotes an object related to L, then α̃ will denote the
analogous object related to L̃.

Theorem 5.1. If M(λ) = M̃(λ), then L = L̃. Thus, the specification of the Weyl function
uniquely determines the boundary value problem.

Proof. Consider the functions

Pm(x,λ)= ϕ(x,λ)Φ̃(m)(x,λ)−Φ(x,λ)ϕ̃(m)(x,λ), m= 0,1. (5.1)
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For each fixed x ∈ [0,T] \ {a}, the functions Pm(x,λ) are meromorphic in λ with poles at
λ= λn and λ= λ̃n. Fix x ∈ [0,T] \ {a}. Then |ρ(x− a)| ≥ 1 for sufficiently large ρ. Denote
G0
δ =Gδ ∩ G̃δ . By virtue of (3.39) and (4.6),

∣∣Pm(x,λ)
∣∣≤ Cδ|ρ|m−1, ρ ∈Gδ ,

∣∣ρ(x− a)
∣∣≥ 1. (5.2)

Substituting (3.28) into (5.1), we obtain

Pm(x,λ)= (ϕ(x,λ)ϕ̃(m)
2 (x,λ)−ϕ2(x,λ)ϕ̃(m)(x,λ)

)
+
(
M̃(λ)−M(λ)

)
ϕ(x,λ)ϕ̃(m)(x,λ).

(5.3)

Since M̃(λ)=M(λ), the last relation implies that for each fixed x ∈ [0,T] \ {a}, the func-
tions Pm(x,λ) are entire in λ. Together with (5.2), this yields

P0(x,λ)≡ 0, P1(x,λ)≡ P(x). (5.4)

But then, according to (5.1),

ϕ(x,λ)Φ̃(x,λ)=Φ(x,λ)ϕ̃(x,λ),

P(x)ϕ̃(x,λ)= (ϕ(x,λ)Φ̃′(x,λ)−Φ(x,λ)ϕ̃′(x,λ)
)
ϕ̃(x,λ)

= (ϕ̃(x,λ)Φ̃′(x,λ)− Φ̃(x,λ)ϕ̃′(x,λ)
)
ϕ(x,λ)

= η̃(x)ϕ(x,λ).

(5.5)

Consequently,

ϕ(x,λ)
ϕ̃(x,λ)

= Φ(x,λ)
Φ̃(x,λ)

= P(x)
η̃(x)

. (5.6)

Furthermore, it follows from (3.5), (3.6), and (3.20) that for |ρ| → ∞, argρ ∈ [ε,π − ε],
ε > 0,

ϕ(x,λ)= 1
2

exp(−iρx)[1]a, x < a,

ϕ(x,λ)= 1
2
ξ12 exp(−iρx)[1]a, x > a.

(5.7)

Similarly, by virtue of (3.32), (3.33), (3.29) and (3.23),

Φ(x,λ)= (iρ)−1 exp(iρx)[1]a, x < a,

Φ(x,λ)= detA
(
iρξ12

)−1
exp(iρx)[1]a, x > a,

(5.8)

for |ρ| →∞, argρ ∈ [ε,π− ε], ε > 0. Substituting (5.7) and (5.8) into (5.6), we get P(x)≡
1 for x < a, and P(x)≡ P∗ − const for x > a, that is, ϕ(x,λ)≡ ϕ̃(x,λ), Φ(x,λ)≡ Φ̃(x,λ) for
x < a, and ϕ(x,λ)≡ Cϕ̃(x,λ), Φ(x,λ)≡ CΦ̃(x,λ) for x > a. Consequently, ν0 = ν̃0, q(x)=
q̃(x) a.e. on (0,T), h= h̃, and H = H̃ . Theorem 5.1 is proved. �
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Now we consider the inverse problem of recovering L from discrete spectral character-
istics. For brevity, we confine ourselves to the case when all zeros of ∆(λ) are simple. We
denote

αn = Res
λ=λn

M(λ). (5.9)

The numbers {λn,αn}n≥0 are called the spectral data of L.

Theorem 5.2. If λn = λ̃n, αn = α̃n for all n≥ 0, then L= L̃.

Proof. Let Γ = {λ = u + iv : u = (2h2)−2v2 − h2} be the image of Imρ = ±h under the
mapping λ= ρ2. Denote ΓN = Γ∩{λ : |λ| ≤ rN}, and consider the closed contours ΓN0 =
ΓN ∪{λ : |λ| = rN , λ /∈ intΓ}, ΓN1 = ΓN ∪{λ : |λ| = rN ,λ∈ intΓ} (with counterclockwise
circuit). Since the Weyl function M(λ) is regular for λ∈ intΓN0, we get by Cauchy’s inte-
gral formula that

M(λ)= 1
2πi

∫
ΓN0

M(µ)
µ− λ dµ, λ∈ intΓN0. (5.10)

By virtue of (3.40),

lim
N→∞

1
2πi

∫
|µ|=rN

M(µ)
µ− λ dµ= 0, (5.11)

and consequently,

M(λ)= lim
N→∞

1
2πi

∫
ΓN1

M(µ)
λ−µ dµ. (5.12)

Calculating this integral by the residue theorem, we arrive at

M(λ)=
∞∑
n=0

αn
λ− λn , (5.13)

where the series converge “with brackets”:

∞∑
n=0

= lim
N→∞

∑
|λn|<r2

N

. (5.14)

Under the assumptions of Theorem 5.2, it follows from (5.13) that M(λ)= M̃(λ). Apply-
ing Theorem 5.1, we get L= L̃. �

Remark 5.3. Using the obtained results and the method of spectral mappings [27], one
can obtain an algorithm for the solution of the inverse problems considered, along with
necessary and sufficient conditions of their solvability (in analogous manner as in [25]).

Acknowledgment

This research was supported in part by Grants E02-1.0-186 and UR.04.01.042 of the Ed-
ucation Ministry of the Russian Federation.



Vjacheslav Anatoljevich Yurko 181

References

[1] T. Aktosun, M. Klaus, and C. van der Mee, Recovery of discontinuities in a non-homogeneous
medium, Inverse Problems 12 (1996), no. 1, 1–25.

[2] R. S. Anderssen, The effect of discontinuities in density and shear velocity on the asymptotic over-
tone structure of tortional eigenfrequencies of the Earth, Earth Geophys. J.R. astr. Soc. 50
(1997), 303–309.

[3] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York,
1963.

[4] R. Carlson, Inverse spectral theory for some singular Sturm-Liouville problems, J. Differential
Equations 106 (1993), no. 1, 121–140.

[5] A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal.
155 (1998), no. 2, 352–363.

[6] W. Eberhard, G. Freiling, and A. Schneider, On the distribution of the eigenvalues of a class of
indefinite eigenvalue problems, Differential Integral Equations 3 (1990), no. 6, 1167–1179.

[7] G. Freiling and V. A. Yurko, Reconstructing parameters of a medium from incomplete spectral
information, Results Math. 35 (1999), no. 3-4, 228–249.

[8] M. G. Gasymov, Determination of a Sturm-Liouville equation with a singularity by two spectra,
Dokl. Akad. Nauk SSSR 161 (1965), 274–276 (Russian).

[9] F. Gesztesy, A complete spectral characterization of the double commutation method, J. Funct.
Anal. 117 (1993), no. 2, 401–446.

[10] O. H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math. 37 (1984),
no. 5, 539–577.

[11] M. Kobayashi, A uniqueness proof for discontinuous inverse Sturm-Liouville problems with sym-
metric potentials, Inverse Problems 5 (1989), no. 5, 767–781.

[12] S. G. Kreı̆n, Ju. I. Petunin, and E. M. Semënov, Interpolation of Linear Operators, Nauka,
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