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We introduce the notion of generalized weaker (𝛼-𝜙-𝜑)-contractive mappings in the context of generalized metric space. We
investigate the existence and uniqueness of fixed point of such mappings. Some consequences on existing fixed point theorems
are also derived. The presented results generalize, unify, and improve several results in the literature.

1. Introduction and Preliminaries

In [1], Branciari introduced the notion of generalized metric
space by weakening the triangular inequality of metric
assumption with quadrilateral inequality. The author [1]
characterized and proved the analog of famous Banach fixed
point theorem in the setting of generalized metric space.
Although the theorem of Branciari [1] is correct, the proofs
had gaps [2] since the topology of generalized metric space
is not strong enough as the topology of metric space. The
disadvantages of generalized metric space can be listed as
follows:
(𝑤1) generalized metric need not be continuous;
(𝑤2) a convergent sequence in generalized metric space

need not be Cauchy;
(𝑤3) generalized metric space need not be Hausdorff, and

hence the uniqueness of limits cannot be guaranteed.
Despite the weakness of the topology of generalized metric
space, in [3, 4], the authors suggested some techniques to
get a (unique) fixed point in such spaces.

On the other hand, Samet et al. [5] introduced the notion
of 𝛼-𝜓 contraction mappings and proved the existence and
uniqueness of such mappings in complete metric space.
The results of this paper are very impressive since several
existing results derived from the main theorem of Samet
et al. [5] quiet easily. Later, a number of authors have
appreciated these results and have used this technique to get
further generalization via 𝛼-𝜓 contraction mappings; see, for
example, [6–10].

In this paper, we introduce the generalized weaker 𝛼-
𝜓 contraction mappings in the setting of generalized met-
ric spaces. Consequently, we investigate the existence and
uniqueness of fixed point by caring the problems (𝑤1)–(𝑤3)
mentioned above.

Let us recall basic definitions and notations and interest-
ing results that will be in the sequel.

Let Ψ be the family of functions 𝜓 : [0,∞) → [0,∞)

satisfying the following conditions:

(i) 𝜓 is nondecreasing;
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(ii) there exist 𝑘
0
∈ N and 𝑎 ∈ (0, 1) and a convergent

series of nonnegative terms ∑∞
𝑘=1

V
𝑘
such that

𝜓
𝑘+1

(𝑡) ≤ 𝑎𝜓
𝑘
(𝑡) + V

𝑘
, (1)

for 𝑘 ≥ 𝑘
0
and any 𝑡 ∈ R+.

In the literature such functions are called either Bianchini-
Grandolfi gauge functions (see, e.g., [11–13]) or (𝑐)-
comparison functions (see, e.g., [14]).

Lemma 1 (see, e.g., [14]). If 𝜓 ∈ Ψ, then the following hold:

(i) (𝜓𝑛(𝑡))
𝑛∈N converges to 0 as 𝑛 → ∞ for all 𝑡 ∈ R+;

(ii) 𝜓(𝑡) < 𝑡, for any 𝑡 ∈ R+;

(iii) 𝜓 is continuous at 0;

(iv) the series ∑∞
𝑘=1

𝜓𝑘(𝑡) converges for any 𝑡 ∈ R+.

In the following, we recall the notion of generalized
metric spaces.

Definition 2 (see [1]). Let𝑋 be a nonempty set and let 𝑑 : 𝑋×

𝑋 → [0,∞] satisfy the following conditions for all 𝑥, 𝑦 ∈ 𝑋

and all distinct 𝑢, V ∈ 𝑋 each of which is different from 𝑥 and
𝑦:

(GMS1) 𝑑 (𝑥, 𝑦) = 0 iff 𝑥 = 𝑦,

(GMS2) 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) ,

(GMS3) 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑢) + 𝑑 (𝑢, V) + 𝑑 (V, 𝑦) .

(2)

Then, the map 𝑑 is called generalized metric. Here, the pair
(𝑋, 𝑑) is called a generalized metric space and abbreviated as
GMS.

In the above definition, if 𝑑 satisfies only (GMS1) and
(GMS2), then it is called semimetric (see, e.g., [15]).

The concepts of convergence, Cauchy sequence, and
completeness in a GMS are defined as follows.

Definition 3. (1) A sequence {𝑥
𝑛
} in a GMS (𝑋, 𝑑) is GMS

convergent to a limit𝑥 if and only if𝑑(𝑥
𝑛
, 𝑥) → 0 as 𝑛 → ∞.

(2) A sequence {𝑥
𝑛
} in a GMS (𝑋, 𝑑) is GMS Cauchy if

and only if for every 𝜀 > 0 there exists positive integer 𝑁(𝜀)

such that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for all 𝑛 > 𝑚 > 𝑁(𝜀).

(3) A GMS (𝑋, 𝑑) is called complete if every GMSCauchy
sequence in𝑋 is GMS convergent.

The following assumptionwas suggested byWilson [15] to
replace the triangle inequality with the weakened condition.

(𝑊) For each pair of (distinct) points 𝑢, V there is a
number 𝑟

𝑢,V > 0 such that, for every 𝑧 ∈ 𝑋,

𝑟
𝑢,V < 𝑑 (𝑢, 𝑧) + 𝑑 (𝑧, V) . (3)

Proposition 4 (see [3]). In a semimetric space, the assumption
(𝑊) is equivalent to the assertion that limits are unique.

Proposition 5 (see [3]). Suppose that {𝑥
𝑛
} is a Cauchy

sequence in a GMS (𝑋, 𝑑) with lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑢) = 0, where

𝑢 ∈ 𝑋. Then lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑧) = 𝑑(𝑢, 𝑧) for all 𝑧 ∈ 𝑋. In

particular, the sequence {𝑥
𝑛
} does not converge to 𝑧 if 𝑧 ̸= 𝑢.

A function 𝜙 : [0,∞) → [0,∞) is said to be a Meir-
Keeler function [16] if, for each 𝜂 > 0, there exists 𝛿 > 0

such that for 𝑡 ∈ [0,∞) with 𝜂 ≤ 𝑡 < 𝜂 + 𝛿, we have 𝜙(𝑡) < 𝜂.
Suchmapping has been improved and used by several authors
[17, 18]. In what follows we recall the notion of weaker Meir-
Keeler function.

Definition 6 (see, e.g., [19]). We call 𝜙 : [0,∞) → [0,∞)

a weaker Meir-Keeler function if for each 𝜂 > 0, there exists
𝛿 > 0 such that for 𝑡 ∈ [0,∞) with 𝜂 ≤ 𝑡 < 𝜂 + 𝛿, there exists
𝑛
0
∈ N such that 𝜙𝑛0(𝑡) < 𝜂.

Let Φ be the class of all nondecreasing function 𝜙 :

[0,∞) → [0,∞) satisfying the following conditions:

(𝜙
1
) 𝜙 : [0,∞) → [0,∞) is a weaker Meir-Keeler
function;

(𝜙
2
) 0 < 𝜙(𝑡) < 𝑡 for all 𝑡 > 0, 𝜙(0) = 0;

(𝜙
3
) for all 𝑡 ∈ (0,∞), {𝜙𝑛(𝑡)}

𝑛∈N is decreasing;
(𝜙
4
) if lim

𝑛→∞
𝑡
𝑛
= 𝛾, then lim

𝑛→∞
𝜙(𝑡
𝑛
) ≤ 𝛾.

LetΘ be the class of functions𝜑 : [0,∞) → [0,∞) satisfying
the following conditions:

(𝜑
1
) 𝜑 is continuous;

(𝜑
2
) 𝜑(𝑡) > 0 for 𝑡 > 0 and 𝜑(0) = 0.

By using the auxiliary functions, defined above, Chen and
Sun [19] proved the following theorem.

Theorem 7. Let (𝑋, 𝑑) be a Hausdorff and complete general-
ized metric space, and let 𝑓 : 𝑋 → 𝑋 be a function satisfying

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝜙 (𝑑 (𝑥, 𝑦)) − 𝜑 (𝑑 (𝑥, 𝑦)) (4)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 ∈ Φ, 𝜑 ∈ Θ. Then 𝑓 has a periodic point
𝜇 in 𝑋; that is, there exists 𝜇 ∈ 𝑋 such that 𝜇 = 𝑓

𝑝𝜇 for some
𝑝 ∈ N.

Another interesting auxiliary function, 𝛼-admissible, was
defined by Samet et al. [5].

Definition 8 (see [5]). For a nonempty set 𝑋, let 𝑇 : 𝑋 → 𝑋

and 𝛼 : 𝑋 × 𝑋 → [0,∞) be mappings. We say that 𝑇 is
𝛼-admissible if

𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1, (5)

for all 𝑥, 𝑦 ∈ 𝑋.

Example 9. Let 𝑋 = [2,∞) and 𝑇 : 𝑋 → 𝑋 by 𝑇𝑥 = (𝑥 +

1)/(𝑥 − 1). Define 𝛼(𝑥, 𝑦) : 𝑋 × 𝑋 → [0,∞) and

𝛼 (𝑥, 𝑦) = {
𝑒
𝑥+1 if 𝑥 ≥ 𝑦,

0 if otherwise.
(6)

Then 𝑇 is 𝛼-admissible.
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Example 10. Let 𝑋 = R and 𝑇 : 𝑋 → 𝑋. Define 𝛼(𝑥, 𝑦) :

𝑋 × 𝑋 → [0,∞) by 𝑇𝑥 = 𝑒𝑥+1 and

𝛼 (𝑥, 𝑦) = {
𝑥
2 if 𝑥 ≥ 𝑦,

0 if otherwise.
(7)

Then 𝑇 is 𝛼-admissible.

Some interesting examples of such mappings were given
in [5].

The notion of an 𝛼-𝜓 contractive mapping is defined in
the following way.

Definition 11 (see [5]). Let (𝑋, 𝑑) be a metric space and let
𝑇 : 𝑋 → 𝑋 be a given mapping. We say that 𝑇 is an 𝛼-𝜓
contractive mapping if there exist two functions 𝛼 : 𝑋×𝑋 →

[0,∞) and 𝜓 ∈ Ψ such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (8)

Clearly, any contractive mapping, that is, a mapping
satisfying the Banach contraction, is an 𝛼-𝜓 contractive
mapping with 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑘𝑡,
𝑘 ∈ (0, 1).

Very recently, Karapınar [20] gave the analog of the
notion of an 𝛼-𝜓 contractive mapping, in the context of
generalized metric spaces as follows.

Definition 12. Let (𝑋, 𝑑) be a generalized metric space and let
𝑇 : 𝑋 → 𝑋 be a given mapping. We say that 𝑇 is an 𝛼-𝜓
contractive mapping if there exist two functions 𝛼 : 𝑋×𝑋 →

[0,∞) and 𝜓 ∈ Ψ such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (9)

Karapınar [20] also stated the following fixed point
theorems.

Theorem 13. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be an 𝛼-𝜓 contractive mapping. Suppose
that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Theorem 14. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be an 𝛼-𝜓 contractive mapping. Suppose
that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

For the uniqueness, Karapınar [20] (see also [21]) added
the following additional conditions.

(𝑈) For all 𝑥, 𝑦 ∈ Fix(𝑇), we have 𝛼(𝑥, 𝑦) ≥ 1, where
Fix(𝑇) denotes the set of fixed points of 𝑇.

(𝐻) For all 𝑥, 𝑦 ∈ Fix(𝑇), there exists 𝑧 ∈ 𝑋 such that
𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1.

Theorem 15. Adding condition (𝑈) to the hypotheses of
Theorem 13 (resp.,Theorem 14), one obtains that 𝑢 is the unique
fixed point of 𝑇.

Theorem 16. Adding conditions (𝐻) and (𝑊) to the hypothe-
ses of Theorem 13 (resp., Theorem 14), one obtains that 𝑢 is the
unique fixed point of 𝑇.

Corollary 17. Adding condition (𝐻) to the hypotheses of
Theorem 13 (resp., Theorem 14) and assuming that (𝑋, 𝑑) is
Hausdorff, one obtains that 𝑢 is the unique fixed point of 𝑇.

In this paper, we define the notion of weaker generalized
𝛼-𝜓 contractive mappings and prove some fixed point results
in the setting of generalized metric spaces by using such
mappings. We state some examples to illustrate the validity
of the main results of this paper.

2. Main Results

In this section, we will state and prove our main results.
We give an extension of the notion of 𝛼-𝜓 contractive

mappings, in the context of generalized metric space as
follows.

Definition 18. Let (𝑋, 𝑑) be a generalized metric space and let
𝑇 : 𝑋 → 𝑋 be a given mapping. We say that 𝑇 is a (𝛼-𝜙-
𝜑)-contractive mapping of type I if there exist functions 𝛼 :

𝑋 × 𝑋 → [0,∞), 𝜑 ∈ Θ, and 𝜙 ∈ Φ such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑀 (𝑥, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦)) (10)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)} . (11)

Definition 19. Let (𝑋, 𝑑) be a generalized metric space and let
𝑇 : 𝑋 → 𝑋 be a given mapping. We say that 𝑇 is a (𝛼-𝜙-
𝜑)-contractive mapping of type II if there exist functions 𝛼 :

𝑋 × 𝑋 → [0,∞), 𝜑 ∈ Θ, and 𝜙 ∈ Φ such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑁 (𝑥, 𝑦)) − 𝜑 (𝑁 (𝑥, 𝑦)) (12)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑁(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2
} . (13)
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Next, we introduce the notion of triangular 𝛼-admissible
as follows.

Definition 20. Let 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋×𝑋 → [0,∞). The
mapping 𝑇 is said to be weak triangular 𝛼-admissible if for all
𝑥 ∈ 𝑋, one has

𝛼 (𝑥, 𝑇𝑥) ≥ 1, 𝛼 (𝑇𝑥, 𝑇
2
𝑥) ≥ 1 ⇒ 𝛼 (𝑥, 𝑇

2
𝑥) ≥ 1.

(14)

Now, we state the first fixed point theorem.

Theorem21. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be a (𝛼-𝜙-𝜑)-contractive mapping of type
I. Suppose that

(i) 𝑇 is weak triangular 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.
Then, 𝑇 has a fixed point 𝑢 ∈ 𝑋; that is 𝑇𝑢 = 𝑢.

Proof. Due to statement (ii) of the theorem, there exists a
point 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1.

First, we define a sequence {𝑥
𝑛
} in𝑋 by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
= 𝑇
𝑛+1

𝑥
0

for all 𝑛 ≥ 0. Notice that if 𝑥
𝑛0

= 𝑥
𝑛0+1

for some 𝑛
0
, then the

proof is completed. Indeed, we have 𝑢 = 𝑥
𝑛0
= 𝑥
𝑛0+1

= 𝑇𝑥
𝑛0
=

𝑇𝑢. Thus, for the rest of the proof, we assume that

𝑥
𝑛

̸= 𝑥
𝑛+1

∀𝑛. (15)

Owing to the fact that 𝑇 is 𝛼-admissible, we derive that

𝛼 (𝑥
0
, 𝑥
1
) = 𝛼 (𝑥

0
, 𝑇𝑥
0
) ≥ 1

⇒ 𝛼 (𝑇𝑥
0
, 𝑇𝑥
1
) = 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1.

(16)

Utilizing the expression above, we find that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 = 0, 1, . . . . (17)

Since𝑇 is a weak triangular 𝛼-admissible mapping, we obtain
that

𝛼 (𝑥
0
, 𝑥
2
) ≥ 1. (18)

Since 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1 and 𝛼(𝑇𝑥

0
, 𝑇2𝑥
0
) = 𝛼(𝑥

0
, 𝑥
2
), iteratively,

we conclude that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) ≥ 1, ∀𝑛, 𝑘 = 0, 1, . . . . (19)

Taking (10) and (17) into account, we observe that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

)

≤ 𝛼 (𝑥
𝑛
, 𝑥
𝑛−1

) 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛−1

)

≤ 𝜙 (𝑀 (𝑥
𝑛
, 𝑥
𝑛−1

)) − 𝜑 (𝑀 (𝑥
𝑛
, 𝑥
𝑛−1

)) ,

(20)

for all 𝑛 ≥ 1, where
𝑀(𝑥
𝑛
, 𝑥
𝑛−1

)

= max {𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1

)}

= max {𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)}

= max {𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)} .

(21)

If𝑀(𝑥
𝑛
, 𝑥
𝑛−1

) = 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

), then by (15) and property of the
function 𝜑, inequality (20) turns into

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝜙 (𝑀 (𝑥

𝑛
, 𝑥
𝑛−1

)) − 𝜑 (𝑀 (𝑥
𝑛
, 𝑥
𝑛−1

))

= 𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) − 𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))

< 𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) .

(22)

Since {𝜙𝑛(𝑡)} is decreasing, the inequality above yields a
contradiction. Hence, we conclude that 𝑀(𝑥

𝑛
, 𝑥
𝑛−1

) =

𝑑(𝑥
𝑛
, 𝑥
𝑛−1

) and (20) becomes

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝜙 (𝑑 (𝑥

𝑛
, 𝑥
𝑛−1

)) , (23)

for all 𝑛 ≥ 1. Recursively, we derive that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝜙
𝑛
(𝑑 (𝑥
1
, 𝑥
0
)) , ∀𝑛 ≥ 1. (24)

Owing to the fact that the sequence {𝜙𝑛(𝑑(𝑥
0
, 𝑥
1
))}
𝑛∈N is

decreasing, it converges to some 𝜂 ≥ 0. We will show that 𝜂 =

0. Suppose, on the contrary, that 𝜂 > 0. Taking the definition
of weaker Meir-Keeler function 𝜙 into account, there exists
𝛿 > 0 such that for 𝑥

0
, 𝑥
1
∈ 𝑋 with 𝜂 ≤ 𝑑(𝑥

0
, 𝑥
1
) < 𝛿 + 𝜂, and

there exists 𝑛
0
∈ N such that 𝜙𝑛0(𝑑(𝑥

0
, 𝑥
1
)) < 𝜂. Regarding

lim
𝑛→∞

𝜙𝑛(𝑑(𝑥
0
, 𝑥
1
)) = 𝜂, there exists 𝑝

0
∈ N such that

𝜂 ≤ 𝜙𝑝(𝑑(𝑥
0
, 𝑥
1
)) < 𝛿 + 𝜂, for all 𝑝 ≥ 𝑝

0
. Hence, we deduce

that 𝜙𝑝0+𝑛0(𝑑(𝑥
0
, 𝑥
1
)) < 𝜂, which is a contradiction. Thus,

lim
𝑛→∞

𝜙𝑛(𝑑(𝑥
0
, 𝑥
1
)) = 0, and hence

lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (25)

Regarding (10) and (19), we deduce that

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑛+1
, 𝑇𝑥
𝑛−1

)

≤ 𝛼 (𝑥
𝑛+1

, 𝑥
𝑛−1

) 𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛−1

)

≤ 𝜙 (𝑀 (𝑥
𝑛+1

, 𝑥
𝑛−1

)) − 𝜑 (𝑀 (𝑥
𝑛+1

, 𝑥
𝑛−1

)) ,

(26)

for all 𝑛 ≥ 1, where

𝑀(𝑥
𝑛+1

, 𝑥
𝑛−1

)

= max {𝑑 (𝑥
𝑛+1

, 𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛−1

, 𝑇𝑥
𝑛−1

)}

= max {𝑑 (𝑥
𝑛+1

, 𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) , 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)} .

(27)

If 𝑀(𝑥
𝑛
, 𝑥
𝑛−1

) = 𝑑(𝑥
𝑛−1

, 𝑥
𝑛+1

) then inequality (26) turns
into

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛
) ≤ 𝜙 (𝑑 (𝑥

𝑛+1
, 𝑥
𝑛−1

)) − 𝜑 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛−1

))

≤ 𝜙 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛−1

))
(28)

for all 𝑛 ≥ 1. By repeating the same argument, inequality (15)
implies that

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛
) ≤ 𝜙
𝑛
(𝑑 (𝑥
2
, 𝑥
0
)) , ∀𝑛 ≥ 1. (29)
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Due to the fact that the sequence {𝜙𝑛(𝑑(𝑥
0
, 𝑥
2
))}
𝑛∈N is

decreasing, we conclude that

lim
𝑛→∞

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛
) = 0, (30)

by following the lines at the proof of (25).
If either 𝑀(𝑥

𝑛
, 𝑥
𝑛−1

) = 𝑑(𝑥
𝑛−1

, 𝑥
𝑛
) or 𝑀(𝑥

𝑛+1
, 𝑥
𝑛+2

) =

𝑑(𝑥
𝑛+1

, 𝑥
𝑛+2

), then inequality (26) becomes either

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛
) ≤ 𝜙 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) − 𝜑 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
))

< 𝜙 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
))

(31)

or

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛
) ≤ 𝜙 (𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2

)) − 𝜑 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

))

< 𝜙 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)) ,
(32)

for all 𝑛 ≥ 1. Letting 𝑛 → ∞ in any of the cases, (31) or (32),
together with (25), we have

lim
𝑛→∞

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛
) ≤ lim
𝑛→∞

𝜙 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) ≤ 0

or

lim
𝑛→∞

𝑑 (𝑥
𝑛+2

, 𝑥
𝑛
) ≤ lim
𝑛→∞

𝜙 (𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)) ≤ 0.

(33)

Let 𝑥
𝑛
= 𝑥
𝑚
for some 𝑚, 𝑛 ∈ N with 𝑚 ̸= 𝑛. Without loss

of generality, assume that 𝑚 > 𝑛. Thus, 𝑥
𝑚
= 𝑇𝑚−𝑛(𝑇𝑛𝑥

0
) =

𝑇𝑛𝑥
0
= 𝑥
𝑛
. Regarding (15), we consider now

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑛
, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑚
, 𝑥
𝑚
)

= 𝑑 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑚−1

)

≤ 𝛼 (𝑥
𝑚
, 𝑥
𝑚−1

) 𝑑 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑚−1

)

≤ 𝜙 (𝑀 (𝑥
𝑚
, 𝑥
𝑚−1

)) − 𝜑 (𝑀 (𝑥
𝑚
, 𝑥
𝑚−1

)) ,

(34)

where

𝑀(𝑥
𝑚
, 𝑥
𝑚−1

)

= max {𝑑 (𝑥
𝑚
, 𝑥
𝑚−1

) , 𝑑 (𝑥
𝑚
, 𝑇𝑥
𝑚
) , 𝑑 (𝑥

𝑚−1
, 𝑇𝑥
𝑚−1

)}

= max {𝑑 (𝑥
𝑚
, 𝑥
𝑚−1

) , 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

) , 𝑑 (𝑥
𝑚−1

, 𝑥
𝑚
)}

= max {𝑑 (𝑥
𝑚−1

, 𝑥
𝑚
) , 𝑑 (𝑥

𝑚
, 𝑥
𝑚+1

)} .

(35)

If 𝑀(𝑥
𝑚
, 𝑥
𝑚−1

) = 𝑑(𝑥
𝑚−1

, 𝑥
𝑚
), then from (34) and (23) we

get that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑛
, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑚
, 𝑥
𝑚
)

= 𝑑 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑚−1

)

≤ 𝛼 (𝑥
𝑚
, 𝑥
𝑚−1

) 𝑑 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑚−1

)

≤ 𝜙 (𝑑 (𝑥
𝑚
, 𝑥
𝑚−1

)) − 𝜑 (𝑑 (𝑥
𝑚
, 𝑥
𝑚−1

))

≤ 𝜙 (𝑑 (𝑥
𝑚
, 𝑥
𝑚−1

))

≤ 𝜙
𝑚−𝑛

(𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)) .

(36)

If 𝑀(𝑥
𝑚
, 𝑥
𝑚−1

) = 𝑑(𝑥
𝑚
, 𝑥
𝑚+1

), inequalities (34) and (23)
become

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑛
, 𝑥
𝑛
) = 𝑑 (𝑇𝑥

𝑚
, 𝑥
𝑚
)

= 𝑑 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑚−1

)

≤ 𝛼 (𝑥
𝑚
, 𝑥
𝑚−1

) 𝑑 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑚−1

)

≤ 𝜙 (𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

)) − 𝜑 (𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

))

≤ 𝜙 (𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

))

≤ 𝜙
𝑚−𝑛+1

(𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)) .

(37)

Due to (𝜙
2
), inequalities (36) and (37) yield that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝜙
𝑚−𝑛

(𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)) < 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛
) ,

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝜙
𝑚−𝑛+1

(𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)) < 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛
) ,

(38)

which is a contradiction. Hence {𝑥
𝑛
} has no periodic point.

In what follows we will prove that the sequence {𝑥
𝑛
} is

Cauchy by standard technique. Suppose, on the contrary,
that there exists 𝜀 > 0 such that for any 𝑘 ∈ N, there are
𝑚(𝑘), 𝑛(𝑘) ∈ N with 𝑛(𝑘) > 𝑚(𝑘) > 𝑘 satisfying

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜀. (39)

Furthermore, corresponding to 𝑚(𝑘), one can choose 𝑛(𝑘)

in a way that it is the smallest integer 𝑛(𝑘) > 𝑚(𝑘) with
𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜀. Consequently, we have 𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) <

𝜀. Consider

𝜀 ≤ 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

)

≤ 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)−2

) + 𝑑 (𝑥
𝑛(𝑘)−2

, 𝑥
𝑛(𝑘)−1

) + 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)

)

≤ 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)−2

) + 𝑑 (𝑥
𝑛(𝑘)−2

, 𝑥
𝑛(𝑘)−1

) + 𝜀.

(40)

Letting 𝑘 → ∞, we get that

𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) → 𝜀. (41)

On the other hand, again by using the quadrilateral
inequality, we find

𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

)

≤ 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)−1

) + 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

)

+ 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

) ,

𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

)

≤ 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

) + 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) + 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)−1

) .

(42)

Letting 𝑛 → ∞, in the inequalities above, we get that

𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

) → 𝜀. (43)
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On account of (10), we have

𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

)

= 𝑑 (𝑇𝑥
𝑛(𝑘)−1

, 𝑇𝑥
𝑚(𝑘)−1

)

≤ 𝛼 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

) 𝑑 (𝑇𝑥
𝑛(𝑘)−1

, 𝑇𝑥
𝑚(𝑘)−1

)

≤ 𝜙 (𝑀 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

)) − 𝜑 (𝑀 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

)) ,

(44)

where

𝑀(𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

)

= max {𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

) , 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

) ,

𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

)} .

(45)

Letting 𝑛 → ∞, in (44), and regarding definitions of
auxiliary functions 𝜙, 𝜑 and (45), we conclude that

𝜀 ≤ 𝜀 − 𝜑 (𝜀) , (46)

which yields that 𝜑(𝜀) = 0. By definition of 𝜑, we derive that
𝜀 = 0, which is a contradiction. Hence, we conclude that {𝑥

𝑛
}

is a Cauchy sequence in (𝑋, 𝑑). Since (𝑋, 𝑑) is complete, there
exists 𝑢 ∈ 𝑋 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) = 0. (47)

Since 𝑇 is continuous, we obtain from (47) that

lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑇𝑢) = lim
𝑛→∞

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑢) = 0. (48)

From (47) and (48) we get immediately that lim
𝑛→∞

𝑇𝑛𝑥
0
=

lim
𝑛→∞

𝑇𝑥
𝑛

= 𝑇𝑢. Taking Proposition 5 into account, we
conclude that 𝑇𝑢 = 𝑢.

The following result is deduced from the obvious inequal-
ity𝑁(𝑥, 𝑦) ≤ 𝑀(𝑥, 𝑦).

Theorem22. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be a (𝛼-𝜙-𝜑)-contractive mapping of type
II. Suppose that

(i) 𝑇 is a weak triangular 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Theorem23. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be a (𝛼-𝜙-𝜑)-contractive mapping of type
I. Suppose that

(i) 𝑇 is a weak triangular 𝛼-admissible and 𝜙 is upper
semicontinuous function;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the proof of Theorem 21, we know that the
sequence {𝑥

𝑛
} defined by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
for all 𝑛 ≥ 0 converges

for some 𝑢 ∈ 𝑋. We will show that 𝑇𝑢 = 𝑢. Suppose, on
the contrary, that 𝑇𝑢 ̸= 𝑢. From (17) and condition (iii), there
exists a subsequence {𝑥

𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1

for all 𝑘. By applying the quadrilateral inequality together
with (10) and (15), for all 𝑘, we get that

𝑑 (𝑢, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

)

+ 𝛼 (𝑥
𝑛(𝑘)

, 𝑢) 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝜙 (𝑀 (𝑥
𝑛(𝑘)

, 𝑢)) ,

(49)

where

𝑀(𝑥
𝑛(𝑘)

, 𝑢) = max {𝑑 (𝑥
𝑛(𝑘)

, 𝑢) , 𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) , 𝑑 (𝑢, 𝑇𝑢)} .

(50)

Letting 𝑘 → ∞ in the above equality and regarding that
the 𝜙 is an upper semicontinuous mapping, we find that

𝑑 (𝑢, 𝑇𝑢) ≤ 𝜙 (𝑑 (𝑢, 𝑇𝑢)) . (51)

It implies that from (𝜙
2
)

𝑑 (𝑢, 𝑇𝑢) ≤ 𝜙 (𝑑 (𝑢, 𝑇𝑢)) < 𝑑 (𝑢, 𝑇𝑢) , (52)

which is a contradiction. Hence, we obtain that 𝑢 is a fixed
point of 𝑇; that is, 𝑇𝑢 = 𝑢.

In the following theorem, we remove the semicontinuity
of 𝜙 by weakening the contractive mapping type.

Theorem24. Let (𝑋, 𝑑) be a complete generalizedmetric space
and 𝑇 : 𝑋 → 𝑋 be a (𝛼-𝜙-𝜑)-contractive mapping of type II.
Suppose that

(i) 𝑇 is a weak triangular 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the proof of Theorem 21, we know that the
sequence {𝑥

𝑛
} defined by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
for all 𝑛 ≥ 0 converges

for some 𝑢 ∈ 𝑋. We will show that 𝑇𝑢 = 𝑢. Suppose, on
the contrary, that 𝑇𝑢 ̸= 𝑢. From (17) and condition (iii), there
exists a subsequence {𝑥

𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1
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for all 𝑘. By applying the quadrilateral inequality together
with (10) and (15), for all 𝑘, we get that

𝑑 (𝑢, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

)

+ 𝛼 (𝑥
𝑛(𝑘)

, 𝑢) 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝜙 (𝑁 (𝑥
𝑛(𝑘)

, 𝑢)) ,

(53)

where

𝑁(𝑥
𝑛(𝑘)

, 𝑢)

= max{𝑑 (𝑥
𝑛(𝑘)

, 𝑢) ,
𝑑 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) + 𝑑 (𝑢, 𝑇𝑢)

2
} .

(54)

Letting 𝑘 → ∞ in the above equality and regarding (𝜙
4
), we

find that

𝑑 (𝑢, 𝑇𝑢) ≤ 𝜙(
𝑑 (𝑢, 𝑇𝑢)

2
) ≤

𝑑 (𝑢, 𝑇𝑢)

2
(55)

which is a contradiction. Hence, we obtain that 𝑢 is a fixed
point of 𝑇; that is, 𝑇𝑢 = 𝑢.

Theorem 25. Adding condition (𝑈) to the hypotheses of
Theorem 21 (resp., Theorem 23), one obtains that 𝑢 is the
unique fixed point of 𝑇.

Proof. In what follows we will show that 𝑢 is a unique fixed
point of 𝑇. We will use the reductio ad absurdum. Let V be
another fixed point of 𝑇 with V ̸= 𝑢. It is evident that 𝛼(𝑢, V) =
𝛼(𝑇𝑢, 𝑇V).

Now, due to (10) and (𝜙
2
), we have

𝑑 (𝑢, V) ≤ 𝛼 (𝑢, V) 𝑑 (𝑢, V)

= 𝛼 (𝑢, V) 𝑑 (𝑇𝑢, 𝑇V)

≤ 𝜙 (𝑀 (𝑢, V)) − 𝜑 (𝑀 (𝑢, V))

= 𝜙 (𝑑 (𝑢, V)) − 𝜑 (𝑑 (𝑢, V))

≤ 𝜙 (𝑑 (𝑢, V))

< 𝑑 (𝑢, V)

(56)

which is a contradiction, where

𝑀(𝑢, V) = max {𝑑 (𝑢, V) , 𝑑 (𝑢, 𝑇𝑢) , 𝑑 (V, 𝑇V)} = 𝑑 (𝑢, V) .
(57)

Hence, 𝑢 = V.

Theorem 26. Adding condition (𝑈) to the hypotheses of
Theorem 22 (resp., Theorem 24), one obtains that 𝑢 is the
unique fixed point of 𝑇.

Proof. The proof is analog of the proof of Theorem 25
which will be concluded by using the reductio ad absurdum.
Suppose, on the contrary, that V is another fixed point of 𝑇
with V ̸= 𝑢. It is evident that 𝛼(𝑢, V) = 𝛼(𝑇𝑢, 𝑇V).

Now, due to (12) and (𝜙
2
), we have

𝑑 (𝑢, V) ≤ 𝛼 (𝑢, V) 𝑑 (𝑢, V)

= 𝛼 (𝑢, V) 𝑑 (𝑇𝑢, 𝑇V)

≤ 𝜙 (𝑁 (𝑢, V)) − 𝜑 (𝑁 (𝑢, V))

= 𝜙 (𝑑 (𝑢, V)) − 𝜑 (𝑑 (𝑢, V))

= 𝜙 (𝑑 (𝑢, V))

< 𝑑 (𝑢, V)

(58)

which is a contradiction, where

𝑁(𝑢, V) = max{𝑑 (𝑢, V) , 𝑑 (𝑢, 𝑇𝑢) + 𝑑 (V, 𝑇V)
2

} = 𝑑 (𝑢, V) .

(59)

Hence, 𝑢 = V.

For the uniqueness, we can also consider the following
condition.

(𝐻∗) For all 𝑥, 𝑦 ∈ Fix(𝑇), there exists 𝑧 ∈ 𝑋 such
that 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1. Further,
lim
𝑛→∞

𝑑(𝑧
𝑛
, 𝑧
𝑛+1

) = 0, where 𝑧
1
= 𝑧 and 𝑧

𝑛+1
= 𝑇𝑧
𝑛

for 𝑛 = 1, 2, 3, . . ..

Theorem27. Adding conditions (𝐻∗) and (𝑊) to the hypothe-
ses of Theorem 21 (resp., Theorem 23), one obtains that 𝑢 is the
unique fixed point of 𝑇.

Proof. Suppose that V is another fixed point of 𝑇. From (𝐻
∗),

there exists 𝑧 ∈ 𝑋 such that

𝛼 (𝑢, 𝑧) ≥ 1, 𝛼 (V, 𝑧) ≥ 1. (60)

Since 𝑇 is 𝛼-admissible, from (60), we have

𝛼 (𝑢, 𝑇
𝑛
𝑧) ≥ 1, 𝛼 (V, 𝑇𝑛𝑧) ≥ 1, ∀𝑛. (61)

Define the sequence {𝑧
𝑛
} in𝑋 by 𝑧

𝑛+1
= 𝑇𝑧
𝑛
for all 𝑛 ≥ 0 and

𝑧
0
= 𝑧. From (61), for all 𝑛, we have

𝑑 (𝑢, 𝑧
𝑛+1

) = 𝑑 (𝑇𝑢, 𝑇𝑧
𝑛
) ≤ 𝛼 (𝑢, 𝑧

𝑛
) 𝑑 (𝑇𝑢, 𝑇𝑧

𝑛
)

≤ 𝜙 (𝑀 (𝑢, 𝑧
𝑛
)) − 𝜑 (𝑀 (𝑢, 𝑧

𝑛
)) ,

(62)

where

𝑀(𝑢, 𝑧
𝑛
) = max {𝑑 (𝑢, 𝑧

𝑛
) , 𝑑 (𝑢, 𝑇𝑢) , 𝑑 (𝑧𝑛, 𝑇𝑧𝑛)}

= max {𝑑 (𝑢, 𝑧
𝑛
) , 𝑑 (𝑧

𝑛
, 𝑇𝑧
𝑛
)} .

(63)

If 𝑀(𝑢, 𝑧
𝑛
) = 𝑑(𝑧

𝑛
, 𝑇𝑧
𝑛
) then by letting 𝑛 → ∞ in (62) we

get that

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑢) = 0, (64)
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due to the continuity of 𝜑, (𝜙
4
) and the fact that

lim
𝑛→∞

𝑑(𝑧
𝑛
, 𝑧
𝑛+1

) = 0. If 𝑀(𝑢, 𝑧
𝑛
) = 𝑑(𝑢, 𝑧

𝑛
) then

(62) turns into

𝑑 (𝑢, 𝑧
𝑛+1

) ≤ 𝜙 (𝑑 (𝑢, 𝑧
𝑛
)) − 𝜑 (𝑑 (𝑢, 𝑧

𝑛
)) ≤ 𝜙 (𝑑 (𝑢, 𝑧

𝑛
)) .

(65)

Iteratively, by using inequality (62), we get that

𝑑 (𝑢, 𝑧
𝑛+1

) ≤ 𝜙
𝑛
(𝑑 (𝑢, 𝑧

0
)) , (66)

for all 𝑛. Letting 𝑛 → ∞ in the above inequality, we obtain

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑢) = 0. (67)

Similarly, one can show that

lim
𝑛→∞

𝑑 (𝑧
𝑛
, V) = 0. (68)

Regarding (𝑊) together with (67) and (68), it follows that 𝑢 =

V. Thus we proved that 𝑢 is the unique fixed point of 𝑇.

Theorem28. Adding conditions (𝐻∗) and (𝑊) to the hypothe-
ses of Theorem 22 (resp., Theorem 24), one obtains that 𝑢 is the
unique fixed point of 𝑇.

The proof is the analog of the proof ofTheorem 27; hence
we omit it.

Corollary 29. Adding condition (𝐻∗) to the hypotheses of
Theorem 21 (resp.,Theorems 23, 22, and 24) and assuming that
(𝑋, 𝑑) is Hausdorff, one obtains that 𝑢 is the unique fixed point
of 𝑇.

The proof is clear, and hence it is omitted. Indeed,
Hausdorffness implies the uniqueness of the limit. Thus, the
theorem above yields the conclusions.

3. Consequences

Now, we will show that many existing results in the literature
can be deduced easily fromTheorems 13 and 14.

Definition 30. Let (𝑋, 𝑑) be a generalized metric space and
let 𝑇 : 𝑋 → 𝑋 be a given mapping. We say that 𝑇 is a (𝛼-
𝜙-𝜑)-contractive mapping of type III if there exist functions
𝛼 : 𝑋 × 𝑋 → [0,∞), 𝜑 ∈ Θ, and 𝜙 ∈ Φ such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑑 (𝑥, 𝑦)) − 𝜑 (𝑑 (𝑥, 𝑦)) (69)

for all 𝑥, 𝑦 ∈ 𝑋.

Now, we state the first fixed point theorem.

Theorem 31. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be a (𝛼-𝜙-𝜑)-contractive mapping of type
III. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.
Then, 𝑇 has a fixed point 𝑢 ∈ 𝑋; that is, 𝑇𝑢 = 𝑢.

We omit the proof of Theorem 31, since it can be derived
easily by following the lines in the proof of Theorem 21,
analogously.

Theorem32. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be a (𝛼-𝜙-𝜑)-contractive mapping of type
III. Suppose that

(i) 𝑇 is 𝛼-admissible;

(ii) there exists 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
, 𝑇x
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the proof of Theorem 21 (resp.,
Theorem 31), we know that the sequence {𝑥

𝑛
} defined

by 𝑥
𝑛+1

= 𝑇𝑥
𝑛
for all 𝑛 ≥ 0 converges for some 𝑢 ∈ 𝑋. We

will show that 𝑇𝑢 = 𝑢. Suppose, on the contrary, that 𝑇𝑢 ̸= 𝑢.
From (17) and condition (iii), there exists a subsequence
{𝑥
𝑛(𝑘)

} of {𝑥
𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1 for all 𝑘. By applying

the quadrilateral inequality together with (10) and (15), for
all 𝑘, we get that

𝑑 (𝑢, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

)

+ 𝛼 (𝑥
𝑛(𝑘)

, 𝑢) 𝑑 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛(𝑘)+2

) + 𝑑 (𝑥
𝑛(𝑘)+2

, 𝑥
𝑛(𝑘)+1

) + 𝜙 (𝑑 (𝑥
𝑛(𝑘)

, 𝑢)) .

(70)

Letting 𝑘 → ∞ in the above equality and regarding (𝜙
4
),

we find that

𝑑 (𝑢, 𝑇𝑢) ≤ lim
𝑛→∞

𝜙 (𝑑 (𝑥
𝑛(𝑘)

, 𝑢)) ≤ 0, (71)

which is a contradiction. Hence, we obtain that 𝑢 is a fixed
point of 𝑇; that is, 𝑇𝑢 = 𝑢.

Theorem 33. Adding condition (𝑈) to the hypotheses of
Theorem 31 (resp., Theorem 32), one obtains that 𝑢 is the
unique fixed point of 𝑇.

Proof. In what follows we will show that 𝑢 is a unique fixed
point of 𝑇. We will use the reductio ad absurdum. Let V be
another fixed point of 𝑇 with V ̸= 𝑢. It is evident that 𝛼(𝑢, V) =
𝛼(𝑇𝑢, 𝑇V).
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Now, due to (10) and (𝜙
2
), we have

𝑑 (𝑢, V) ≤ 𝛼 (𝑢, V) 𝑑 (𝑢, V)

= 𝛼 (𝑇𝑢, 𝑇V) 𝑑 (𝑇𝑢, 𝑇V)

≤ 𝜙 (𝑑 (𝑢, V)) − 𝜑 (𝑑 (𝑢, V))

≤ 𝜙 (𝑑 (𝑢, V))

< 𝑑 (𝑢, V)

(72)

which is a contradiction.

Theorem 34. Adding conditions (𝐻) and (𝑊) to the hypothe-
ses of Theorem 31 (resp., Theorem 32), one obtains that 𝑢 is the
unique fixed point of 𝑇.

Corollary 35. Let (𝑋, 𝑑) be a complete generalized metric
space and let 𝑇 : 𝑋 → 𝑋 be a given mapping. Suppose that
there exist 𝜙 ∈ Φ and 𝜑 ∈ Θ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑀 (𝑥, 𝑦)) − 𝜑 (𝑀 (𝑥, 𝑦)) , (73)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)} . (74)

Then 𝑇 has a unique fixed point.

Proof. Let 𝛼 : 𝑋 × 𝑋 → [0,∞) be the mapping defined
by 𝛼(𝑥, 𝑦) = 1, for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 is a (𝛼-𝜙-𝜑)-
contractive mapping of type I. It is evident that all conditions
of Theorem 21 are satisfied. Hence, 𝑇 has a unique fixed
point.

Corollary 36. Let (𝑋, 𝑑) be a complete generalized metric
space and let 𝑇 : 𝑋 → 𝑋 be a given mapping. Suppose that
there exist 𝜙 ∈ Φ and 𝜑 ∈ Θ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑁 (𝑥, 𝑦)) − 𝜑 (𝑁 (𝑥, 𝑦)) , (75)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑁(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2
} . (76)

Then 𝑇 has a unique fixed point.

ThefollowingCorollary is stronger than themain result of
[19]. Notice that we do not need the Hausdorffness condition
although it was required in [19].

Corollary 37. Let (𝑋, 𝑑) be a complete generalized metric
space and let 𝑇 : 𝑋 → 𝑋 be a given mapping. Suppose that
there exist 𝜙 ∈ Φ and 𝜑 ∈ Θ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑑 (𝑥, 𝑦)) − 𝜑 (𝑑 (𝑥, 𝑦)) , (77)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point.
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