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The Behrens-Fisher problem concerns the inferences for the difference between the means of two normal populations without
making any assumption about the variances. Although the problemhas been extensively studied in the literature, researchers cannot
agree on its solution at present. In this paper, we propose a newmethod for dealing with the Behrens-Fisher problem in the Bayesian
framework. The Bayesian evidence for testing the equality of two normal means and a credible interval at a specified level for the
difference between the means are derived. Simulation studies are carried out to evaluate the performance of the provided Bayesian
evidence.

1. Introduction

The Behrens-Fisher problem may arise in the comparison of
two treatments, products, and so forth. It concerns compar-
ing the means of two normal distributions whose variances
are unknown. Suppose that𝑋

1
, . . . , 𝑋
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𝑁(𝜇
1
, 𝜎
2

1
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1
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are completely unspecified. We are interested in testing the
hypothesis 𝐻

0
: 𝜇
1
= 𝜇
2
and giving the interval estimation

for the difference between two means, 𝜃 = 𝜇
1
− 𝜇
2
.

The difficulty with the Behrens-Fisher problem is that the
standard classical frequentist evidence is not available
because nuisance parameters are present. Tsui and Weera-
handi [1] introduced the concept of the generalized𝑃 value to
deal with nuisance parameters in testing hypotheses. If the
corresponding sample means and sample variances are
denoted by (𝑥, 𝑦) and (𝑠2

1
, 𝑠2
2
), respectively, a generalized

frequentist evidence for testing 𝐻
0
can be formulated by the

approach of the generalized 𝑃 value as
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where 𝐹
1,𝑚+𝑛−2

is an 𝐹-variable with 1 and𝑚 + 𝑛 − 2 degrees
of freedom and 𝐵

(𝑚−1)/2, (𝑛−1)/2
is a 𝐵𝑒𝑡𝑎-variable with param-

eters (𝑚 − 1)/2 and (𝑛 − 1)/2 that is independent of 𝐹
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2
. This generalized

frequentist solution is formally equivalent to the Bayesian
solution given by Jeffreys [2] or the fiducial solution given
by Wallace [3]. Meng [4] introduced the concept of the pos-
terior predictive 𝑃 value and provided posterior predictive
evidence. In the case of Behrens-Fisher problem, this test is
formulated as

𝑝𝑝𝑝 (𝑥)
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where 𝐹
1,𝑚+𝑛

is an 𝐹-variable with 1 and 𝑚 + 𝑛 degrees of
freedom, 𝐵

𝑚/2, 𝑛/2
is a 𝐵𝑒𝑡𝑎-variable with parameters𝑚/2 and
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𝑛/2 that is independent of 𝐹
1,𝑚+𝑛

, and 𝜇 is a variable with a
“combined 𝑡” distribution:
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Behrens [5] gave a confidence interval for the difference
between the two means in a testing context of 𝐻

0
: 𝜇
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= 𝜇
2

against𝐻
1
: 𝜇
1
̸= 𝜇
2
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Bartlett [6] revealed, from a frequentist perspective, that
the coverage probability of the confidence interval given by
Behrens is different from the specified confidence coefficient.
Fisher [7] derived a fiducial interval for 𝜃 = 𝜇

1
−𝜇
2
whichhas a

specified fiducial level by the method of fiducial inference.
Neyman illustrated by calculation that an interval estimator
with a fiducial level of 1 − 𝛼 is not necessarily a confidence
intervalwith a confidence coefficient of 1−𝛼.Welch [8, 9] gave
approximate solutions of the confidence intervals which are
also constructed in a testing context based on the pivotal
quantity 𝐷. In the Bayesian framework, Jeffreys [10], based
on the objective prior
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, 𝜎
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−2
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2
, (5)

constructed a Bayesian credible interval. This interval is
algebraically equivalent to the fiducial interval of Fisher.

For more discussions of the Behrens-Fisher problem see
Wilks [11], Chernoff [12], Chand [13], Banerjee [14], Srivastava
[15], Ghosh and Kim [16], Madruga et al. [17], and McMurry
et al. [18].

In this paper, we derive the Bayesian evidence for the
Behrens-Fisher problem using the procedure in Yin [19] for
testing point null hypotheses. Based on the providedBayesian
evidence, a Bayesian credible interval at a specified credible
level for the difference of the means 𝜃 = 𝜇

1
− 𝜇
2
is derived in

a Bayesian testing context.
This paper is organized as follows. In Section 2, we give

the main results of the Bayesian analysis of the Behrens-
Fisher problem concerning the testing and interval estima-
tion of the difference of two normal means with the variances
completely unknown. Some conclusions and discussions are
given in Section 3.

2. Main Results

2.1. Bayesian Evidence for the Behrens-Fisher Problem. Yin
[19] introduced a Bayesian measure of evidence for testing
point null hypotheses of the form

𝐻
0
: 𝜃 = 𝜃

0
v.s. 𝐻

1
: 𝜃 ̸= 𝜃

0
. (6)

Let 𝑋
1
, . . . , 𝑋

𝑛
be a random sample from a distribution with

density 𝑓(𝑥 | 𝜃), where 𝜃 is an unknown element of the

parameter space Θ. The Bayesian evidence against the null
hypothesis𝐻

0
based on a prior 𝜋(𝜃) is given by

𝑝
𝐵
(𝑥) = 𝑃 (|𝜃 − 𝐸 (𝜃 | 𝑥)| ≥

󵄨󵄨󵄨󵄨𝜃0 − 𝐸 (𝜃 | 𝑥)
󵄨󵄨󵄨󵄨 | 𝑥) ,

(7)

where 𝐸(𝜃 | 𝑥) is the posterior expectation of 𝜃 under the
prior 𝜋(𝜃) and the probability is taken over the posterior dis-
tribution of 𝜃. A smaller 𝑝𝐵(𝑥) means stronger evidence
against the null hypothesis 𝐻

0
. In his work, Yin illustrated

that the Bayesian evidence given by (7) under the Jeffreys
noninformative prior is just equivalent to the corresponding
frequentist evidence for many classical testing situations and
showed that the Lindley’s paradox in Lindley [20] can be
avoided by this Bayesian method of testing point null
hypotheses.

Now consider the Behrens-Fisher problem of testing
hypotheses

𝐻
0
: 𝜇
1
= 𝜇
2

v.s. 𝐻
1
: 𝜇
1
̸= 𝜇
2
. (8)

Note that (8) can be reformulated as

𝐻
0
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1
− 𝜇
2
= 0 v.s. 𝐻

1
: 𝜇
1
− 𝜇
2
̸= 0. (9)

The posterior distribution for 𝜃 = 𝜇
1
−𝜇
2
under the objective

prior (5) can be obtained as

𝜃 | 𝑥 ∼ 𝑥 − 𝑦 − (
𝑠
1
𝑇
𝑚−1

√𝑚
−
𝑠
2
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𝑛−1

√𝑛
) , (10)

where𝑇
𝑚−1

and𝑇
𝑛−1

are two independent 𝑡-variableswith𝑚−
1 and 𝑛 − 1 degrees of freedom, respectively. Since the post-
erior expectation of 𝜃 is

𝐸 (𝜃 | 𝑥) = 𝑥 − 𝑦, (11)

the Bayesian evidence under the objective prior (5) can be for-
mulated as

𝑝
BF
(𝑥) = 𝑃 (

󵄨󵄨󵄨󵄨𝜃 − (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 | 𝑥)

= 𝑃(
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󵄨󵄨󵄨󵄨) ,

(12)

where the first probability is taken over the posterior distri-
bution of 𝜃 and the second one is taken over two independent
𝑡-variables 𝑇

𝑚−1
and 𝑇

𝑛−1
.

Now we carry out a simulation study to illustrate the per-
formance of the proposed Bayesian evidence. The simulation
results listed in Table 1 show that 𝑝BF(𝑥) is quite reasonable
evidence for testing the Behrens-Fisher problem. For fixed
values of 𝜎

1
and 𝜎

2
, notice that the more significant the

difference between𝜇
1
and𝜇
2
is, the smaller value of𝑝BF(𝑥)we

may obtain, whichmeans that the stronger Bayesian evidence
for rejecting the null hypothesis of 𝐻

0
: 𝜇
1
= 𝜇
2
is given.

Moreover, 𝑝BF(𝑥) gives more reliable and efficient evidence
when the population variances are small. It can also be
noticed that the Bayesian evidence 𝑝BF(𝑥) is very close to the
corresponding generalized frequentist evidence 𝑝(𝑥) in (1)
and the posterior predictive evidence 𝑝𝑝𝑝(𝑥) in (2).
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Table 1: 𝑝BF(𝑥), 𝑝(𝑥) and 𝑝𝑝𝑝(𝑥) for testing the Behrens-Fisher Problem.

𝜎
1
= 2, 𝜎

2
= 3 𝜎

1
= 3, 𝜎

2
= 2

𝜇
1

𝜇
2

𝑝
BF
(𝑥) 𝑝(𝑥) 𝑝𝑝𝑝(𝑥) 𝜇

1
𝜇
2

𝑝
BF
(𝑥) 𝑝(𝑥) 𝑝𝑝𝑝(𝑥)

2.00 2.00 0.7823 0.7810 0.7816 2.00 2.00 0.7635 0.7606 0.7615
2.00 2.01 0.3133 0.3104 0.3102 2.00 2.01 0.3028 0.3031 0.3017
2.00 2.02 0.1722 0.1713 0.1711 2.00 2.02 0.1949 0.1950 0.1938
2.00 2.03 0.0854 0.0863 0.0868 2.00 2.03 0.0628 0.0627 0.0630
2.00 2.04 0.0418 0.0420 0.0428 2.00 2.04 0.0188 0.0185 0.0190
2.00 2.05 0.0117 0.0122 0.0121 2.00 2.05 0.0018 0.0017 0.0016

𝜎
1
= 0.1, 𝜎

2
= 0.2 𝜎

1
= 0.2, 𝜎

2
= 0.1

𝜇
1

𝜇
2

𝑝
BF
(𝑥) 𝑝(𝑥) 𝑝𝑝𝑝(𝑥) 𝜇

1
𝜇
2

𝑝
BF
(𝑥) 𝑝(𝑥) 𝑝𝑝𝑝(𝑥)

2.000 2.000 0.8597 0.8603 0.8596 2.000 2.000 0.8525 0.8522 0.8511
2.000 2.001 0.1329 0.1319 0.1336 2.000 2.001 0.4979 0.4998 0.4961
2.000 2.002 0.0688 0.0690 0.0696 2.000 2.002 0.1090 0.1070 0.1085
2.000 2.003 0.0384 0.0383 0.0379 2.000 2.003 0.0239 0.0239 0.0237
2.000 2.004 0.0313 0.0317 0.0318 2.000 2.004 0.0014 0.0014 0.0011
2.000 2.005 0.0033 0.0032 0.0035 2.000 2.005 0.0007 0.0008 0.0006

𝜎
1
= 2, 𝜎

2
= 0.1 𝜎

1
= 2, 𝜎

2
= 2

𝜇
1

𝜇
2

𝑝
BF
(𝑥) 𝑝(𝑥) 𝑝𝑝𝑝(𝑥) 𝜇

1
𝜇
2

𝑝
BF
(𝑥) 𝑝(𝑥) 𝑝𝑝𝑝(𝑥)

2.00 2.00 0.5239 0.5245 0.5279 2.00 2.00 0.9963 0.9963 0.9962
2.00 2.01 0.3327 0.3346 0.3357 2.00 2.01 0.2523 0.2507 0.2500
2.00 2.02 0.0224 0.0228 0.0218 2.00 2.02 0.0996 0.1006 0.0991
2.00 2.03 0.0032 0.0033 0.0034 2.00 2.03 0.0366 0.0366 0.0368
2.00 2.04 0.0017 0.0017 0.0018 2.00 2.04 0.0119 0.0122 0.0122
2.00 2.05 0.0001 0.0001 0.0001 2.00 2.05 0.0036 0.0040 0.0040

By this Bayesian evidence for the Behrens-Fisher prob-
lem, we consider two examples. One is included in Lehmann
[21]. The driving times from a person’s house to his working
place following two different routes were measured which we
list in Table 2. Another one is in Ghosh et al. [22] where the
data which we list in Table 3 is from a clinical trial conducted
by Sahu to compare the improvement score of surgical treat-
ment with that of nonsurgical treatment. If it is assumed that
the two independent samples in both Tables 2 and 3 are,
respectively, drawn from two normal distributions𝑁(𝜇

1
, 𝜎
2

1
)

and 𝑁(𝜇
2
, 𝜎
2

2
) and if we are interested in the equality of the

two means 𝜇
1
and 𝜇

2
, each of these two examples reduces to

the Behrens-Fisher problem of testing hypotheses (8). For
both situations, the Bayesian evidence 𝑝BF(𝑥) and the corre-
sponding generalized frequentist evidence𝑝(𝑥) and posterior
predictive evidence 𝑝𝑝𝑝(𝑥) all give very strong evidence of
nearly zero for rejecting the null hypothesis that there is no
difference between the two means.This agrees with our intu-
ition from the observed data.

2.2. Bayesian Credible Interval. Based on the proposed
Bayesian evidence, a credible interval for the difference of
means 𝜃 = 𝜇

1
− 𝜇
2
at a specified credible level can be con-

structed in a testing context. For the following hypothesis
testing problem of comparing two normal means:

𝐻
0
: 𝜇
1
− 𝜇
2
= 𝜃
0

v.s. 𝐻
1
: 𝜇
1
− 𝜇
2
̸= 𝜃
0
, (13)

where the variances are completely unspecified, the Bayesian
evidence under the objective prior (5) is

𝑝
BF
(𝑥; 𝜃
0
) = 𝑃 (

󵄨󵄨󵄨󵄨𝜃 − (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨𝜃0 − (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨 | 𝑥)

= 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
1
𝑇
𝑚−1

√𝑚
−
𝑠
2
𝑇
𝑛−1

√𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
󵄨󵄨󵄨󵄨𝜃0 − (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨) ,

(14)

where the first probability is taken over the posterior distri-
bution of 𝜃 and the second one is taken over two independent
𝑡-variables 𝑇

𝑚−1
and 𝑇

𝑛−1
.

Theorem 1. For the Behrens-Fisher problem, let 𝐴𝐵𝐹(𝜃
0
) =

{𝑥 : 𝑝
𝐵𝐹
(𝑥; 𝜃
0
) ≥ 𝛼}, 𝑆𝐵𝐹(𝑥) = {𝜃

0
: 𝑥 ∈ 𝐴

𝐵𝐹
(𝜃
0
)}, and

𝐼
𝑘
= [𝑥 − 𝑦 − 𝑘, 𝑥 − 𝑦 + 𝑘]. For a fixed 𝛼, if 𝐼

𝑘
𝐵𝐹 satisfies

𝑃 (𝜃 ∈ 𝐼
𝑘
𝐵𝐹 | 𝑥) = 1 − 𝛼, (15)

then one has

𝑆
𝐵𝐹
(𝑥) = 𝐼

𝑘
𝐵𝐹 . (16)

Proof. On one hand, 𝐼
𝑘
BF satisfies

𝑃 (𝜃 ∈ 𝐼
𝑘
BF | 𝑥) = 1 − 𝛼, (17)

which means that

𝑃 (
󵄨󵄨󵄨󵄨𝜃 − (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑘
BF
| 𝑥) = 1 − 𝛼. (18)
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Table 2: Measures of driving times from following two different routes.

Route Times
I 6.5 6.8 7.1 7.3 10.2
II 5.8 5.8 5.9 6.0 6.0 6.0 6.3 6.3 6.4 6.5 6.5

Table 3: Scores of surgical and non-surgical treatments.

Treatment Scores
Surgical 15 9 12 16 14 15 18 13 12 11 15 9 16 9
Non-surgical 6 8 7 4 4 6 8 3 7 8 9 6 3 6 4

On the other hand, it is easy to know that 𝑝BF(𝑥; 𝜃
0
) ≥ 𝛼 is

equivalent to

𝑃 (
󵄨󵄨󵄨󵄨𝜃 − (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝜃0 − (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨 | 𝑥) ≤ 1 − 𝛼. (19)

By (18) and (19), we know that 𝑆BF(𝑥) = 𝐼
𝑘
BF .

ByTheorem 1, we know that the 1−𝛼 credible interval for
𝜃 = 𝜇
1
−𝜇
2
centered at 𝐸(𝜃 | 𝑥) = 𝑥−𝑦 can be easily obtained

by 𝑝BF(𝑥; 𝜃
0
) ≥ 𝛼. This is a Bayesian interval obtained in a

testing context. Interestingly, the resulting interval by our
method is just equivalent to that given by Fisher or Jeffreys.

In fact, we have another interesting result about the
interval estimation of 𝜃 = 𝜇

1
−𝜇
2
on the basis of the Bayesian

evidence 𝑝BF(𝑥; 𝜃
0
), which shows that the 1 − 𝛼 credible

interval centered at the posterior expectation for the Behrens-
Fisher problem can be constructed by the 𝛼 and 1 − 𝛼/2
quantiles of the posterior distribution of 𝜃. We summarize
this as the following theorem.

Theorem 2. For the Behrens-Fisher problem, 𝑝𝐵𝐹(𝑥; 𝜃
0
) ≥ 𝛼

yields the 1 − 𝛼 credible interval for 𝜃 = 𝜇
1
− 𝜇
2
centered at the

posterior expectation 𝐸(𝜃 | 𝑥) = 𝑥 − 𝑦 as follows:

𝐼
𝑘
𝐵𝐹 = [𝜃

𝛼/2
(𝑥) , 𝜃

1−(𝛼/2)
(𝑥)] , (20)

where 𝜃
𝛼/2
(𝑥) and 𝜃

1−𝛼/2
(𝑥) are, respectively, the 𝛼/2 and 1 −

𝛼/2 quantiles of the posterior distribution

𝜃 | 𝑥 ∼ 𝑥 − 𝑦 − (
𝑠
1
𝑇
𝑚−1

√𝑚
−
𝑠
2
𝑇
𝑛−1

√𝑛
) . (21)

Proof. We first prove that the Bayesian evidence for testing
(13) can be expressed as

𝑝
BF
(𝑥; 𝜃
0
) = 2min {𝑃 (𝜃 ≤ 𝜃

0
| 𝑥) , 𝑃 (𝜃 ≥ 𝜃

0
| 𝑥)} . (22)

In fact, if 𝜃
0
≥ 𝑥 − 𝑦, we have

𝑝
BF
(𝑥; 𝜃
0
) = 𝑃 (

󵄨󵄨󵄨󵄨𝜃 − (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨𝜃0 − (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨 | 𝑥)

= 𝑃 (𝜃 − (𝑥 − 𝑦) ≥ 𝜃
0
− (𝑥 − 𝑦) | 𝑥)

+ 𝑃 (𝜃 − (𝑥 − 𝑦) ≤ − (𝜃
0
− (𝑥 − 𝑦)) | 𝑥)

= 2𝑃 (𝜃 − (𝑥 − 𝑦) ≥ 𝜃
0
− (𝑥 − 𝑦) | 𝑥)

= 2𝑃 (𝜃 ≥ 𝜃
0
| 𝑥) ,

(23)

where the second equation is due to the fact that the posterior
distribution of 𝜃 is symmetric about 𝑥 − 𝑦. Similarly, if 𝜃

0
≤

𝑥 − 𝑦, we have

𝑝
BF
(𝑥; 𝜃
0
) = 2𝑃 (𝜃 ≤ 𝜃

0
| 𝑥) . (24)

By (23) and (24) together with the symmetry of the posterior
distribution of 𝜃, we have

𝑝
BF
(𝑥; 𝜃
0
) = 2min {𝑃 (𝜃 ≤ 𝜃

0
| 𝑥) , 𝑃 (𝜃 ≥ 𝜃

0
| 𝑥)} . (25)

It then follows that 𝑝BF(𝑥; 𝜃
0
) ≥ 𝛼 if and only if 𝑃(𝜃 ≤ 𝜃

0
|

𝑥) ≥ 𝛼/2 and𝑃(𝜃 ≥ 𝜃
0
| 𝑥) ≥ 𝛼/2 hold simultaneously, which

is equivalent to

𝜃
𝛼/2
(𝑥) ≤ 𝜃

0
≤ 𝜃
1−(𝛼/2)

(𝑥) . (26)

Since the posterior of 𝜃 is symmetric about 𝑥 − 𝑦, [𝜃
𝛼/2
(𝑥),

𝜃
1−(𝛼/2)

(𝑥)] is a credible interval centered at 𝑥 − 𝑦. This com-
pletes the proof.

Theorem 2 provides another way of constructing the
credible interval for 𝜃 = 𝜇

1
−𝜇
2
. Moreover, we know easily by

the proof ofTheorem 2 that the 1−𝛼 credible interval for 𝜃 =
𝜇
1
− 𝜇
2
which is centered at the posterior expectation can be

given by [𝜃
𝛼/2
(𝑥), 𝜃
1−(𝛼/2)

(𝑥)] evenwhen other priors are used
so long as the posterior of 𝜃 is symmetric.

Now we return to the examples of comparing means of
driving time and comparing improvement scores of treat-
ments discussed above. We recommend the 1 − 𝛼 cred-
ible intervals of (−0.4659, 3.2313) and (5.1982, 9.3422) for
Lehmann’s and Sahu’s data, respectively, which are obtained
according to our procedure. The recommended intervals are
essentially equivalent to the intervals given by the method of
Fisher or Jeffreys.

3. Conclusions

Wecarry out Bayesian analysis of the Behrens-Fisher problem
in this paper.TheBayesian evidence for testing the hypothesis
𝐻
0
: 𝜇
1
= 𝜇
2
against 𝐻

1
: 𝜇
1
̸= 𝜇
2
is given. Simulation

results show that our evidence performs quite well and is
very close to the corresponding generalized frequentist evi-
dence and posterior predictive evidence for the Behrens-
Fisher problem. Based on the proposed evidence, amethod of
constructing the credible interval at a specified level for
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the difference of means 𝜃 = 𝜇
1
− 𝜇
2
is provided in a

Bayesian testing context. It is interesting that the credible
interval given by our method is just in accordance with that
derived by Fisher or Jeffreys. This way of constructing the
credible interval via the Bayesian testing evidence is in anal-
ogy with the way of constructing the confidence interval via
the frequentist evidence.

By this method of analyzing the Behrens-Fisher problem,
we give an efficient way of dealing with nuisance parameters
which are the source of the difficultywith this problem.This is
because our inferences about 𝜃 = 𝜇

1
− 𝜇
2
are based on the

posterior distribution of the interested parameter, which can
be easily obtained in the Bayesian framework even when nui-
sance parameters are present. Both the Bayesian evidence and
the credible interval can be computed quite easily by the
Monte Carlo method. Furthermore, by this method, even if
an informative priorwhich is different from that in (5) is used,
the corresponding Bayesian evidence and credible intervals
could be obtained smoothly. In other words, this method
provides an efficient way of combining the information con-
tained in the prior and that contained in the samples. Further
research would be needed to evaluate the performance of the
inferences by the proposed method if an informative prior is
introduced.
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