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Due to convenience and powerfulness in dealing with vagueness and uncertainty of real situation, hesitant fuzzy set has received
more and more attention and has been a hot research topic recently. To differently process and effectively aggregate hesitant fuzzy
information and capture their interrelationship, in this paper, we propose the hesitant fuzzy reducible weighted Bonferroni mean
(HFRWBM) and present its four prominent characteristics, namely, reductibility, monotonicity, boundedness, and idempotency.
Then, we further investigate its generalized form, that is, the generalized hesitant fuzzy reducible weighted Bonferroni mean
(GHFRWBM). Based on the discussion of model parameters, some special cases of the HFRWBM and GHFRWBM are studied in
detail. In addition, to deal with the situation that multicriteria have connections in hesitant fuzzy information aggregation, a three-
step aggregation approach has been proposed on the basis of the HFRWBM and GHFRWBM. In the end, we apply the proposed
aggregation operators to multicriteria aggregation and give an example to illustrate our results.

1. Introduction

In order to better understand the vagueness and uncertainty
of the real world and thus be able to explain it, the fuzzy
set (FS) theory has been extended and generalized to many
other forms, such as interval-valued fuzzy set [1], type-2
fuzzy set [2, 3], fuzzy multiset [4], intuitionistic fuzzy set [5],
interval-valued intuitionistic fuzzy set [6], and hesitant fuzzy
set [7]. Due to convenience and powerfulness in dealing with
vagueness and uncertainty of real situation, hesitant fuzzy
set has received more and more attention from researchers
and obtained some significant research results [8–12]. To
aggregate the hesitant fuzzy information, a lot of aggregation
operators have been developed and investigated, such as the
hesitant fuzzy averaging aggregation (HFA) operator, the
hesitant fuzzy geometric aggregation (HFGA) operator, the
hesitant fuzzy ordered weighted averaging (HFOWA) opera-
tor, the hesitant fuzzy orderedweighted geometric (HFOWG)
operator, and the hesitant fuzzy hybrid aggregation (HFHA)
operator [13].

The Bonferroni mean (BM) was introduced by Bonfer-
roni [14] six decades ago but has been a hot research topic
recently for its important role in the information aggregation,

which can provide for the aggregation lying between the
max and min operators and logical “oring” and “anding”
operators. A prominent characteristic of BM is that it not only
considers the importance of each criterion but also reflects
the interrelationship of the individual criterion [15]. The
extended BMs include the generalized Bonferroni mean [16],
the intuitionistic fuzzy Bonferroni mean [17], the interval-
valued intuitionistic fuzzy Bonferroni mean [18], the revised
Bonferronimean [19], the intuitionistic fuzzy geometric Bon-
ferroni mean [12], the hesitant fuzzy geometric Bonferroni
mean, and the hesitant fuzzy Choquet geometric Bonferroni
mean [20].

In reality, more differences are required to be considered
in the multicriteria aggregation process due to different func-
tions and influences among arguments in practical applica-
tions, especially, in hesitant fuzzy environment. To overcome
this limitation, some weighted BMs have been developed,
such as the intuitionistic fuzzy weighted Bonferroni mean
[17], the interval-valued intuitionistic fuzzy weighted Bonfer-
roni mean [18], the intuitionistic fuzzy normalized weighted
Bonferroni mean [12], and the revised generalized weighted
Bonferronimean [19]. To suit the hesitant fuzzy environment,
Zhou and He [12] proposed the weighted hesitant fuzzy
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Bonferroni mean, and Zhu et al. [20] defined the weighted
hesitant fuzzy geometric Bonferroni mean. However, a prob-
lem arises; that is, the HFBM, HFGBM, and HFCGBM
cannot be obtained, respectively, when all the weights of the
aggregated arguments are the same, which means the above
weighted hesitant fuzzy BMs have not the reducibility that is
a basic property among the weighted operators.

With the analysis above, in this paper, we propose the
hesitant fuzzy reducible weighted Bonferroni mean and its
generalized form and organize this paper as follows. Some
basic concepts and operations are reviewed in Section 2.
Sections 3 and 4, respectively, propose the hesitant fuzzy
reducible weighted Bonferroni mean (HFRWBM) and the
generalized hesitant fuzzy reducible weighted Bonferroni
mean (GHFRWBM) and study their desirable properties. In
Section 5, based on HFRWBM and GHFRWBM, a three-
step aggregation approach has been proposed to deal with
the hesitant fuzzy multicriteria aggregation, and a practical
example is provided to demonstrate their application. The
paper ends in Section 6 with concluding remarks.

2. Preliminaries

The Bonferroni mean (BM) and the generalized Bonferroni
mean (GBM) were originally introduced by Bonferroni [14]
and Zhou and He [16]. As two extensions of the arithmetic
average, they are two very useful multicriteria aggregation
operators, which consider the interrelationships among argu-
ments. Now we introduce the concepts of the BM and GBM
as follows.

Definition 1 (see [14]). Let 𝑝, 𝑞 ≥ 0, and 𝑎
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be
a collection of nonnegative numbers. Then, the Bonferroni
mean (BM) is defined as

BM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = (

1

𝑛 (𝑛 − 1)

𝑛

∑

𝑖,𝑗=1

𝑖 ̸= 𝑗

𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
)

1/(𝑝+𝑞)

. (1)

Definition 2 (see [16]). Let 𝑝, 𝑞, 𝑟 ≥ 0, and 𝑎
𝑖

(𝑖 = 1, 2, . . . , 𝑛)

be a collection of nonnegative numbers.Then, the generalized
Bonferroni mean (GBM) is defined as

GBM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (
1

𝑛 (𝑛 − 1) (𝑛 − 2)

𝑛

∑

𝑖,𝑗,𝑘=1

𝑖 ̸= 𝑗 ̸= 𝑘

𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
)

1/(𝑝+𝑞+𝑟)

.

(2)

It is obvious that the GBM could reduce to the BM if
𝑟 = 0, and the GBM can represent the interrelationship of
any three criteria. However, it is noted that the above BM
and GBM can only deal with the situation that the arguments
are represented by real number and ignore the weight vector
of the aggregated arguments. To deal with this issue, Xu
and Yager [17] extended BM to the fuzzy environment and
proposed the following intuitionistic fuzzy Bonferroni mean

(IFBM) and intuitionistic fuzzy weighted Bonferroni mean
(IFWBM).

Definition 3 (see [17]). Let 𝑝, 𝑞, 𝑟 ≥ 0, and 𝛼
𝑖

(𝑖 = 1, 2, . . . , 𝑛)

be a collection of intuitionistic fuzzy values. The intuition-
istic fuzzy Bonferroni mean (IFBM) and the intuitionistic
fuzzy weighted Bonferroni mean (IFWBM) are, respectively,
defined as

IFBM𝑝,𝑞 (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= (
1

𝑛(𝑛 − 1)

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

(𝛼
𝑝

𝑖
⊗ 𝛼
𝑞

𝑗
) )

1/(𝑝+𝑞)

,

(3)

IFWBM𝑝,𝑞 (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= (
1

𝑛(𝑛 − 1)

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

((𝑤
𝑖
𝛼
𝑝

𝑖
) ⊗ (𝑤

𝑗
𝛼
𝑞

𝑗
)))

1/(𝑝+𝑞)

.

(4)

Recently, Torra and Narukawa [7] originally proposed
the hesitant fuzzy set which is a more general fuzzy set and
permits the membership having a set of possible values.

Definition 4 (see [13]). Let 𝑋 be a fixed set; a hesitant fuzzy
set (HFS) on 𝑋 is in terms of a function that when applied to
𝑋 returns a subset of [0, 1].

To be easily understood, Xia and Xu [13] expressed the
HFS by a mathematical symbol:

𝐸 = {⟨𝑥, ℎ
𝐸 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (5)

where ℎ
𝐸
(𝑥) is a set of some values in [0, 1] and called

the hesitant fuzzy element (HFE), denoting the possible
membership degrees of the element 𝑥 to the set 𝐸.

Definition 5 (see [13]). For a HFE ℎ, 𝑠(ℎ) = ∑
𝛾∈ℎ

𝛾/𝑙(ℎ) is
called the score function of ℎ, where 𝑙(ℎ) is the number of
values in ℎ and 𝛾 is element of the hesitant fuzzy set ℎ. For two
HFEs,ℎ

1
andℎ
2
, if 𝑠(ℎ

1
) > 𝑠(ℎ

2
), thenℎ

1
> ℎ
2
; if 𝑠(ℎ

1
) = 𝑠(ℎ

2
),

then ℎ
1

= ℎ
2
.

There are some operational laws about any three HFEs; ℎ,
ℎ
1
, and ℎ

2
are as below:

(1) ℎ
𝜆

= ⋃
𝛾∈ℎ

{𝛾
𝜆
}, 𝜆 > 0,

(2) 𝜆ℎ = ⋃
𝛾∈ℎ

{1 − (1 − 𝛾)
𝜆
}, 𝜆 > 0,

(3) ℎ
1

⊗ ℎ
2

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
𝛾
2
},

(4) ℎ
1

⊕ ℎ
2

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1

+ 𝛾
2

− 𝛾
1
𝛾
2
},

(5) 𝜆(ℎ
1

⊕ ℎ
2
) = 𝜆ℎ

1
⊕ 𝜆ℎ
2
,

(6) (ℎ
1

⊗ ℎ
2
)
𝜆

= ℎ
𝜆

1
⊗ ℎ
𝜆

2
.
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By referencing to the IFBM and IFWBM, the following
hesitant fuzzy Bonferroni mean (HFBM) and the hesi-
tant fuzzy weighted Bonferroni mean (HFWBM) could be
defined:
HFBM𝑝,𝑞 (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
)

= (
1

𝑛(𝑛 − 1)

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
) )

1/(𝑝+𝑞)

,

HFWBM𝑝,𝑞 (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (
1

𝑛 (𝑛 − 1)

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

((𝑤
𝑖
ℎ
𝑝

𝑖
) ⊗ (𝑤

𝑗
ℎ
𝑞

𝑗
)))

1/(𝑝+𝑞)

.

(6)

According to the classic arithmetic averaging (AA)
and weighted averaging (WA) operators, the intuitionistic
fuzzy arithmetic averaging (IFAA) and intuitionistic fuzzy
weighted averaging (IFWA) operators, and the hesitant fuzzy
arithmetic averaging (HFAA) and hesitant fuzzy weighted
averaging (HFWA), it is found that the following reducibility
is the basic property among these operators; that is, if 𝑤

𝑖
=

1/𝑛, 𝑖 = 1, 2, . . . , 𝑛, then AA =WA, IFAA = IFWA, and HFAA
= HFWA.

It is obvious that the above HFBM and HFWBM are
not equal when 𝑤

𝑖
= 1/𝑛 and have not the reducibility. To

deal with this issue, Xia et al. [19] proposed the generalized
weighted Bonferroni mean (GWBM) and the correspond-
ing generalized hesitant fuzzy weighted Bonferroni mean
(GHFWBM) based on the GWBM, which are described as
follows:

GWBM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (

𝑛

∑

𝑖,𝑗,𝑘=1

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
)

1/(𝑝+𝑞+𝑟)

,

GHFWBM𝑝,𝑞,𝑟 (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗,𝑘=1,

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
ℎ
𝑝

𝑖
ℎ
𝑞

𝑗
ℎ
𝑟

𝑘
)

1/(𝑝+𝑞+𝑟)

.

(7)

However, another question arises; that is, the above
GWBM and GHFWBM just consider the whole correlation-
ship between the criterion and all criteria and cannot reflect
the interrelationship between the individual criterion and
other criteria which is the main advantage of the BM [15].
To overcome this drawback and introduce the reducibility,
we propose the hesitant fuzzy reducible weighted Bonferroni
mean (HFRWBM) and its generalized form called gener-
alized hesitant fuzzy reducible weighted Bonferroni mean
(GHFRWBM) in next sections.

3. Hesitant Fuzzy Reducible Weighted
Bonferroni Mean (HFRWBM)

In multicriteria aggregation, the performance of an alterna-
tive under a criterion may be presented by several possible

values. To aggregate all the possible values of an alternative
under the criteria and reflect the interrelationship between
the individual criterion and other criteria, we give a new hes-
itant fuzzy weighted Bonferroni mean with the reducibility,
which is defined as follows.

Definition 6. Let 𝑝, 𝑞 ≥ 0, and ℎ
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be a col-
lection of HFEs with the weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)

such that 𝑤
𝑖
≥ 0, 𝑤

𝑖
̸= 1, and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1. If

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
))

1/(𝑝+𝑞)

,

(8)

then HFRWBM𝑝,𝑞 is called a hesitant fuzzy reducible
weighted Bonferroni mean (HFRWBM).

Then, we can transform the HFRWBM in to the interre-
lationship HFRWBM form as follows:

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖=1,

𝑤
𝑖
ℎ
𝑝

𝑖
(

𝑛

⨁

𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑗

1 − 𝑤
𝑖

ℎ
𝑞

𝑗
))

1/(𝑝+𝑞)

.

(9)

We see that the term ⊕
𝑛

𝑗=1,𝑖 ̸= 𝑗
(𝑤
𝑗
/(1 − 𝑤

𝑖
))ℎ
𝑞

𝑗
is the

weighted power average satisfaction of all criteria except 𝐻
𝑖
,

and ⊕
𝑛

𝑗=1,𝑖 ̸= 𝑗
(𝑤
𝑗
/(1− 𝑤

𝑖
)) = 1. We denote the term as V𝑞

𝑖
. Thus

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖=1,

𝑤
𝑖
(ℎ
𝑝

𝑖
⊗ V𝑞
𝑖
))

1/(𝑝+𝑞)

.

(10)

Here then V𝑞
𝑖
is the weighted power average satisfaction

to all criteria except 𝐻
𝑖
, and HFRWBM𝑝,𝑞 represents the

weighted interrelationship between the individual criterion
ℎ
𝑖
and other criteria V

𝑖
which is similar to the BM.

Based on the operational law of HFRWBM, we further
derive the following results.

Theorem 7. Let 𝑝, 𝑞 ≥ 0, and ℎ
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be a
collection of HFEs with the weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)

such that 𝑤
𝑖

≥ 0, 𝑤
𝑖

̸= 1 and ∑
𝑛

𝑖=1
𝑤
𝑖

= 1; then the aggregation
value by using the HFRWBM is a HFE, and

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝜅
𝑖𝑗
)

1/(𝑝+𝑞)

= ⋃

𝑘
𝑖,𝑗
∈𝜅
𝑖𝑗,𝑖 ̸= 𝑗

{

{

{

(1 −

𝑛

∏

𝑖,𝑗=1,𝑖 ̸= 𝑗

(1 − 𝑘
𝑖,𝑗

))

1/(𝑝+𝑞)

}

}

}

,

(11)

where 𝜅
𝑖𝑗

= (𝑤
𝑖
𝑤
𝑗
/(1 − 𝑤

𝑖
))(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
) can be considered as

“bonding satisfaction” factor used as a calculation unit, captur-
ing the connection between ℎ

𝑖
and ℎ

𝑗
.
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Proof. By the operational laws (1)–(6) of HFEs, we obtain

𝜅
𝑖𝑗

=
𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
)

=
𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

⋃

𝑟
𝑖
∈ℎ
𝑖

𝑟
𝑗
∈ℎ
𝑗

(𝑟
𝑝

𝑖
𝑟
𝑞

𝑗
)

= ⋃

𝑟
𝑖
∈ℎ
𝑖

𝑟
𝑗
∈ℎ
𝑗

(1 − (1 − 𝑟
𝑝

𝑖
𝑟
𝑞

𝑗
)
𝑤
𝑖
𝑤
𝑗
/(1−𝑤

𝑖
)

) ,

(12)

which is also a HFE; then (8) can be written as

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝜅
𝑖𝑗
)
1/(𝑝+𝑞)

.

(13)

Furthermore, from the operational laws of HFEs, we have

(

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝜅
𝑖𝑗
) = ⋃

𝑘
𝑖,𝑗
∈𝜅
𝑖𝑗,𝑖 ̸= 𝑗

{

{

{

1 −

𝑛

∏

𝑖,𝑗=1,𝑖 ̸= 𝑗

(1 − 𝑘
𝑖,𝑗

)
}

}

}

. (14)

Therefore,

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝜅
𝑖𝑗
)

1/(𝑝+𝑞)

= ⋃

𝑘
𝑖,𝑗
∈𝜅
𝑖𝑗,𝑖 ̸= 𝑗

{

{

{

(1 −

𝑛

∏

𝑖,𝑗=1,𝑖 ̸= 𝑗

(1 − 𝑘
𝑖,𝑗

))

1/(𝑝+𝑞)

}

}

}

.

(15)

Then the proof is completed.

From (8), we can see that the HFRWBM can fully rep-
resent the interrelationship between the individual criterion
and other criteria by two types of conjunction calculations,
that is, ⊕ and ⊗. Moreover, after the original data being
operated by the conjunction calculations, their values have
been changed. In multicriteria aggregation problems, the
HFRWBM can result in the advantage of the BM considering
the individual criterion and other criteria in aggregation pro-
cess, which can take much more hesitant fuzzy information
into account.

The 𝜅
𝑖𝑗
can be considered as “bonding satisfaction” factor,

which is the basic calculation unit of the HFRWBM. Accord-
ing to (8), we can derive the reducibility of HFRWBM and
other useful properties as follows.

Property 1 (reducibility). Let 𝑝, 𝑞 ≥ 0, and ℎ
𝑖

(𝑖 = 1, 2, . . . , 𝑛)

be a collection of HFEs with the weight vector 𝑤 =

(1/𝑛, 1/𝑛, . . . , 1/𝑛); then

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = HFBM𝑝,𝑞 (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
) .

(16)

Proof. Since 𝑤
𝑖

= 1/𝑛 (𝑖 = 1, 2, . . . , 𝑛), then, by Definition 6,
we have

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (
1

𝑛 (𝑛 − 1)

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
))

1/(𝑝+𝑞)

= HFBM𝑝,𝑞 (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ,

(17)

which complete the proof of the property.

Property 2 (monotonicity). Let ℎ
𝛼

= {ℎ
𝛼1

, ℎ
𝛼2

, . . . , ℎ
𝛼𝑛

} and
ℎ
𝛽

= {ℎ
𝛽1

, ℎ
𝛽2

, . . . , ℎ
𝛽𝑛

} be two collections of HFEs, if, for
any 𝛾

𝛼𝑖
∈ ℎ
𝛼𝑖

and 𝛾
𝛽𝑖

∈ ℎ
𝛽𝑖
, we have 𝛾

𝛼𝑖
≤ 𝛾
𝛽𝑖

for all
𝑖 (𝑖 = 1, 2, . . . , 𝑛), and thus

HFRWBM𝑝,𝑞
𝑤

(ℎ
𝛼1

, ℎ
𝛼2

, . . . , ℎ
𝛼𝑛

)

≤ HFRWBM𝑝,𝑞
𝑤

(ℎ
𝛽1

, ℎ
𝛽2

, . . . , ℎ
𝛽𝑛

) .

(18)

Proof. Using the terms above and (11), we have

(1 −

𝑛

∏

𝑖,𝑗=1,𝑖 ̸= 𝑗

(1 − 𝑘
𝛼
𝑖,𝑗

))

1/(𝑝+𝑞)

≤ (1 −

𝑛

∏

𝑖,𝑗=1,𝑖 ̸= 𝑗

(1 − 𝑘
𝛽
𝑖,𝑗

))

1/(𝑝+𝑞)

.

(19)

Then,

(

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝜅
𝛼
𝑖𝑗

)

1/(𝑝+𝑞)

= ⋃

𝑘
𝛼𝑖𝑗
∈𝜅
𝛼𝑖𝑗,𝑖 ̸= 𝑗

{

{

{

(1 −

𝑛

∏

𝑖,𝑗=1,𝑖 ̸= 𝑗

(1 − 𝑘
𝛼
𝑖𝑗

))

1/(𝑝+𝑞)

}

}

}

≤ (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝜅
𝛽
𝑖𝑗

)

1/(𝑝+𝑞)

= ⋃

𝑘
𝛽𝑖𝑗
∈𝜅
𝛽𝑖𝑗,𝑖 ̸= 𝑗

{

{

{

(1 −

𝑛

∏

𝑖,𝑗=1,𝑖 ̸= 𝑗

(1 − 𝑘
𝛽
𝑖𝑗

))

1/(𝑝+𝑞)

}

}

}

,

(20)

which complete the proof of the property.

Property 3 (boundedness). Let 𝑝, 𝑞 ≥ 0, and ℎ
𝑖

(𝑖 =

1, 2, . . . , 𝑛) be a collection of HFEs with the weight vector
𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
) such that𝑤

𝑖
≥ 0,𝑤

𝑖
̸= 1, and∑

𝑛

𝑖=1
𝑤
𝑖
= 1;

we have

ℎ
−

≤ HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ≤ ℎ
+
, (21)

where ℎ
− and ℎ

+ are lower and upper bounds, respectively [8],
with ℎ

−
= min

𝑖
{𝛾
𝑖
| 𝛾
𝑖
∈ ℎ
𝑖
} and ℎ

+
= max

𝑖
{𝛾
𝑖
| 𝛾
𝑖
∈ ℎ
𝑖
}.
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Proof. Since ℎ
−

≤ 𝛾
𝑖
≤ ℎ
+, for all 𝑖, then

(ℎ
−
)
𝑝+𝑞

= (ℎ
−
)
𝑝

⊗ (ℎ
−
)
𝑞

≤ ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗

≤ (ℎ
+
)
𝑝

⊗ (ℎ
+
)
𝑞

= (ℎ
+
)
𝑝+𝑞

,

((ℎ
−
)
𝑝+𝑞

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

)

1/(𝑝+𝑞)

≤ (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
))

1/(𝑝+𝑞)

≤ ((ℎ
+
)
𝑝+𝑞

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

)

1/(𝑝+𝑞)

.

(22)

Therefore,

ℎ
−

≤ HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
))

1/(𝑝+𝑞)

≤ ℎ
+
,

(23)

which complete the proof of the property.

Property 4 (idempotency). Let 𝑝, 𝑞 ≥ 0, and ℎ
𝑖

(𝑖 =

1, 2, . . . , 𝑛) be a collection of HFEs with the weight vector
𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
) such that𝑤

𝑖
≥ 0,𝑤

𝑖
̸= 1, and∑

𝑛

𝑖=1
𝑤
𝑖
= 1.

If all ℎ
𝑖
are equal; that is, ℎ

𝑖
= ℎ for all 𝑖, then

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = ℎ. (24)

Proof. Since ℎ
𝑖
= ℎ (𝑖 = 1, 2, . . . , 𝑛), then

HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
))

1/(𝑝+𝑞)

= (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

ℎ
𝑝+𝑞

)

1/(𝑝+𝑞)

= (ℎ
𝑝+𝑞

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

)

1/(𝑝+𝑞)

= (ℎ
𝑝+𝑞

)
1/(𝑝+𝑞)

= ℎ,

(25)

which complete the proof of the property.

Now, if we change the parameters 𝑝 and 𝑞 of the
HFRWBM, then we can get some special cases as follows.

Case 1. If 𝑝 = 0 and 𝑞 = 0, based on (8), we have

HFRWBM0,0
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) =

𝑛

⨁

𝑖=1

𝑤
𝑖
= 1. (26)

Case 2. If 𝑝 = 1 and 𝑞 = 0, based on (8), we get

HFRWBM1,0
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

(ℎ
1

𝑖
⊗ ℎ
0

𝑗
))

1/1

=

𝑛

⨁

𝑖

𝑤
𝑖
ℎ
𝑖
= HFWA (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
) .

(27)

Case 3. If 𝑝 = 1 and 𝑞 = 1, then (8) is transformed as

HFRWBM1,1
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑤
𝑖
𝑤
𝑗

1 − 𝑤
𝑖

(ℎ
𝑖
⊗ ℎ
𝑗
))

1/2

,

(28)

whichwe call a hesitant fuzzy reducible squareweighted Bon-
ferroni mean (HFRSWBM).

Case 4. If 𝑝 = 2 and 𝑞 = 0, then (8) is transformed as

HFRWBM2,0
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = (

𝑛

⨁

𝑖=1

𝑤
𝑖
ℎ
2

𝑖
)

1/2

, (29)

which we call a hesitant fuzzy Euclidean distance weighted
Bonferroni mean (HFEDWBM).

Based on the above four special cases, we find that (1)

Case 1 presents orthonormality of the HFRWBM operator
which is an important property of the weighted aggregation
operator; (2) Case 2 proves the HFWA operator is just a spe-
cial case of the new hesitant fuzzy weighted aggregation oper-
ator; (3) Case 3 proposes the simplest interrelated HFRWBM
operator; (4) Case 4 shows that the new HFRWBM operator
could be used to compute the Euclidean distance between two
HFEs. Generally, the HFRWBM1,1 is recommended to use in
hesitant fuzzy multicriteria aggregation.

4. Generalized Hesitant Fuzzy Reducible
Weighted Bonferroni Mean (GHFRWBM)

In this section, by considering the correlation of any three
aggregated arguments instead of any two, we further extend
the HFRWBM to a generalized form, that is, the generalized
hesitant fuzzy reducible weighted Bonferroni mean (GHFR-
WBM), based on the HFRWBM operator.
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Definition 8. Let 𝑝, 𝑞, 𝑟 ≥ 0, and ℎ
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be a col-
lection of HFEs with the weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)

such that 𝑤
𝑖
≥ 0, 𝑤

𝑖
̸= 1, and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1. If

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡

𝑤
𝑖
𝑤
𝑗
𝑤
𝑡

(1 − 𝑤
𝑖
) (1 − 𝑤

𝑖
− 𝑤
𝑗
)

× (ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
⊗ ℎ
𝑟

𝑡
))

1/(𝑝+𝑞+𝑟)

,

(30)

then GHFRWBM𝑝,𝑞,𝑟 is called a generalized hesitant fuzzy
reducible weighted Bonferroni mean.

Then, we can transform the GHFRWBM in to two inter-
relationship forms as follows:

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖=1

𝑤
𝑖
ℎ
𝑝

𝑖

𝑛

⨁

𝑗=1,𝑖 ̸= 𝑗

𝑛
𝑗
ℎ
𝑞

𝑗

𝑛

⨁

𝑡=1,𝑡 ̸= 𝑖 ̸= 𝑗

𝑚
𝑡
ℎ
𝑟

𝑡
)

1/(𝑝+𝑞+𝑟)

,

(31)

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖=1

𝑤
𝑖
ℎ
𝑝

𝑖
(

𝑛

⨁

𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡

𝑢
𝑗,𝑡

(ℎ
𝑞

𝑗
⊗ ℎ
𝑟

𝑡
)))

1/(𝑝+𝑞+𝑟)

,

(32)

where 𝑛
𝑗

= 𝑤
𝑗
/(1 − 𝑤

𝑖
), 𝑚
𝑡

= 𝑤
𝑡
/(1 − 𝑤

𝑖
− 𝑤
𝑗
), and 𝑢

𝑗,𝑡
=

𝑤
𝑗
𝑤
𝑡
/(1 − 𝑤

𝑖
)(1 − 𝑤

𝑖
− 𝑤
𝑗
).

From (31), we see that the term ⊕
𝑛

𝑗=1,𝑖 ̸= 𝑗
𝑛
𝑗
ℎ
𝑞

𝑗
is the

weighted power average satisfaction to all criteria except 𝑖,
with ∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑛
𝑗

= 1. The term ⊕
𝑛

𝑡=1,𝑡 ̸= 𝑖 ̸= 𝑗
𝑚
𝑡
ℎ
𝑟

𝑡
is the weighted

power average satisfaction of all criteria except 𝑖 and 𝑗, with
∑
𝑛

𝑡=1,𝑡 ̸= 𝑗 ̸= 𝑖
𝑚
𝑡

= 1. Then, the new operator represents the
interrelationship between any three aggregated arguments,
which is similar to the GBM. From (32), we see that the
term ⊕

𝑛

𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡
𝑢
𝑗,𝑡

(ℎ
𝑞

𝑗
⊗ ℎ
𝑟

𝑡
) is the weighted power average

satisfaction to any two criteria except 𝑖with∑
𝑛

𝑗,𝑡=1,𝑗 ̸= 𝑡 ̸= 𝑖
𝑢
𝑗,𝑡

=

1, which represents another interrelationship form between
any three aggregated arguments.

Moreover, based on the operational law of HFEs, HFR-
WBM, and GHFRWBM, we further derive the following
results.

Theorem 9. Let 𝑝, 𝑞, 𝑟 ≥ 0, and ℎ
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be a
collection of HFEs with the weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)

such that 𝑤
𝑖
≥ 0, 𝑤

𝑖
̸= 1, and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1; then the aggregation

value by using the GHFRWBM is a HFE, and

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

𝜅
𝑖𝑗𝑡

)

1/(𝑝+𝑞+𝑟)

= ⋃

𝑘
𝑖,𝑗,𝑡
∈𝜅
𝑖𝑗𝑡,𝑖 ̸= 𝑗 ̸= 𝑡

{{{

{{{

{

(1 −

𝑛

∏

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

(1 − 𝑘
𝑖,𝑗,𝑡

))

1/(𝑝+𝑞+𝑟)

}}}

}}}

}

,

(33)

where 𝑛
𝑗

= 𝑤
𝑗
/(1 − 𝑤

𝑖
), 𝑚
𝑡

= 𝑤
𝑡
/(1 − 𝑤

𝑖
− 𝑤
𝑗
), and

𝜅
𝑖𝑗𝑡

= 𝑤
𝑖
𝑛
𝑗
𝑚
𝑡
(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
⊗ ℎ
𝑟

𝑡
). 𝜅
𝑖𝑗𝑡
can be considered a “bonding

satisfaction” factor, capturing the connection among ℎ
𝑖
, ℎ
𝑗
, and

ℎ
𝑡
.

Proof. By the operational laws (1)–(6) of HFEs and (12), we
get

𝜅
𝑖𝑗𝑡

= 𝑤
𝑖
𝑛
𝑗
𝑚
𝑡
(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
⊗ ℎ
𝑟

𝑡
)

= ⋃

𝑟
𝑖
∈ℎ
𝑖

𝑟
𝑗
∈ℎ
𝑗

𝑟
𝑡
∈ℎ
𝑡

(1 − (1 − 𝑟
𝑝

𝑖
𝑟
𝑞

𝑗
𝑟
𝑟

𝑡
)
𝑤
𝑖
𝑛
𝑗
𝑚
𝑡

) , (34)

which is also a HFE; then (8) can be written as
GHFRWBM𝑝,𝑞,𝑟

𝑤
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡

𝜅
𝑖𝑗𝑡

)

1/(𝑝+𝑞+𝑟)

.

(35)

Furthermore, from the operational law of HFEs, we have

(

𝑛

⨁

𝑖,𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡

𝜅
𝑖𝑗𝑡

)

1/(𝑝+𝑞+𝑟)

= ⋃

𝑘
𝑖,𝑗,𝑡
∈𝜅
𝑖𝑗𝑡,𝑖 ̸= 𝑗 ̸= 𝑡

{

{

{

1 −

𝑛

∏

𝑖,𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡

(1 − 𝑘
𝑖,𝑗,𝑡

)
}

}

}

.

(36)

Therefore,
GHFRWBM𝑝,𝑞,𝑟

𝑤
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

𝜅
𝑖𝑗𝑡

)

1/(𝑝+𝑞+𝑟)

= ⋃

𝑘
𝑖,𝑗,𝑡
∈𝜅
𝑖𝑗𝑡,𝑖 ̸= 𝑗 ̸= 𝑡

{{{

{{{

{

(1 −

𝑛

∏

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

(1 − 𝑘
𝑖,𝑗,𝑡

))

1/(𝑝+𝑞+𝑟)

}}}

}}}

}

.

(37)

Then the proof is completed.
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According to (30), we can derive the reducibility, mono-
tonicity, boundedness, and idempotency of the GHFRWBM
operator as follows.

Property 5 (reducibility). Let 𝑝, 𝑞, 𝑟 ≥ 0, and ℎ
𝑖

(𝑖 =

1, 2, . . . , 𝑛) be a collection of HFEs with the weight vector
𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)); then

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= GHFBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) .

(38)

Proof. Since 𝑤
𝑖

= 1/𝑛 (𝑖 = 1, 2, . . . , 𝑛), then by Definition 8,
we have

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (
1

𝑛 (𝑛 − 1) (𝑛 − 2)

×

𝑛

⨁

𝑖,𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡

(ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
⊗ ℎ
𝑟

𝑡
))

1/(𝑝+𝑞+𝑟)

= GHFBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ,

(39)

which complete the proof of the property.

Property 6 (monotonicity). Let ℎ
𝛼

= {ℎ
𝛼1

, ℎ
𝛼2

, . . . , ℎ
𝛼𝑛

} and
ℎ
𝛽

= {ℎ
𝛽1

, ℎ
𝛽2

, . . . , ℎ
𝛽𝑛

} be two collections of HFEs, if, for
any 𝛾

𝛼𝑖
∈ ℎ
𝛼𝑖

and 𝛾
𝛽𝑖

∈ ℎ
𝛽𝑖
, we have 𝛾

𝛼𝑖
≤ 𝛾
𝛽𝑖

for all
𝑖 (𝑖 = 1, 2, . . . , 𝑛), and thus

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
𝛼1

, ℎ
𝛼2

, . . . , ℎ
𝛼𝑛

)

≤ GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
𝛽1

, ℎ
𝛽2

, . . . , ℎ
𝛽𝑛

) .

(40)

Proof. Using the terms above and (33), we have

(1 −

𝑛

∏

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

(1 − 𝑘
𝛼
𝑖,𝑗,𝑡

))

1/(𝑝+𝑞+𝑟)

≤ (1 −

𝑛

∏

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

(1 − 𝑘
𝛽
𝑖,𝑗,𝑡

))

1/(𝑝+𝑞+𝑟)

.

(41)

Then,

(

𝑛

⨁

𝑖,𝑗,𝑡=1, 𝑖 ̸= 𝑗 ̸= 𝑡

𝜅
𝛼
𝑖𝑗𝑡

)

1/(𝑝+𝑞+𝑟)

= ⋃

𝑘
𝛼𝑖𝑗𝑡
∈𝜅
𝛼𝑖𝑗𝑡 ,𝑖 ̸= 𝑗 ̸= 𝑡

{{{

{{{

{

(1 −

𝑛

∏

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

(1 − 𝑘
𝛼
𝑖𝑗𝑡

))

1/(𝑝+𝑞+𝑟)

}}}

}}}

}

≤ (

𝑛

⨁

𝑖,𝑗,𝑡=1, 𝑖 ̸= 𝑗 ̸= 𝑡

𝜅
𝛽
𝑖𝑗

)

1/(𝑝+𝑞+𝑟)

= ⋃

𝑘
𝛽𝑖𝑗𝑡
∈𝜅
𝛽𝑖𝑗𝑡 ,𝑖 ̸= 𝑗 ̸= 𝑡

{{{

{{{

{

(1 −

𝑛

∏

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

(1 − 𝑘
𝛽
𝑖𝑗𝑡

))

1/(𝑝+𝑞+𝑟)

}}}

}}}

}

,

(42)

which complete the proof of the property.

Property 7 (boundedness). Let 𝑝, 𝑞, 𝑟 ≥ 0, and ℎ
𝑖

(𝑖 =

1, 2, . . . , 𝑛) be a collection of HFEs with the weight vector
𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
) such that𝑤

𝑖
≥ 0,𝑤

𝑖
̸= 1, and∑

𝑛

𝑖=1
𝑤
𝑖
= 1;

we have

ℎ
−

≤ GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ≤ ℎ
+
, (43)

where ℎ
− and ℎ

+ are lower and upper bounds, respectively [8],
with ℎ

−
= min

𝑖
{𝛾
𝑖
| 𝛾
𝑖
∈ ℎ
𝑖
} and ℎ

+
= max

𝑖
{𝛾
𝑖
| 𝛾
𝑖
∈ ℎ
𝑖
}.

Proof. Since ℎ
−

≤ 𝛾
𝑖
≤ ℎ
+, for all 𝑖, then

(ℎ
−
)
𝑝+𝑞+𝑟

= (ℎ
−
)
𝑝

⊗ (ℎ
−
)
𝑞

⊗ (ℎ
−
)
𝑟

≤ ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
⊗ ℎ
𝑟

𝑡
≤ (ℎ
+
)
𝑝

⊗ (ℎ
+
)
𝑞

⊗ (ℎ
+
)
𝑟

= (ℎ
+
)
𝑝+𝑞+𝑟

,

ℎ
−

≤ (

𝑛

⨁

𝑖,𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡

𝑤
𝑖
𝑤
𝑗
𝑤
𝑡

(1 − 𝑤
𝑖
) (1 − 𝑤

𝑖
− 𝑤
𝑗
)

× (ℎ
𝑝

𝑖
⊗ ℎ
𝑞

𝑗
⊗ ℎ
𝑟

𝑡
))

1/(𝑝+𝑞+𝑟)

≤ ℎ
+
.

(44)

Therefore,

ℎ
−

≤ GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ≤ ℎ
+
, (45)

which complete the proof of the property.

Property 8 (idempotency). Let 𝑝, 𝑞, 𝑟 ≥ 0, and ℎ
𝑖

(𝑖 =

1, 2, . . . , 𝑛) be a collection of HFEs with the weight vector
𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
) such that𝑤

𝑖
≥ 0,𝑤

𝑖
̸= 1, and∑

𝑛

𝑖=1
𝑤
𝑖
= 1.

If all ℎ
𝑖
are equal; that is, ℎ

𝑖
= ℎ for all 𝑖, then

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = ℎ. (46)
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Proof. Since ℎ
𝑖
= ℎ (𝑖 = 1, 2, . . . , 𝑛), then

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗,𝑡=1

𝑖 ̸= 𝑗 ̸= 𝑡

𝑤
𝑖
𝑤
𝑗
𝑤
𝑡

(1 − 𝑤
𝑖
) (1 − 𝑤

𝑖
− 𝑤
𝑗
)

(ℎ)
𝑝+𝑞+𝑟

)

1/(𝑝+𝑞+𝑟)

= (ℎ
𝑝+𝑞

)
1/(𝑝+𝑞)

= ℎ,

(47)

which complete the proof of the property.

Now, if we change the parameters 𝑝, 𝑞, and 𝑟 of the
HFRWBM, then we can get some special cases as follows.

Case 1. If 𝑟 = 0, based on (30), we have

GHFRWBM𝑝,𝑞,𝑟
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= HFRWBM𝑝,𝑞
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) .

(48)

Case 2. If 𝑝 = 0, 𝑞 = 0, and 𝑟 = 0, based on (30), we get

GHFRWBM0,0,0
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) =

𝑛

⨁

𝑖=1

𝑤
𝑖
= 1. (49)

Case 3. If 𝑝 = 1, 𝑞 = 0, and 𝑟 = 0, based on (30), we have

HFRWBM1,0,0
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) =

𝑛

⨁

𝑖

𝑤
𝑖
ℎ
𝑖

= HFWA (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) .

(50)

Case 4. If 𝑝 = 1, 𝑞 = 1, and 𝑟 = 1, then (30) is transformed as

GHFRWBM1,1,1
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= (

𝑛

⨁

𝑖,𝑗,𝑡=1,𝑖 ̸= 𝑗 ̸= 𝑡

𝑤
𝑖
𝑤
𝑗
𝑤
𝑡

(1 − 𝑤
𝑖
) (1 − 𝑤

𝑖
− 𝑤
𝑗
)

× (ℎ
𝑖
⊗ ℎ
𝑗

⊗ ℎ
𝑡
))

1/3

,

(51)

which we call a generalized hesitant fuzzy reducible triple
weighted BM (GHFRTWBM).

Case 5. If 𝑝 = 2, 𝑞 = 0, and 𝑟 = 0, then (30) is transformed as

GHFRWBM2,0,0
𝑤

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = (

𝑛

⨁

𝑖=1

𝑤
𝑖
ℎ
2

𝑖
)

1/2

, (52)

which we call a generalized hesitant fuzzy Euclidean distance
weighted BM (GHFREWBM).

Based on the above five cases, we find that (1) Case 1
proves that the GHFRWBM is a generalized form of the

HFRWBM and reduces to the HFRWBM when 𝑟 = 0; (2)

Case 2 presents orthonormality of the GHFRWBM operator;
(3) Case 3 indicates the HFWA operator is a special case of
theGHFRWBM; (4)Case 4 proposes the simplest interrelated
GHFRWBM; (5) Case 5 shows that the GHFRWBM could be
used to compute the Euclidean distance between two HFEs.

5. An Approach to Hesitant Fuzzy
Multicriteria Aggregation

Based onDefinitions 6 and 8 andTheorems 7 and 9, belowwe
develop a three-step approach for multicriteria aggregation
under hesitant fuzzy environment.

Step 1. For a hesitant fuzzy multicriteria aggregation prob-
lem, let 𝑌 = {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
} be a set of 𝑚 alternative, and

let 𝐶 = {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
} be a set of 𝑛 criteria, whose weight

vector is 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇, such that 𝑤

𝑗
≥ 0 and

∑
𝑛

𝑗=1
𝑤
𝑗

= 1, where 𝑤
𝑗
denotes the important degree of the

criteria 𝑐
𝑗
. The decision makers provide all possible values

so that the alternative 𝑦
𝑖
satisfies the criteria 𝑐

𝑗
represented

by a HFE ℎ
𝑖𝑗

= ∪
𝑟
𝑖𝑗
∈ℎ
𝑖𝑗

{𝑟
𝑖𝑗
} and all ℎ

𝑖𝑗
construct a hesitant

fuzzy multicriteria aggregation matrix 𝐻
𝑖𝑗

= (ℎ
𝑖𝑗
)
𝑚×𝑛

with
𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛.

Step 2. Utilize the HFRWBM or GHFRWBM (here, we
recommend to take square or triple operator, respectively;
i.e., 𝑝 = 𝑞 = 1 or 𝑝 = 𝑞 = 𝑟 = 1) to aggregate
all the performance values ℎ

𝑖𝑗
of the 𝑖th line and get the

overall performance value ℎ
𝑖
corresponding to the alternative

𝑦
𝑖
; that is, ℎ

𝑖
= HFRWBM1,1

𝑤
(ℎ
𝑖1

, ℎ
𝑖2

, . . . , ℎ
𝑖𝑛

) or ℎ
𝑖

=

GHFRWBM1,1,1
𝑤

(ℎ
𝑖1

, ℎ
𝑖2

, . . . , ℎ
𝑖𝑛

).

Step 3. Compute the scores 𝑠(ℎ
𝑖
) of ℎ
𝑖
and rank all the alter-

natives 𝑦
𝑖

(𝑖 = 1, 2, . . . , 𝑛) according to 𝑠(ℎ
𝑖
) in descending

order and choose the optimal alternative.

In the following, we apply the HFRWBM and GHFR-
WBM to a multicriteria aggregation problem under the
hesitant fuzzy environment.

Example. Let us consider a company which intends to rent
a house for its local office. Three alternatives 𝑦

𝑖
(𝑖 = 1, 2, 3)

are available, and the decision makers consider three criteria
to decide which house to choose: 𝑐

1
(price), 𝑐

2
(location),

and 𝑐
3
(transportation). The weight vector of three criteria is

𝑤 = (0.4, 0.3, 0.3)
𝑇 [21]. Assume that the characteristics of the

alternatives 𝑦
𝑖
with respect to the criteria 𝑐

𝑗
(𝑗 = 1, 2, 3) are

represented by HFEs ℎ
𝑖𝑗

= ∪
𝑟
𝑖𝑗
∈ℎ
𝑖𝑗

{𝑟
𝑖𝑗
}, where 𝑟

𝑖𝑗
indicates the

degree to which the alternative 𝑦
𝑖
satisfies the criterion 𝑐

𝑗
. All

ℎ
𝑖𝑗
are contained in a hesitant fuzzy multicriteria aggregation

matrix 𝐻
𝑖𝑗

= (ℎ
𝑖𝑗
)
3×3

(see Table 1).

In Table 1, all criteria 𝑐
𝑗
are transformed to the benefit

type criteria and do not need normalization. We first utilize
the HFRWBM (here, we take 𝑝 = 𝑞 = 1, that is, the
HFRSWBM) to aggregate all the performance values ℎ

𝑖𝑗
of the

𝑖th line and get the overperformance value ℎ
𝑖
corresponding
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Table 1: The hesitant fuzzy multicriteria aggregation matrix.

Alternatives Criteria
𝑐
1

𝑐
2

𝑐
3

𝑦
1

(0.68, 0.77) (0.45, 0.55, 0.60) (0.82, 0.95)
𝑦
2

(0.72, 0.83, 0.91) (0.78) (0.15, 0.27, 0.35)
𝑦
3

(0.21, 0.33) (0.82) (0.67, 0.75)

to the alternative 𝑦
𝑖
; then we calculate the scores of all the

alternatives next:

𝑠 (ℎ
1
) = 0.5051, 𝑠 (ℎ

2
) = 0.3892, 𝑠 (ℎ

3
) = 0.4453.

(53)

Therefore, 𝑦
1

> 𝑦
3

> 𝑦
2
, and the alternative 𝑦

1
is the optimal

alternative.
Now, we use the GHFRWBM operator (here, we take 𝑝 =

𝑞 = 𝑟 = 1, i.e., the GHFRSWBM) to aggregate the hesitant
fuzzy data inTable 1 and obtain the scores of three alternatives
as follows:

𝑠 (ℎ
1
) = 0.2078, 𝑠 (ℎ

2
) = 0.1754, 𝑠 (ℎ

3
) = 0.1321.

(54)

Therefore, we give the ranking of 𝑦
𝑖
as 𝑦
1

> 𝑦
2

> 𝑦
3
, and the

alternative 𝑦
1
is still the optimal alternative.

Based on the aforementioned numeral results, there are
three phenomena that could be found.

In the first, the whole ranking of the alternatives has
changed, despite the fact that the optimal decision has been
unchanged. That is because the HFRWBM operator pays
more attention to some arguments, whose performances
are too high or too low, while the GHFRWBM operator
focuses on the whole arguments instead. In other words, the
HFRWBMoperator reflects the interrelationship between the
individual criterion and other criteria, but the GHFRWBM
operator presents the interrelationship of any three criteria.

In the second, the aggregated scores by the GHFRWBM
are smaller than the corresponding aggregated scores by
the HFRWBM. That is because the GHFRWBM operator is
a three-layer multiplication calculation and the HFRWBM
operator is a two-layer multiplication calculation, which
could be seen from (8) and (30). Therefore, we will get
the smaller aggregated scores and the lower identification
when the GHFRWBM operator is used to aggregate any
four or more criteria at once. Just for this, we propose
the GHFRWBM operator to use a three-layer multiplication
calculation, that is, GHFRWBM𝑝,𝑞,𝑟.

In the last, the aggregated hesitant fuzzy values derived
by the HFRWBM or GHFRWBM operators depend on the
choice of the parameters 𝑝, 𝑞, and 𝑟. In general, the bigger
parameters are, the more calculation effort needed. Then, we
recommend taking 𝑝 = 𝑞 = 𝑟 = 1 and corresponding to
the HFRSWBM andGHFRTWBM, respectively, which is not
only an intuitive and simple method but also represents an
interrelationship of three individual arguments.

6. Concluding Remarks

The Bonferroni mean (BM) operator is a traditional mean
type aggregation operator bounded by themax andmin oper-
ators, which can capture the expressed interrelationship of the
individual arguments. In this paper, we have extended the
weighted BM to accommodate hesitant fuzzy environment
and proposed the hesitant fuzzy reducible weighted Bonfer-
roni mean (HFRWBM) and defined the generalized form
of this new operator. Next, we have proved and discussed
the desirable characteristics of the HFRWBM and GHFR-
WBM operators which include reducibility, monotonicity,
boundedness, and idempotency. Some special cases have
been given to represent these desirable characteristics and
compare the different HFRWBMs and GHFRWBMs with
changed parameters 𝑝, 𝑞, and 𝑟. It is worth noting that the
aggregated hesitant fuzzy values derived by the HFRWBM
or GHFRWBM operator depend on the choice of the above
parameters, and these parameters are not robust.

In the end, to deal with the situation that the criteria
have connections in hesitant fuzzy multicriteria aggregation,
a three-step aggregation approach has been proposed on
the basis of the HFRWBM and GHFRWBM hesitant fuzzy
aggregation operators. Then, an example has been provided
to illustrate our results.
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