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Ranking Efficient Decision Making Units (DMUs) are an important issue in Data Envelopment Analysis (DEA). This is one of
the main areas for the researcher. Different methods for this purpose have been suggested. Appearing nonzero slack in optimal
solution makes the method problematic. In this paper, we modify the nonradial supper efficiency model to remove this difficulty.
Some numerical examples are solved by modified model.

1. Introduction

Data Envelopment Analysis is a mathematical programming
technique which evaluates the relative efficiency of DMUs.
DEA classifies the DMUs into two different classes, called set
of efficient DMUs and the set of inefficient DMUs.

Conventional DEA model cannot differentiate the effi-
cient DMUs whose efficiency value is one. Toward this
end, different methods are suggested; see [1–3]. One of
the important models is AP-Model which was proposed by
Andersen and Petersen [4] and also see [5, 6].

This model is widely used and the results are almost
satisfactory. The main deficiencies of AP model are being as
follows:

(1) infeasible for some kind of data,
(2) unstable in the sense that a small variation in data

causes big increase (degrease) in the result,
(3) not taking into account the nonzero slacks which

appear in optional solution (projection of omitted
DMU is weak efficient in new PPS).

For removing these difficulties, many researches have sug-
gested different models; for example, see [7–9].

Tone [7] suggested the nonradial supper efficiencymodel.
Thismodel fails to remove the 3rd deficiency. In this paper, we
modify the nonradial supper efficiency model that takes into
account nonzero slack that appears in optimal solution.

The rest of the paper is organized as follows. In Sections 2
and 3, AP-model and Tone’s model are discussed. Section 4
contains the modified model. In Sections 5 and 6, input
and output oriented models are proposed. Discussion and
conclusion cover Section 7.

2. Anderson Peterson (AP) Model

Consider 𝑛 decision making units DMU𝑗 (𝑗 = 1, . . . , 𝑛)

which consumes 0 ̸= 𝑥𝑗 ≥ 0 and 𝑥𝑗 ∈ 𝑅
𝑚

(𝑗 = 1, . . . , 𝑛)

vector as input to produce output vector 0 ̸= 𝑦𝑗 ≥ 0 and
𝑦𝑗 ∈ 𝑅

𝑠
(𝑗 = 1, . . . , 𝑛). The supper efficiency model may be

written as follows:

𝜃
∗
𝑝 = Min 𝜃

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 + 𝑠
−
𝑖 = 𝜃𝑥𝑖𝑝 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 − 𝑠
+
𝑟 = 𝑦𝑟𝑝 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝

𝑠
−
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚

𝑠
+
𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠.

(1)
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Figure 1

The following example which has been taken from [7]
shows the deficiency in case of having nonzero slacks in
optimal solution.

Example 1. Consider the data given by Table 1.

By using AP-Model,

Sup 𝐴 = 𝜃
∗
𝐴 = 1 𝑆

−∗
2 = 4

Sup 𝐵 = 𝜃
∗
𝐵 = 1.260 All slacks are zero

Sup 𝐶 = 𝜃
∗
𝐶 = 1.133 All slacks are zero

Sup 𝐷 = 𝜃
∗
𝐷 = 1.250 𝑆

−∗
1 = 7.5

Sup 𝐸 = 𝜃
∗
𝐸 = 0.750

Sup 𝐹 = 𝜃
∗
𝐹 = 1.

(2)

In other words, the supper efficiencies are as follows.

𝜃
∗
𝐴 = 1 − 4𝜀 (∗)

𝜃
∗
𝐵 = 1.260

𝜃
∗
𝐶 = 1.133

𝜃
∗
𝐷 = 1.25 − 7.5𝜀 (∗)

𝜃
∗
𝐸 = 0.750

𝜃
∗
𝐹 = 1 (∗) .

(3)

Note. These values are not correct in [7], because the result
shown in the paper has taken from original paper in which
𝐹 is not included. From Figure 1 it can be seen that the radial
supper Efficiency model is not able to rank 𝐹 which is non-
extreme efficient and also is not able to rank 𝐷 and 𝐴, with
nonzero slack in optimal solutions.

Table 1

DMU 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

Input 1 2 2 5 10 10 3.5
Input 2 12 8 5 4 6 6.5
Output 1 1 1 1 1 1 1

Table 2

DMU 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻

Input 1 4 7 8 4 2 10 12 10
Input 2 3 3 1 2 4 1 1 1.5
Output 1 1 1 1 1 1 1 1 1

3. Nonradial Supper Efficiency
Model (Tone’s Model)

In 2002, Tone proposed the following nonradial supper
efficiency model:

𝜌
∗
𝑝 = Min

(1/𝑚)∑
𝑚
𝑖=1 (𝑥𝑖/𝑥𝑖𝑝)

(1/𝑠)∑
𝑠
𝑟=1 (𝑦𝑟/𝑦𝑟𝑝)

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟 𝑟 = 1, . . . , 𝑠

𝑥𝑖 ≥ 𝑥𝑖𝑝 𝑖 = 1, . . . , 𝑚

𝑦𝑟 ≤ 𝑦𝑟𝑝 𝑟 = 1, . . . , 𝑠

𝑦𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝.

(4)

Based on the SBMmodel (4), the nonradial supper efficiency
model should be as follows:

𝛾
∗
𝑝 = Min

1 + (1/𝑚)∑
𝑚
𝑖=1 (𝑠
+
𝑖 /𝑥𝑖𝑝)

1 − (1/𝑠)∑
𝑠
𝑟=1 (𝑠
−
𝑟 /𝑦𝑟𝑝)

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 − 𝑠
+
𝑖 = 𝑥𝑖𝑝 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 + 𝑠
−
𝑟 = 𝑦𝑟𝑝 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝

𝑠
+
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚

𝑠
−
𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠.

(5)

We will show that (4) and (5) are not equivalent, in the sense
that their optimal solutions are different.

Example 2. Consider the eight Decision Making Units
(DMU), with two inputs and one output (see Table 2).
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Figure 2

First the following are defined:

𝑃𝑃𝑆 =

{

{

{

(𝑥, 𝑦) | 𝑥 ≥

𝑛

∑

𝑗=1

𝜆𝑗𝑥𝑗,

𝑦 ≤

𝑛

∑

𝑗=1

𝜆𝑗𝑦𝑗, 𝜆𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

,

𝑃𝑃𝑆 =

{

{

{

(𝑥, 𝑦) | 𝑥 ≥

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑗,

𝑦 ≤

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑗, 𝜆𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

,

𝑃𝑃𝑆 = 𝑃𝑃𝑆 ∩ {(𝑥, 𝑦) 𝑥 ≥ 𝑥𝑝, 𝑦 ≤ 𝑦𝑝} .

(6)

In above-mentioned example and shown in Figure 2,

𝑃𝑃𝑆 = 𝑅𝐸𝐷𝐶𝐾 = 𝑆

𝑃𝑃𝑆 = 𝑅

𝐸

𝐷𝐶𝐾 = 𝑆

𝑅

𝐸

𝐾

= 𝑆.

(7)

We can see that 𝑆 is a proper subset of 𝑆 and 𝑆 is a proper
subset of 𝑆; that is,

𝑆 ⊂ 𝑆 ⊂ 𝑆. (8)

In this example, the optimum value of objective function in
(4) is

𝜌
∗
𝐸 =

1

2

(

4

2

+

4

4

) = 1.5 (9)

and the optimal value of objective function in (5) is

𝛾
∗

𝑆
=

1

2

(

4

2

+

2

4

) =

1

2

(2 +

1

2

) =

5

4

= 1.25, (10)

so (4) and (5) are not equivalent. In other words, the
constraints 𝑥 ≥ 𝑥𝑝 and 𝑦 ≤ 𝑦𝑝 and 𝑦 ≥ 0 should be omitted
from (4). Now we show that the nonradial supper efficiency
model has the same difficulty as radial supper efficiency
model in treating nonzero slacks in optimal solution. Using

(5), the supper efficiency of 𝐸, 𝐷, 𝐶 may be evaluated as
follows:

𝛾
∗
𝐸 = Min (1 +

1

2

2

∑

𝑖=1

𝑠
+
𝑖

𝑥𝑖𝐸

)

s.t. 4𝜆𝐴 + 7𝜆𝐵 + 8𝜆𝐶 + 4𝜆𝐷 + 10𝜆𝐹 + 12𝜆𝐺

+ 10𝜆𝐻 − 𝑠
+
1 = 2

3𝜆𝐴 + 3𝜆𝐵 + 𝜆𝐶 + 2𝜆𝐷 + 𝜆𝐹 + 𝜆𝐺 + 1.5𝜆𝐻

− 𝑠
+
2 = 4

𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶 + 𝜆𝐷 + 𝜆𝐹 + 𝜆𝐺 + 𝜆𝐻 + 𝑠
−
= 1

𝜆𝐴, 𝜆𝐵, 𝜆𝐶, 𝜆𝐷, 𝜆𝐹, 𝜆𝐺, 𝜆𝐻, 𝑠
+
1 , 𝑠
+
2 , 𝑠
−
≥ 0,

𝛾
∗
𝐸 = 1 +

1

2

(

2

2

+

0

4

) = 1.5.

(11)

The projection of 𝐸 is on weak frontier

𝛾
∗
𝐷 = Min (1 +

1

2

2

∑

𝑖=1

𝑠
+
𝑖

𝑥𝑖𝐷

)

s.t. 4𝜆𝐴 + 7𝜆𝐵 + 8𝜆𝐶 + 2𝜆𝐸 + 10𝜆𝐹 + 12𝜆𝐺

+ 10𝜆𝐻 − 𝑠
+
1 = 2

3𝜆𝐴 + 3𝜆𝐵 + 𝜆𝐶 + 4𝜆𝐸 + 𝜆𝐹 + 𝜆𝐺 + 1.5𝜆𝐻

− 𝑠
+
2 = 4

𝜆𝐴 + 𝜆𝐵 + 𝜆𝐶 + 𝜆𝐸 + 𝜆𝐹 + 𝜆𝐺 + 𝜆𝐻 + 𝑠
−
= 1

𝜆𝐴, 𝜆𝐵, 𝜆𝐶, 𝜆𝐸, 𝜆𝐹, 𝜆𝐺, 𝜆𝐻, 𝑠
+
1 , 𝑠
+
2 , 𝑠
−
≥ 0,

𝛾
∗
𝐷 = 1 +

1

2

(

2

4

+

0

3

) = 1.25.

(12)

The projection is on strong frontier

𝛾
∗
𝐶 = Min (1 +

1

2

2

∑

𝑖=1

𝑠
+
𝑖

𝑥𝑖𝐶

)

s.t. 4𝜆𝐴 + 7𝜆𝐵 + 4𝜆𝐷 + 2𝜆𝐸 + 10𝜆𝐹

+ 12𝜆𝐺 + 10𝜆𝐻 − 𝑠
+
1 = 8

3𝜆𝐴 + 3𝜆𝐵 + 2𝜆𝐷 + 4𝜆𝐸 + 𝜆𝐹

+ 𝜆𝐺 + 1.5𝜆𝐻 − 𝑠
+
2 = 1

𝜆𝐴 + 𝜆𝐵 + 𝜆𝐷 + 𝜆𝐸 + 𝜆𝐹 + 𝜆𝐺 + 𝜆𝐻 + 𝑠
−
= 1

𝜆𝐴, 𝜆𝐵, 𝜆𝐷, 𝜆𝐸, 𝜆𝐹, 𝜆𝐺, 𝜆𝐻, 𝑠
+
1 , 𝑠
+
2 , 𝑠
−
≥ 0,

𝛾
∗
𝐶 = 1 +

1

2

(

2

8

) = 1.125.

(13)

The projection is on strong frontier.
In summery,

𝛾
∗
𝐶 = 1.125

𝛾
∗
𝐷 = 1.25

𝛾
∗
𝐸 = 1.5.

(14)

In the case the projection of omitted DMU𝑝 lied on weak
frontier, nonzero slacks appear in optimal solution and the
following approach is suggested.
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4. Modified Nonradial Supper
Efficiency Model

First solve the following model:

𝛾
∗
𝑝 = Min

1 + (1/𝑚)∑
𝑚
𝑖=1 (𝑠
+
𝑖 /𝑥𝑖𝑝)

1 − (1/𝑠)∑
𝑠
𝑟=1 (𝑠
−
𝑟 /𝑦𝑟𝑝)

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 − 𝑠
+
𝑖 = 𝑥𝑖𝑝 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 + 𝑠
−
𝑟 = 𝑦𝑟𝑝 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝

𝑠
+
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚

𝑠
−
𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠.

(15)

The model, (15), can be linearized by the suggested method
in [7] and solve by the simplex method.

Suppose that

(𝑥, 𝑦) = (𝑥𝑝 + 𝑠
+∗

, 𝑦𝑝 − 𝑠
−∗

) (16)

is the projection of DMU𝑝 on the frontier of 𝑃𝑃𝑆 and now
solve the following model

𝑊
∗
𝑝 = Max

(1/𝑚)∑
𝑚
𝑖=1 (𝑠
−
𝑖 /𝑥𝑖)

(1/𝑠)∑
𝑠
𝑟=1 (𝑠
+
𝑟 /𝑦𝑟)

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 + 𝑠
−
𝑖 = 𝑥𝑖 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 − 𝑠
+
𝑟 = 𝑦𝑟 𝑟 = 1, . . . , 𝑠

𝑠
+
𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠

𝑠
−
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚,

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝.

(17)

Set

𝜇
∗
𝑝 = 𝛾
∗
𝑝 − 𝑊

∗
𝑝 (supper efficiency ofDMU𝑝) . (18)

It is evident that if (𝑥, 𝑦) is strongly efficient, then 𝑊
∗
𝑝 = 0

and 𝜇
∗
𝑝 is supper efficiency score of DMU𝑝.

5. Modified Input Oriented Nonradial Supper
Efficiency Model

First the following model is solved:

𝜉
∗
𝑝 = Min (1 +

1

𝑚

𝑚

∑

𝑖=1

𝑠
+
𝑖

𝑥𝑖𝑝

)

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 − 𝑠
+
𝑖 = 𝑥𝑖𝑝 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 − 𝑠
+
𝑟 = 𝑦𝑟𝑝 𝑟 = 1, . . . , 𝑠

𝑠
+
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚

𝑠
+
𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝.

(19)

Let

(𝑥, 𝑦) = (𝑥𝑝 + 𝑠
+∗

, 𝑦𝑝 + 𝑠
+∗

) . (20)

Now solve the following problem.

𝑊
∗
𝑝 = Max

(1/𝑚)∑
𝑚
𝑖=1 (𝑡
−
𝑖 /𝑥𝑖)

(1/𝑠)∑
𝑠
𝑟=1 (𝑡
+
𝑟 /𝑦𝑟)

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 + 𝑡
−
𝑖 = 𝑥𝑖 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 − 𝑡
+
𝑟 = 𝑦𝑟 𝑟 = 1, . . . , 𝑠

𝑡
−
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚

𝑡
+
𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝.

(21)

Let
𝜇
∗
𝑝 = 𝜉
∗
𝑝 − 𝑊

∗
𝑝 . (22)

6. Modified Output Oriented Nonradial
Supper Efficiency Model

Consider the following model:

𝜂
∗
𝑝 = Min (

1

1 − (1/𝑠)∑
𝑠
𝑖=1 (𝑠
−
𝑟 /𝑦𝑟𝑝)

)

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 + 𝑠
− 
𝑖 = 𝑥𝑖𝑝 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 + 𝑠
−
𝑟 = 𝑦𝑟𝑝 𝑟 = 1, . . . , 𝑠

𝑠
−
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚

𝑠
−
𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝.

(23)



Journal of Applied Mathematics 5

Table 3

DMU 𝐶 𝐷 𝐸 𝐹 𝐺

AP 1.14 1.25 2.00 1.00 1.00
SBM 1.125 1.25 1.50 1.00 1.00
Modified SBM 1.125 1.25 1.25 0.90 0.73

Let

DMU𝑝 projection = (𝑥, 𝑦) = (𝑥𝑝 − 𝑠
−∗

, 𝑦𝑝 − 𝑠
−∗

) . (24)

Now solve the following problem:

𝑊
∗
𝑝 = Max

(1/𝑚)∑
𝑚
𝑖=1 (𝑠
−
𝑖 /𝑥𝑖)

(1/𝑠)∑
𝑠
𝑟=1 (𝑠
+
𝑟 /𝑦𝑟)

s.t.
𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑥𝑖𝑗 + 𝑠
−
𝑖 = 𝑥𝑖 𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1,𝑗 ̸= 𝑝

𝜆𝑗𝑦𝑟𝑗 − 𝑠
+
𝑟 = 𝑦𝑟 𝑟 = 1, . . . , 𝑠

𝑠
−
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚

𝑠
+
𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑝.

(25)

Let

𝜌
∗
𝑝 = 𝜂
∗
𝑝 − 𝑊

∗
𝑝 . (26)

7. Conclusion

In this paper, it has been shown that bothAP-Model and non-
radial supper efficiency model are not able to rank DMUs if
the projection of omitted DMU is weak efficient in 𝑃𝑃𝑆. The
new method removes this difficulties and the example which
is solved by using the new method (modified method) con-
firms the validity.

The results for comparing the methods are shown in
Table 3.
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