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A generalized predator-prey model concerning integrated pest management and nonlinear impulsive control measures is proposed
and analyzed. The main purpose is to understand how resource limitation affects the successful pest control and pest outbreaks.
The threshold conditions for the stability of the pest-free periodic solution are given firstly. Once the threshold value exceeds a
critical level, both pest and its natural enemy populations can oscillate periodically. Secondly, in order to address how the limited
resources affect the pest control, as an example the Holling II functional response function is chosen. The numerical results show
that predator-prey model with limited resource has complex dynamical behavior. In addition, it is confirmed that the model has
the coexistence of pests and natural enemies for a wide range of parameters.

1. Introduction

During the last few decades, controlling insect pests of
agriculture and insect vectors of important plant has been
becoming an increasing important issue all over the world.
The pest outbreaks often cause serious ecological and eco-
nomic problems, which have been a great concern for
entomologists and the society. Integrated pest management
(IPM) involves choosing appropriate tactics from a range
of pest control techniques including biological, cultural,
and chemical methods to suit individual cropping systems,
pest complexes, and local environments [1–4]. It has been
proved both theoretically [2, 5] and experimentally [6, 7] that
IPM has been more effective than the biological control or
chemical control alone.

Mathematical models can assist in the design and under-
standing of IPM strategies and mathematical analyses can
provide valuable information about how to control pest
outbreaks. Recently, many works [7–20] have been devoted
to investigate the range of possible ecological interactions
between pest and natural enemy to construct and explore
population models describing IPM strategies.

However, one of themajor assumptions in previousworks
was that all control tactics such as the instant killing rate of

pesticide applications with respect to the pest is a constant.
In fact, every community or country has an appropriate or
limited capacity for pesticides, farmers, equipment, costs,
and so forth, especially for developing countries. In these
above factors of limited resources, most notably are Limited
Resource Farmers (LRFs); that is, the farmers used pesticides
and practiced crop rotation and other practices, but a major-
ity was not familiar or inadequately familiar with IPM. Data
was collected from 90 LRFs in the Alabama Black Belt and
analyzed by descriptive statistics [21–24]. It reveals that there
existmany challenges including health risks to farmers as well
as environmental damage.

Understanding resource limitation is critical to effec-
tive management and conservation of populations; however,
resource limitation is difficult to quantify partly because it is a
dynamic process [25]. Meanwhile, a saturation phenomenon
of the limited resources is considered in order to better
characterize the effect of resource limitation. Based on the
above factors, we propose a generalized mathematical model
with nonlinear pulse control tactics in order to investigate
the effect of limited resources on the outbreak of pest
populations. To the best of our knowledge, no work has been
done for the effects of resource limitation on a generalized
predator-prey model.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 919242, 11 pages
http://dx.doi.org/10.1155/2014/919242

http://dx.doi.org/10.1155/2014/919242


2 Journal of Applied Mathematics

The organization of present paper is as follows. Section 2
introduces our model and some preliminaries. In Section 3,
by using the method of the differential inequality, qualitative
analysis, the discrete dynamical system determined by the
stroboscopic map, and Floquet theory, some sets of sufficient
conditions, which guarantee the existence and stability of
the pest-free periodic solution, are obtained. We choose the
Holling Type II functional response curve as an example with
aims to investigate how the nonlinear pulse perturbations
affect the successful pest control in Section 4.The paper ends
with some interesting biological conclusions and numerical
bifurcation analyses, which complement the theoretical find-
ings.

2. The Model with Nonlinear Pulse
Perturbations and Preliminaries

In this paper, we will extend the classical Lotka-Volterra
model [26, 27] to a generalized form. In the following, 𝑥 and
𝑦 are the population abundances of the pests and natural
enemies, respectively,

𝑥̇ = 𝑓 (𝑥) − 𝜙 (𝑥) 𝑦,

̇𝑦 = 𝜇𝜙 (𝑥) 𝑦 − 𝛿𝑦

(1)

with nonnegative initial conditions (𝑥
0
, 𝑦
0
), where𝑓(𝑥) is the

per capita growth rate of the pest population in the absence
of natural enemy, 𝜙(𝑥) is the per capita functional response
of the predator, 𝜇 is the conversion efficiency of the prey to
predator, and 𝛿 is the per capital death rate of the predator
population.

Furthermore, we assume that the IPM control tactics are
implemented every period 𝑇, at which the natural enemies
are released and pesticides are applied simultaneously. More-
over, to take account of the resource limitation and saturation
effects, we use the Sigmoid function [28, 29] that is to assume
that at every period 𝑇 a nonlinear perturbation 𝑝(𝑥) =

𝑝
1
/(1+e−𝑥) or𝑝(𝑦) = 𝑝

2
/(1+e−𝑦)decreases on pest or natural

enemies populations, respectively, and an introduction of
constant 𝜎 for the natural enemies, which does not depend
on their population sizes, is considered. These results yield
the following discrete process for every time 𝑛𝑇:

𝑥 (𝑡
+
) = (1 −

𝑝
1

1 + e−𝑥
)𝑥,

𝑦 (𝑡
+
) = (1 −

𝑝
2

1 + e−𝑦
)𝑦 + 𝜎,

(2)

where 𝑛 ∈ N = {0, 1, 2, . . .} and 𝑝
1
and 𝑝

2
represent the

maximal fatality rate for pest and natural enemy, respectively.
Combining (1) and (2) yields the following model con-

cerning IPM strategies:

𝑥̇ = 𝑓 (𝑥) − 𝜙 (𝑥) 𝑦,

̇𝑦 = 𝜇𝜙 (𝑥) 𝑦 − 𝛿𝑦,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ N,

𝑥 (𝑡
+
) = (1 −

𝑝
1

1 + 𝑒
−𝑥
)𝑥,

𝑦 (𝑡
+
) = (1 −

𝑝
2

1 + 𝑒
−𝑦
)𝑦 + 𝜎,

𝑡 = 𝑛𝑇, 𝑛 ∈ N.

(3)
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Figure 1: The two real branches 𝑊(0, 𝑧) and 𝑊(−1, 𝑧) of Lambert
𝑊 function.

In order to investigate the dynamics of the above generalized
prey-predator model, we first provide some basic assump-
tions for the functions 𝑓(𝑥) and 𝑔(𝑥) as follows.

Hypothesis 1. Let 𝑓(𝑥) and 𝜙(𝑥) be locally Lipschitz continu-
ous onR+ such that

(i) 𝑓(0) = 0,
(ii) 𝜙(0) = 0, 𝜙󸀠(0) > 0, and 𝜙(𝑥) > 0 for 𝑥 > 0,
(iii) the function 𝑓(𝑥)/𝜙(𝑥) and 𝜙(𝑥)/𝑥 is upper bounded

for 𝑥 > 0.

The biological explanations of those conditions can be
found in [30–33].

The following definition and lemma are useful through-
out the paper.

Definition 1. The Lambert 𝑊 function is defined to be a
multivalued inverse of the function 𝑧 󳨃→ 𝑧𝑒

𝑧 satisfying

Lambert 𝑊(𝑧) ⋅ 𝑒
Lambert 𝑊(𝑧)

= 𝑧. (4)

It follows from (4) that

Lambert 𝑊󸀠 (𝑧) = Lambert 𝑊(𝑧)

𝑧 (1 + Lambert 𝑊(𝑧))

. (5)

Note that the function 𝑧𝑒
𝑧 has the positive derivative (𝑧 +

1)𝑒
𝑧. Define the inverse function of 𝑧𝑒𝑧 restricted on the

interval (−∞, −1] and [−1, +∞) to be𝑊(−1, 𝑧) and𝑊(0, 𝑧),
respectively. There are two real branches of Lambert 𝑊
function shown in Figure 1. For more details about the
concepts and properties of the Lambert 𝑊 function, see
Corless et al. [34] and Waldvogel [35].

Lemma 2. Consider the following algebraic equation:
𝑔 (𝑧) = (𝑎

1
𝑧 + 𝑎
2
) e𝑧 + 𝑎

3
𝑧 + 𝑎
2
= 0, (6)

where 𝑎
1
< 0, 𝑎

2
> 0, 𝑎

3
< 0, and 𝑎

1
< 𝑎
3
. Equation (6) with

respect to 𝑧 has only one positive root provided that 𝑎
1
+𝑎
2
+𝑎
3
>

0 and e2+(𝑎2/𝑎1) ≤ 𝑎
1
/𝑎
3
.

The proof of Lemma 2 is given in Appendix A.
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3. The Existence of the Pest-Free Periodic
Solution and Threshold Condition

3.1. Existence of the Pest-Free Periodic Solution. In order to
illustrate the existence of a pest-free periodic solution of
model (3), we consider the basic properties of following
subsystem firstly:

̇𝑦 (𝑡) = −𝛿𝑦 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑦 (𝑡
+
) = (1 −

𝑝
2

1 + e−𝑦(𝑡)
)𝑦 (𝑡) + 𝜎, 𝑡 = 𝑛𝑇,

𝑦 (0
+
) = 𝑦
0
.

(7)

It follows from model (7) that, for any time internal (𝑛𝑇, (𝑛 +
1)𝑇], we integrate the first equation of model (7) and get

𝑦 (𝑡) = 𝑦 (𝑛𝑇
+
) 𝑒
−𝛿(𝑡−𝑛𝑇)

. (8)

It follows from the second equation of model (7) that

𝑦 ((𝑛 + 1) 𝑇
+
) = [1 −

𝑝
2

1 + 𝑒
−𝑦((𝑛+1)𝑇)

] 𝑦 ((𝑛 + 1) 𝑇) + 𝜎. (9)

Substitution of (8) into (9) gives

𝑦 ((𝑛 + 1) 𝑇
+
) = [1 −

𝑝
2

1 + exp {−𝑦 (𝑛𝑇+) 𝑒−𝛿𝑇}
]

× 𝑦 (𝑛𝑇
+
) 𝑒
−𝛿𝑇

+ 𝜎.

(10)

That is

𝑦 ((𝑛 + 1) 𝑇
+
)

=

[(1 − 𝑝
2
) exp (𝑦 (𝑛𝑇+) 𝑒−𝛿𝑇) + 1] 𝑦 (𝑛𝑇+) 𝑒−𝛿𝑇

exp (𝑦 (𝑛𝑇+) 𝑒−𝛿𝑇) + 1
+ 𝜎.

(11)

Denote 𝑦(𝑛𝑇+) = 𝑦
𝑛
; then the above equation can be

rewritten as the following difference equation:

y
𝑛+1

=

[(1 − 𝑝
2
) exp (𝑦

𝑛
e−𝛿𝑇) + 1] 𝑦

𝑛
𝑒
−𝛿𝑇

exp (𝑦
𝑛
𝑒
−𝛿𝑇

) + 1

+ 𝜎

≐ 𝐹 (𝑦
𝑛
) ,

(12)

which is the so-called stroboscopic map of model (7) and
describes the relations of the number of nature enemies
in the population between any two successive pulse points.
Consequently, the existence of the positive steady state of
model (12) implies the existence of a positive periodic
solution ofmodel (7).Therefore, we first discuss the existence

of a positive steady state of (12). Taking the derivative of𝐹(𝑦
𝑛
)

with respect to 𝑦
𝑛
yields

𝐹
󸀠
(𝑦
𝑛
)

= { (1 − 𝑝
2
)

+

[exp (𝑦
𝑛
𝑒
−𝛿𝑇

) + 1 − 𝑦
𝑛
𝑒
−𝛿𝑇 exp (𝑦

𝑛
𝑒
−𝛿𝑇

)]

[exp (𝑦
𝑛
𝑒
−𝛿𝑇

) + 1]
2

𝑝
2
}

× e−𝛿𝑇,
(13)

and it is easy to see that 0 < |𝐹
󸀠
(𝑦
𝑛
)| < 1 holds true.

Next, we discuss the positive point of the stroboscopic
map (12), denoted by 𝑦∗; then (12) is rewritten as

(𝑦
∗
− 𝜎) (exp {𝑦∗𝑒−𝛿𝑇} + 1)

= ((1 − 𝑝
2
) exp {𝑦∗𝑒−𝛿𝑇} + 1) 𝑦∗𝑒−𝛿𝑇.

(14)

Denote 𝐴
2
= 𝑦
∗
𝑒
−𝛿𝑇

> 0; then (14) is rewritten as

(𝑎𝐴
2
+ 𝜎) 𝑒

𝐴
2
+ (𝑐𝐴

2
+ 𝜎) = 0, (15)

where 𝑎 = 1 − 𝑝
2
− 𝑒
𝛿𝑇

< 0, 𝜎 > 0, 𝑐 = 1 − 𝑒
𝛿𝑇

< 0, and
obviously 𝑎 < 𝑐.

According to Lemma 2, (14) has a unique positive root
𝑦
∗. Therefore, there exists a positive fixed point of the

stroboscopic map (12), and we denote the positive fixed point
by 𝑦∗, which satisfies the following equation:

𝑦
∗
= 𝐹 (𝑦

∗
) . (16)

According to the relations between a fixed point of the
stroboscopic map (12) and the periodic solution of model
(7), we conclude that submodel (7) has a unique nontrivial
positive periodic solution, denoted by 𝑦

𝑝
(𝑡), and

𝑦
𝑝 (
𝑡) = 𝑦

∗e−𝛿(𝑡−𝑛𝑇) for 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇, (17)

and it follows from 0 < |𝐹
󸀠
(𝑦
𝑝
(𝑡))| < 1.

Therefore, we obtain the general expression of the pest-
free periodic solution of model (3) over the interval 𝑛𝑇 < 𝑡 ≤

(𝑛 + 1)𝑇 for all 𝑛 ∈ N denoted by

(𝑥
𝑝
(𝑡) , 𝑦
𝑝
(𝑡)) = (0, 𝑦

∗
𝑒
−𝛿(𝑡−𝑛𝑇)

) , (18)

where 𝑦∗ is determined by the difference equation (14).

Theorem 3. Model (7) has a positive periodic solution 𝑦
𝑝
(𝑡)

with period𝑇 and for every solution𝑦(𝑡) of (7) such that |𝑦(𝑡)−
𝑦
𝑝
(𝑡)| → 0 as 𝑡 → +∞, where 𝑦

𝑝
(𝑡) = 𝑦

∗
𝑒
−𝛿(𝑡−𝑛𝑇), and 𝑦∗

is the positive root of (14).

By using Theorem 3, we have that the unique fixed point
𝑦
∗ of (12) is globally stable. According to the stability of
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positive periodic solution, it is determined by the stability
of positive equilibria of difference equation made by the
sequence of impulsive points. So, the positive periodic solu-
tion 𝑦

𝑝
(𝑡) of model (7) is globally stable.

Therefore, model (3) exists as a unique pest-free periodic
solution (0, 𝑦

𝑝
(𝑡)).

3.2. Stability of the Pest-Free Periodic Solution. The threshold
conditions which guarantee the global stability of pest-free
periodic solution (𝑥

𝑝
(𝑡), 𝑦
𝑝
(𝑡)) play a key role in pest control.

To do this, we first prove the local stability which can be
determined by considering the behavior of small amplitude
perturbations of the solution. Sowe denote (𝑥(𝑡), 𝑦(𝑡)) so that

𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥
𝑝
(𝑡) ,

𝑦 (𝑡) = 𝑦 (𝑡) − 𝑦𝑝 (
𝑡) .

(19)

Then model (3) becomes

̇
𝑥 = 𝑓 (𝑥) − 𝜙 (𝑥) [𝑦 + 𝑦

𝑝
(𝑡)] ,

̇
𝑦 = 𝜇𝜙 (𝑥) [𝑦 + 𝑦

𝑝
(𝑡)] − 𝛿𝑦.

(20)

Assuming that (𝑥, 𝑦) is small enough, we get the linear
approximation of the deviation system around the periodic
solution (𝑥

𝑝
(𝑡), 𝑦
𝑝
(𝑡))

̇
𝑥 = [𝑓

󸀠
(0) − 𝜙

󸀠
(0) 𝑦
𝑝
(𝑡)] 𝑥,

̇
𝑦 = 𝜇𝜙

󸀠
(0) 𝑦𝑝 (

𝑡) 𝑥 − 𝛿𝑦.

(21)

In the following, we will present the sufficient condition
for the global attractivity of pest-free periodic solution
(𝑥
𝑝
(𝑡), 𝑦
𝑝
(𝑡)) of model (3).

Theorem 4. The pest-free periodic solution (𝑥
𝑝
(𝑡), 𝑦
𝑝
(𝑡)) of

model (3) is locally stable in the first quadrant provided that

𝑅
1
= (1 −

𝑝
1

2

) e∫
𝑇

0
[𝑓
󸀠
(0)−𝜙

󸀠
(0)𝑦
𝑝
(𝑡)]d𝑡

< 1 (22)

and is globally attractive if

𝑅
2
=

𝑇𝑀
𝑠
𝑚
𝑠

𝑚
𝑠
∫

𝑇

0
𝑦
𝑝
(𝑠) ds − ln (1 − p1)

< 1, (23)

where𝑀
𝑠
= sup

𝑥≥0
(𝑓(𝑥)/𝜙(𝑥)),𝑚

𝑠
= sup

𝑥≥0
(𝜙(𝑥)/𝑥).

The proof of Theorem 4 is given in Appendix B.

4. Application of a Special Case of Model (3)
In order to show the application of the main results obtained
in Theorem 4 and discuss the biological implications of the
threshold conditions, we assume that the pest population
follows the logistic growth in the absence of predator; that is,
𝑓(𝑥) = 𝑎𝑥 − 𝑏𝑥

2, and we choose the Holling Type II function

response for 𝜙(𝑥); that is, 𝜙(𝑥) = 𝛼𝑥/(1 + 𝜔𝑥). Thus model
(3) becomes as the following special model:

𝑥̇ = 𝑎𝑥 − 𝑏𝑥
2
−

𝛼𝑥𝑦

1 + 𝜔𝑥

, ̇𝑦 = 𝜇

𝛼𝑥𝑦

1 + 𝜔𝑥

− 𝛿𝑦,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ N,

𝑥 (𝑡
+
) = (1 −

𝑝
1

1 + 𝑒
−𝑥
)𝑥, 𝑦 (𝑡

+
) = (1 −

𝑝
2

1 + 𝑒
−𝑦
)𝑦 + 𝜎,

𝑡 = 𝑛𝑇, 𝑛 ∈ N,

(24)

where 𝑎, 𝑏, 𝛼, and 𝜔 are positive constants and 𝑎 and 𝑏 are
the intrinsic growth rate of prey and the rate of intraspecific
competition or density dependence, respectively.

4.1. Threshold Conditions. It follows from Theorem 4 that
model (24) has a unique pest-free periodic solutionwhich can
be formulated

(𝑥
𝑝
(𝑡) , 𝑦
𝑝
(𝑡)) = (0, 𝑦

∗e−𝛿(𝑡−𝑛𝑇)) ,

𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇] ,

(25)

where 𝑦∗ is the positive root of (14).
The threshold conditions for the local stability and global

attractivity can be directly obtained fromTheorem 4.
Note that condition (22) is equivalent to

(1 −

𝑝
1

2

) e∫
𝑇

0
[𝑎−𝛼𝑦

∗e−𝛿(𝑡−𝑛𝑇)]d𝑡
< 1, (26)

and by simple calculation, the above inequality is equivalent
to

𝑎𝑇 − 𝛼𝑦
∗ 1 − e−𝛿𝑇

𝛿

< ln 2

2 − 𝑝
1

. (27)

Therefore, the threshold condition (22) can be rewritten as

𝑎𝑇𝛿 − 𝛼𝑦
∗
(1 − 𝑒

−𝛿𝑇
)

𝛿 ln (2/ (2 − 𝑝
1
))

< 1. (28)

Similarly, the threshold condition (23) can be rewritten as

𝛿𝑇𝑀
𝑠
𝑚
𝑠

𝑚
𝑠
𝑦
∗
(1 − 𝑒

−𝛿𝑇
) − 𝛿 ln (1 − 𝑝

1
)

< 1, (29)

where𝑀
𝑠
= (𝑎𝜔 + 𝑏)

2
/4𝑏𝜔𝛼,𝑚

𝑠
= 𝛼.

That is, if (28) holds true, then the pest-free periodic
solution (25) is locally stable, and if (29) holds true, then the
pest-free periodic solution (25) is globally attractive.

4.2. Bifurcation Analysis and Coexistence. One dimensional
bifurcation analysis, which is a traditional approach to gain
preliminary insight into the properties of a dynamic system,
provides information about the dependence of the dynamics
on a certain parameter. The analysis is expected to reveal the
type of attractor, to which the dynamics will ultimately settle
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Figure 2: Bifurcation diagrams of model (24) with respect to bifurcation parameter 𝑇, where all parameter values are fixed as follows: 𝑎 = 8,
𝑏 = 5, 𝑐 = 1, 𝜔 = 1, 𝜇 = 0.95, 𝑑 = 0.2, 𝜎 = 0.5, 𝑝max

1
= 0.8, 𝑝max

2
= 0.02, and (𝑥

0
, 𝑦
0
) = (2, 1). (a) Prey population 𝑥 with 𝑇. (b) Predator

population 𝑦 with 𝑇.
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Figure 3: Bifurcation diagrams of model (24) with respect to bifurcation parameter 𝜎. (a) Prey population 𝑥 with 𝜎. (b) Predator population
𝑦 with 𝜎. The other parameters are identical to those in Figure 2 and 𝑇 = 12.

down after passing the initial transient phase, and within
which the trajectory will then remain forever.

From threshold conditions (28) and (29), we know that
model (24) has a globally asymptotically stable pest eradica-
tion periodic solution if the impulsive periodic 𝑇 < 𝑇

max
0

≐

min{𝑇max
1

, 𝑇
max
2

}. Unfortunately, we cannot get its analytical
expression for 𝑇max

1
, 𝑇max
2

due to the complexity of 𝑦∗ in
conditions (28) and (29), but it can be easily confirmed by
the numerical bifurcation analysis if the impulsive period 𝑇
exceeds𝑇max

0
; both prey and predator population can oscillate

periodically (see Figures 2 and 3). Moreover, here we are
interested in the biological implications of these results in
insect pest control.

Figure 2(a) indicates that if the pulse period 𝑇 is more
than 𝑇max

0
, the pest-free periodic solution becomes unstable

and variable 𝑥 begins to oscillate with a large amplitude that
corresponds to periodic outbreaks of the pest population. If
the pulse period is further increased, a sequence of period
adding bifurcations interchanging with regions of chaos is
observed. Figures 2 and 3 show that model (24) has more
complex and interesting dynamic behaviors including peri-
odic doubling bifurcation, chaotic solutions, multistability,
chaos crisis, periodic adding, periodic windows, periodic
halving bifurcation, and crises with the increase of pulse
period 𝑇 and constant stocking number 𝜎, respectively. For
example, Figures 2(a) and 2(b) show that formodel (24) there
exists a periodic solution and a quasiperiodic solution, when
𝑇 = 5 and 𝑇 = 7.8, respectively; see Figures 4 and 5 for full
details.

Meanwhile, bifurcation analyses also indicate that mul-
tiple attractors can coexist for a wide range of parameters.

For example, the two attractors with quite different pest
amplitudes can coexist, when 𝜎 = 5 in Figure 3; see Figure 6
for more details. Figures 7(a)–7(d) indicate that one solution
can switch to another attractor with small amplitude at a
random time when small changes are introduced in initial
densities of pest and natural enemies populations. That is,
the proper initial densities of pest and natural enemies
populations can affect the outcome of classical biological
control, and the final stable states of pest and natural enemies
populations depend on their initial densities, which can help
us to design control strategies and to make management
decisions. These results are further confirmed by basins of
attraction of initial densities, as shown in Figure 8.

5. Discussion and Biological Conclusions

In this contribution we focus on a generalized predator-
prey model under limited resource; the main purpose of this
paper is to understand the effect of resource limitation on
outbreaks of a pest population. It is worth noting that the
mathematical model described here differs from the previous
ones since we have taken the nonlinear impulsive function
into account. The nonlinear perturbation of the impulsive
functions makes the dynamical behavior of solutions change
dramatically and it gets more and more complicated, which
means that it is a very difficult task to control pests under
resource limitation. To show applications of the main results
obtained in present work and study the effects of parameter
space on the threshold conditions, we employ the Holling
II functional response function as an example. By choosing
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Figure 4: A typical periodic solution of model (24) over 𝑡 ∈ [8000, 12000]. (a) Phase portrait of 𝑥 and 𝑦 with 𝑡, (b) Time series of 𝑥. (c) Time
series of 𝑦. The other parameters are identical to those in Figure 2 and 𝑇 = 5, (𝑥

0
, 𝑦
0
) = (0.3, 7.3).

impulsive perturbations 𝜎 and 𝑇 as bifurcation parameters,
we have obtained bifurcation diagrams Figures 2 and 3 for
model (24).

The results demonstrate that the dynamic behavior of
model (24) may be dramatically affected by small changes
in the value of initial densities of pest and natural enemy
with resource limitation. Bifurcation diagrams shown in
Figures 2 and 3 clarify that model (24) has several different
attractors which can coexist for a wide range of parame-
ters combined with periodic doubling bifurcation, chaotic
solutions, quasiperiodic solutions (see Figure 5 for details),
tangent bifurcation, multistability (see Figure 6 for details),
chaos crisis, periodic windows, periodic halving bifurcation,
crises, and so on, which can help us to further understand
the applications of nonlinear pulses in our model (for more
information about bifurcation diagrams, refer to [13, 15, 36,
37]). It is worth noting that there are several hidden factors
that can adversely affect our control strategy with resource
limitation; that is, the increasing number of identifying
complicated, possibly chaotic, dynamics in IPM models may
present amajor challenge for controlling the pest populations
in practice.

The results presented in previous section also indicate
that the successful biological control depends on the initial
densities of the pest and natural enemies populations. The
proper initial densities of pest and natural enemies popu-
lations can affect the outcome of pest populations and can
help us to design control strategies and to make management
decisions. Figures 6 and 8 show that the pest and natural
enemy populations can coexist in various pest and natural
enemies initial densities.

Appendices

A. Proof of Lemma 2

Taking derivative of 𝑔(𝑧) with respect to 𝑧, one yields

𝑔
󸀠
(𝑧) = (𝑎

1
𝑧 + 𝑎
1
+ 𝑎
2
) 𝑒
𝑧
+ 𝑎
3
= 0. (A.1)

Rearranging the above equation we have

(𝑧 + 1 +

𝑎
2

𝑎
1

) 𝑒
𝑧+1+(𝑎

2
/𝑎
1
)
= −

𝑎
3

𝑎
1

𝑒
1+(𝑎
2
/𝑎
1
)
. (A.2)

According to Definition 1, solving (A.2) with respect to 𝑧, one
yields two roots 𝑧∗

1
and 𝑧∗
2
; that is,

𝑧
∗

1
= 𝑊[0, −

𝑎
3

𝑎
1

𝑒
1+(𝑎
2
/𝑎
1
)
] − (1 +

𝑎
2

𝑎
1

) ,

𝑧
∗

2
= 𝑊[−1, −

𝑎
3

𝑎
1

𝑒
1+(𝑎
2
/𝑎
1
)
] − (1 +

𝑎
2

𝑎
1

) .

(A.3)

Further, both z∗
1
and 𝑧∗
2
are well defined provided

−

𝑎
3

𝑎
1

𝑒
1+(𝑎
2
/𝑎
1
)
≥ −𝑒
−1
. (A.4)

That is,

𝑒
2+(𝑎
2
/𝑎
1
)
≤

𝑎
1

𝑎
3

. (A.5)

Obviously, 𝑧∗
1
> 0 provided

(1 +

𝑎
2

𝑎
1

) < 𝑊[0, −

𝑎
3

𝑎
1

e1+(𝑎2/𝑎1)] ≤ 0, (A.6)
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Figure 5: A typical quasiperiodic solution of model (24) over 𝑡 ∈ [11300, 19000]. (a) Phase portrait of 𝑥 and 𝑦 with 𝑡; (b) time series of 𝑥,
and (c) time series of 𝑦. The other parameters are identical to those in Figure 4 and 𝑇 = 7.8.

which is equivalent to

𝑎
1
+ 𝑎
2
+ 𝑎
3
> 0, 𝑎

1
+ 𝑎
2
> 0. (A.7)

That is, 𝑎
1
+ 𝑎
2
+ 𝑎
3
> 0.

Similarly, 𝑧∗
2
> 0 provided

1 +

𝑎
2

𝑎
1

< 𝑊[−1, −

𝑎
3

𝑎
1

𝑒
1+(𝑎
2
/𝑎
1
)
] ≤ −1, (A.8)

which is equivalent to

𝑎
1
+ 𝑎
2
+ 𝑎
3
< 0, 2𝑎

1
+ 𝑎
2
> 0. (A.9)

Since 𝑎
1
< 𝑎
3
, the above two inequalities cannot be true

simultaneously.This indicates that the function 𝑔(𝑧) exists an
unique extreme value just at 𝑧∗

1
.

Furthermore, it follows from (6) that

𝑔 (0) = 𝑎
2
> 0, 𝑔 (𝑧) 󳨀→ −∞ as 𝑧 󳨀→ +∞. (A.10)

Therefore, the function𝑔(𝑧) = 0 always exists as a unique root
if the conditions of Lemma 2 are true.The proof is completed.

B. Proof of Theorem 4

To proof the local stability of the solution (𝑥
𝑝
(𝑡), 𝑦
𝑝
(𝑡)) of (3),

we need to investigate the difference equation determined by
the impulsive period 𝑇 with respect to the linear equation
(20). Let Φ(𝑇) be the fundamental matrix of (20); thus Φ(𝑇)
must satisfy

Φ (𝑇) = (
𝑒
∫
𝑇

0
[𝑓
󸀠
(0)−𝜙

󸀠
(0)𝑦
𝑝
(𝑡)]d𝑡

0

⋆ 𝑒
−𝛿𝑇

) , (B.1)

where Φ(0) = 𝐼 is the identity matrix and the term ⋆ is
not necessarily computed in detail as it is not required in the
following analysis.

Resetting the impulsive conditions of model (3) from
third and fourth equations becomes

(

𝑥 (𝑛𝑇
+
)

𝑦 (𝑛𝑇
+
)

)

= (

1 −

𝑝
1

2

0

0 1 −

𝑝
2

1 + 𝑒
−𝑦
𝑝
(𝑛𝑇)

−

𝑝
2
𝑦
𝑝
(𝑛𝑇) 𝑒

−𝑦
𝑝
(𝑛𝑇)

(1 + 𝑒
−𝑦
𝑝
(𝑛𝑇)

)

2

)

×(

𝑥 (𝑛𝑇)

𝑦 (𝑛𝑇)

) .

(B.2)

Hence, according to Floquet theory [38], if the module of
both eigenvalues of the matrix

𝑀 = 𝐵 (𝑇)Φ (𝑇)

= (

1 −

𝑝
1

2

0

0 1 −

𝑝
2

1 + 𝑒
−𝑦
𝑝
(𝑇)

−

𝑝
2
𝑦
𝑝
(𝑇) 𝑒
−𝑦
𝑝
(𝑇)

(1 + 𝑒
−𝑦
𝑝
(𝑇)
)

2

)

×(
𝑒
∫
𝑇

0
[𝑓
󸀠
(0)−𝜙

󸀠
(0)𝑦
𝑝
(𝑡)]d𝑡

0

⋆ 𝑒
−𝛿𝑇

)

(B.3)
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0
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The other parameters are identical to those in Figure 3.

is less than one, then the periodic solution (𝑥
𝑝
(𝑡), 𝑦
𝑝
(𝑡)) is

locally stable. In fact, two Floquet multiplies are thus

𝜆
1
= (1 −

𝑝
1

2

) 𝑒
∫
𝑇

0
[𝑓
󸀠
(0)−𝜙

󸀠
(0)𝑦
𝑝
(𝑡)]𝑑𝑡

,

𝜆
2
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝑝
2

1 + 𝑒
−𝑦
𝑝
(𝑇)

−

𝑝
2
𝑦
𝑝
(𝑇) e−𝑦𝑝(𝑇)

(1 + 𝑒
−𝑦
𝑝
(𝑇)
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝛿𝑇

.

(B.4)

Thepest-free solution (𝑥
𝑝
(𝑡), 𝑦
𝑝
(𝑡)) is locally stable if |𝜆

1
| < 1,

|𝜆
2
| < 1; that is,

(1 −

𝑝
1

2

) 𝑒
∫
𝑇

0
[𝑓
󸀠
(0)−𝜙

󸀠
(0)𝑦
𝑝
(𝑡)]𝑑𝑡

< 1,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝑝
2

1 + 𝑒
−𝑦
𝑝
(𝑇)

−

𝑝
2
𝑦
𝑝
(𝑇) 𝑒
−𝑦
𝑝
(𝑇)

(1 + 𝑒
−𝑦
𝑝
(𝑇)
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝛿𝑇

< 1,

(B.5)

and by simple calculation, we have that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝑝
2

1 + 𝑒
−𝑦
𝑝
(𝑇)

−

𝑝
2
𝑦
𝑝
(𝑇) 𝑒
−𝑦
𝑝
(𝑇)

(1 + 𝑒
−𝑦
𝑝
(𝑇)
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝛿𝑇

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝑝
2
𝑒
𝑦
𝑝
(𝑇)

1 + 𝑒
𝑦
𝑝
(𝑇)

−

𝑝
2
𝑦
𝑝
(𝑇) 𝑒
𝑦
𝑝
(𝑇)

(1 + 𝑒
𝑦
𝑝
(𝑇)
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝛿𝑇

≤
󵄨
󵄨
󵄨
󵄨
1 − 2𝑝

2

󵄨
󵄨
󵄨
󵄨
< 1

(B.6)

holds true. The pest-free solution (𝑥
𝑝
(𝑡), 𝑦
𝑝
(𝑡)) is locally

stable if |𝜆
1
| < 1, which holds true due to 𝑅1 < 1.

In order to prove the global attractivity, we should prove
that 𝑥 tends to zero, and it follows that 𝑦 tends to zero; that
is, 𝑦(𝑡) approximates to 𝑦

𝑝
(𝑡).
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0
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Figure 8: Basin of attraction of two attractors shown in Figure 6.
The range of 0.01 ≤ 𝑥 ≤ 35 is on the horizontal axis, 0.01 ≤ 𝑦 ≤

100 is on the vertical axis; the parameters are identical to Figure 6.
The white and black points are attracted to the attractor shown in
Figure 6 from left to right, respectively.

It follows from ̇
𝑦 ≥ −𝛿𝑦 and impulsive conditions that for

any initial condition (𝑥
0
, 𝑦
0
) we have 𝑦 ≥ min(0, 𝑦

0
)𝑒
−𝛿𝑡

≐

𝑦
𝑚
(𝑡).

In order to investigate the first equation of (20), that is, ̇
𝑥

equation, we define function

𝐺 (𝑥) = ∫

𝑥

𝑥
0

1

𝜙 (𝑠)

d𝑠. (B.7)

Since 𝜙(𝑥) > 0, it is easy to see that the function 𝐺(𝑥) can
be seen to be an increasing function of 𝑥 from 𝑥 = 0. Thus,
if we can prove that 𝐺(𝑥) → −∞ as 𝑡 → ∞, then the pest
populationwill die out eventually. From the definition of𝐺(𝑥)
function we have

dG (x)
dt

=

1

𝜙 (𝑥)

̇
𝑥 =

𝑓 (𝑥)

𝜙 (𝑥)

− 𝑦 (𝑡) − 𝑦
𝑝
(𝑡)

≤

𝑓 (𝑥)

𝜙 (𝑥)

− 𝑦
𝑚
(𝑡) − 𝑦

𝑝
(𝑡) .

(B.8)
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Based on the definition of 𝐺(𝑥), we integrate 𝐺(𝑥) between
two successive release predator interval, that is, the time
interval (𝑛𝑇, (𝑛 + 1)𝑇] for all 𝑛 ∈ N; that is,
𝐺 (𝑥 ((𝑛 + 1) 𝑇

+
))

= ∫

𝑥((𝑛+1)𝑇
+
)

𝑥
0

1

𝜙 (𝑠)

ds

= ∫

𝑥((𝑛+1)𝑇)

𝑥
0

1

𝜙 (𝑠)

ds + ∫
x((n+1)T+)

x((n+1)T)

1
𝜙 (s)

ds

≤ 𝐺 (𝑥 ((𝑛 + 1) 𝑇)) + ∫

𝑥((𝑛+1)𝑇
+
)

𝑥((𝑛+1)𝑇)

1

𝑚
𝑠
𝑠

ds

≤ 𝐺 (𝑥 (𝑛𝑇
+
))

+ ∫

(𝑛+1)𝑇

𝑛𝑇
+

[

𝑓 (𝑥 (𝑠))

𝜙 (𝑥 (𝑠))

− 𝑦
𝑚
(𝑠) − 𝑦

𝑝
(𝑠)] ds

+ ∫

[1−𝑝(𝑥((𝑛+1)𝑇))]𝑥((𝑛+1)𝑇)

𝑥((𝑛+1)𝑇)

1

𝑚
𝑠
𝑠

ds

= 𝐺 (𝑥 (𝑛𝑇
+
)) + ∫

(𝑛+1)𝑇

𝑛𝑇
+

[𝑀
𝑠
− 𝑦
𝑚
(𝑠) − 𝑦

𝑝
(s)] ds

+

ln [1 − 𝑝
1
/ (1 + 𝑒

−𝑥(𝑛𝑇)
)]

𝑚
𝑠

≤ 𝐺 (𝑥 (𝑛𝑇
+
)) + ∫

(𝑛+1)𝑇

𝑛𝑇
+

[𝑀
𝑠
− 𝑦
𝑚
(𝑠) − 𝑦𝑝 (

𝑠)] ds

+

ln (1 − 𝑝
1
)

𝑚
𝑠

.

(B.9)

For any 𝑡 there exists an integer 𝑙 such that 𝑡 ∈ (𝑙𝑇, (𝑙 + 1)𝑇],
so according to the periodicity of 𝑦

𝑝
(𝑠) and for all 𝑡 > 0 we

have
𝐺 (𝑥 (𝑡)) − 𝐺 (𝑥0

)

≤ ∫

𝑡

0

[𝑀
𝑠
− 𝑦
𝑚
(𝑠) − 𝑦

𝑝
(𝑠)] d𝑠 + 𝑙

ln (1 − 𝑝max)

𝑚
𝑠

= −∫

𝑡

0

𝑦
𝑚
(𝑠) d𝑠 + ∫

𝑡

𝑙𝑇

[𝑀
𝑠
− 𝑦
𝑝 (
𝑠)] d𝑠

+ 𝑙 ∫

𝑇

0

[𝑀
𝑠
− 𝑦
𝑝 (
𝑠)] d𝑠 + 𝑙

ln (1 − 𝑝
1
)

𝑚
𝑠

=

min (0, 𝑦
0
)

𝛿

(𝑒
−𝛿𝑡

− 1) + ∫

𝑡

𝑙𝑇

[𝑀
𝑠
− 𝑦
𝑝
(𝑠)] ds

+ 𝑙 ∫

𝑇

0

[𝑀
𝑠
− 𝑦
𝑝
(𝑠)] ds + l

ln (1 − p1)
ms

.

(B.10)

The first and second terms of the right-hand side are upper
bounded due to the periodicity of 𝑦

𝑝
(𝑡) with periodic 𝑇

𝑝
.

Note that 𝑙 → ∞ as 𝑡 → ∞. Therefore, if

∫

𝑇

0

[𝑀
𝑠
− 𝑦
𝑝
(s)] ds +

ln (1 − p1)
ms

< 0 (B.11)

hold true, then we have that 𝐺(𝑥) → ∞ as 𝑡 → ∞. That is,

𝑇𝑀
𝑠
𝑚
𝑠

𝑚
𝑠
∫

𝑇

0
𝑦
𝑝
(𝑠) d𝑠 − ln (1 − 𝑝

1
)

≤ 1. (B.12)

So 𝑥(𝑡) tends to zero as 𝑡 → ∞ provided (B.12).
Now we prove that 𝑦(𝑡) → 0 as well. Since 𝑥 → 0, so

there is a finite time 𝑡
𝑠
such that 𝜙(𝑥) ≤ 𝛿/2. Therefore we

have

̇
𝑦 = 𝜇𝜙 (𝑥) [𝑦 + 𝑦

𝑝
(𝑡)] − 𝛿𝑦 ≤ 𝜇𝜙 (𝑥) 𝑦

𝑝
(𝑡) −

𝛿

2

(B.13)

for 𝑡 > 𝑡
𝑠
. It follows from 𝑥 → 0 as 𝑡 → ∞ and the

periodicity of 𝑦
𝑝
(𝑡) that we have 𝜙(𝑥)𝑦

𝑝
(𝑡) → 0 as 𝑡 →

∞. Consequently, 𝑦 → 0 as 𝑡 → ∞. Those indicate
that if the inequality of (B.12) holds, then the pest-free
periodic solution (𝑥

𝑝
(𝑡), 𝑦
𝑝
(𝑡)) is globally attractive, and in

combination with local stability we can conclude the periodic
solution (𝑥

𝑝
(𝑡), 𝑦
𝑝
(𝑡)) of model (3).
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