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This paper addresses some methods for interpretation of oil and gas well test data distorted by wellbore storage effects. Using these
techniques, we can deconvolve pressure and rate data from drawdown and buildup tests dominated by wellbore storage. Some of
these methods have the advantage of deconvolving the pressure data without rate measurement. The two important methods that
are applied in this study are an explicit deconvolution method and a modification of material balance deconvolution method. In
cases with no rate measurements, we use a blind deconvolution method to restore the pressure response free of wellbore storage
effects. Our techniques detect the afterflow/unloading rate function with explicit deconvolution of the observed pressure data. The
presented techniques can unveil the early time behavior of a reservoir system masked by wellbore storage effects and thus provide
powerful tools to improve pressure transient test interpretation. Eachmethod has been validated using both synthetic data and field
cases and each method should be considered valid for practical applications.

1. Introduction

In conventional well test analysis, the pressure response
to constant rate production is essential information that
presents the distinct characteristics for a specific type of
reservoir system. However, in many cases, it is difficult
to acquire sufficient constant rate pressure response data.
The recorded early time pressure data are often hidden by
wellbore storage (variable sandface rates). In some cases,
outer boundary effects may appear before wellbore storage
effects disappear. Therefore, it is often imperative to restore
the early time pressure response in the absence of wellbore
storage effects to provide a confident well test interpretation
[1–4].

A considerable amount of work has been done on
multirate (variable) tests during the last 50 years. However,
these are basically sequential constant rate drawdowns; only
transient pressure is measured and rate is assumed to be

constant during each drawdown test [5]. All these works
deal with the direct problem. In other words, the constant
rate solution (the influence or the unit response function)
is convolved (superimposed) with the time dependent inner
boundary condition to obtain solutions to the diffusivity
equation. This process is called convolution. The process of
determining the influence function is called deconvolution
[6–8].

Based on [1], deconvolution is a technique used to convert
measured pressure and sandface rate data into the constant
rate pressure response of the reservoir. In other words, decon-
volution provides the pressure response of a well/reservoir
system free of wellbore storage effects, as if the reservoir is
producing at a constant rate. Once the deconvolved pressure
is obtained, conventional interpretationmethods can be used
for reservoir system identification and parameter estimation.

The purpose of the well test interpretation, as stated by
Gringarten et al., [9] is to identify the system and determine
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its governing parameters frommeasured data in the wellbore
and at the wellhead. This problem is known as the inverse
problem. The solution of the inverse problem usually is not
unique. Gringarten et al. [9] pointed out that if the number
and the rage measurements increased, the nonuniqueness of
the inverse problem will be reduced. Thus combining sand-
face flow rate with pressure measurements will enhance the
conventional (including type curve) well test interpretation
methods. On the other hand, mathematically, deconvolution
is also a highly unstable inverse problem because small
errors in the data can result in large uncertainties in the
deconvolution solution [10, 11].

Unfortunately, standard deconvolution techniques re-
quire accurate measurements of flow rate and pressure at
downhole (or sandface) conditions. While accurate pressure
measurements are commonplace, the measurement of sand-
face flow rates is rare, essentially nonexistent in practice.
As such, the deconvolution of wellbore storage distorted
pressure test data is problematic. In theory, this process is
possible, but in practice, without accurate measurements of
flow rates, this process cannot be employed [12, 13].

In the past 50 years, a variety of deconvolution tech-
niques have been proposed in petroleum engineering. Russell
[14] used the approximate direct method to correct the
pressure transient data distorted by wellbore storage into
the equivalent pressure function for the constant rate case.
Gladfelter et al. [15] and Fetkovich and Vienot [16] used the
rate normalization techniques to correct for thewellbore stor-
age effects.These rate normalizationmethods were successful
in some cases. So Johnston [17] provided thematerial balance
deconvolution that is a practical approach for the analysis of
pressure transient data distorted by wellbore storage effects.

Essentially, rate normalization techniques and material
balance deconvolution are restricted when the lack of rate
measurement exists. van Everdingen [18] and Hurst [19]
demonstrated empirically that the sandface flow rate profile
can be modeled approximately using an exponential relation
for the duration of wellbore storage distortion during a pres-
sure transient test.The vanEverdingen andHurst exponential
rate model is given in dimensionless form as

𝑞
𝐷
(𝑡
𝐷
) = 1 − 𝑒

−𝛽𝑡𝐷 . (1)

Further, they showed that the rate-time relationship during
afterflow (for a pressure buildup test) or unloading (in a
pressure drawdown test) is a function of the pressure drop
change with respect to time and a relatively constant wellbore
storage coefficient.

Based on a material balance in the wellbore, the sandface
flow rate can be calculated by the following relation given in
dimensionless form

𝑞
𝐷
(𝑡
𝐷
) = 1 − 𝐶

𝐷

𝑑𝑝
𝑤𝐷

𝑑𝑡
𝐷

, (2)

where it can be noted that, in the development of wellbore
storage models solutions (e.g., type curves), a constant well-
bore storage coefficient is always assumed.

Equations (1) and (2) laid the groundwork for 𝛽-
deconvolution. Joseph and Koederitz [20] and Kuchuk [21]

applied 𝛽-deconvolution for the analysis of wellbore stor-
age distorted pressure transient data. The 𝛽-deconvolution
formula, which computes the undistorted pressure drop
function directly from the wellbore storage affected data, is
given as

𝑝
𝑠𝐷

(𝑡
𝐷
) =

1

𝛽

𝑑𝑝
𝑤𝐷

(𝑡
𝐷
)

𝑑𝑡
𝐷

+ 𝑝
𝑤𝐷

(𝑡
𝐷
) . (3)

It should be noted that (3) is only validwhen the sandface flow
rate profile follows an exponential trend as prescribed by (1)
[12]. In thiswork,we develop an approach that overcomes this
restriction by treating the 𝛽 quantity as a variable in general,
rather than a constant.

The obvious advantage of 𝛽-deconvolution is that the
wellbore storage effects are eliminated and the restored
pressure is obtained using only the given pressure data.

This paper reports a modification of Russell method
(Appendix A), a modification of 𝛽-deconvolution, and an
explicit deconvolution formula to restore the pressure and
rate data, and a review on material balance deconvolution
is also presented to deconvolve the pressure and rate data
after the explicit deconvolution method. Then a general
approach to analyze the deconvolution problem is provided
(Appendix B). In verification examples section, we show the
power and practical applicability of our approaches with
various synthetic and field case examples for oil and gas wells.

2. Main Results

2.1. 𝛽-Deconvolution and Its Modification. van Everdingen
andHurst [22] presented the dimensionless wellbore pressure
for a continuously varying flow rate as

𝑝
𝑤𝐷

(𝑡
𝐷
) = 𝑞
𝐷 (0) 𝑝𝑠𝐷 (𝑡𝐷) + ∫

𝑡𝐷

0

𝑝
󸀠

𝐷
(𝜏) 𝑝𝑠𝐷 (𝑡𝐷 − 𝜏) 𝑑𝜏.

(4)

An alternative form to (4) can be obtained by integration by
parts as

𝑝
𝑤𝐷

(𝑡
𝐷
) = 𝑞
𝐷
(𝑡
𝐷
) 𝑝
𝑠𝐷 (0) + ∫

𝑡𝐷

0

𝑞
𝐷 (𝜏) 𝑝

󸀠

𝑠𝐷
(𝑡
𝐷
− 𝜏) 𝑑𝜏,

(5)

where 𝑝
𝑤𝐷

(𝑡
𝐷
) = (𝑘ℎ/141.2𝑞𝐵𝜇)(𝑝

𝑖
− 𝑝
𝑤𝑓
(𝑡)), 𝑡

𝐷
=

(0.0002637𝑘𝑡/𝜙𝜇𝑐
𝑡
𝑟
2

𝑤
), 𝑝
𝑠𝐷

= 𝑝
𝐷
+ 𝑆, 𝑝

𝑤𝐷
(𝑡
𝐷
) is dimen-

sionless wellbore pressure with wellbore storage and skin
effects, 𝑝

𝐷
(𝑡
𝐷
) is dimensionless sandface pressure for the

constant rate case without wellbore storage and skin effects, 𝑆
is steady state skin factor, 𝑝󸀠

𝑠𝐷
(𝑡
𝐷
) = 𝑑𝑝

𝑠𝐷
(𝑡
𝐷
)/𝑑𝑡
𝐷
, 𝑞
𝐷
(𝑡
𝐷
) =

𝑞
𝑠𝑓
(𝑡
𝐷
)/𝑞
𝑟
, 𝑞󸀠
𝐷
(𝑡
𝐷
) = 𝑑𝑞

𝐷
(𝑡
𝐷
)/𝑑𝑡
𝐷
, and 𝑞

𝑟
is reference

flow rate, if the stabilized constant rate is available, then 𝑞
𝑟

should be replaced by 𝑞
𝑅
, 𝑞
𝑠𝑓
(𝑡) is variable sandface flow rate

(flowmeter reading), and 𝑞
𝐷
(𝑡
𝐷
) is dimensionless sandface

rate.
It should be emphasized that (4) and (5) can be applied

for many reservoir engineering problems. The linearity of
diffusivity equation allows us to use (4) and (5) for fractured,
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layered, anisotropic, and heterogeneous systems as long as the
fluid in the reservoir is single phase.These equations can also
be applied to both drawdown and buildup tests if the initial
conditions are known. For a reservoir with an initial constant
and uniform pressure distribution (𝑝

𝐷
(0) = 0), (4) and (5)

can be expressed as

𝑝
𝑤𝐷

(𝑡
𝐷
) = ∫

𝑡𝐷

0

𝑞
󸀠

𝐷
(𝜏) 𝑝𝑠𝐷 (𝑡𝐷 − 𝜏) 𝑑𝜏, (6)

𝑝
𝑤𝐷

(𝑡
𝐷
) = 𝑆𝑞

𝐷
(𝑡
𝐷
) + ∫

𝑡𝐷

0

𝑞
𝐷 (𝜏) 𝑝

󸀠

𝑠𝐷
(𝑡
𝐷
− 𝜏) 𝑑𝜏. (7)

Furthermore, (6) and (7) also can be expressed as

𝑝
𝑤𝐷

(𝑡
𝐷
) = ∫

𝑡𝐷

0

𝑞
󸀠

𝐷
(𝑡
𝐷
− 𝜏) 𝑝

𝑠𝐷 (𝜏) 𝑑𝜏, (8)

𝑝
𝑤𝐷

(𝑡
𝐷
) = 𝑆𝑞

𝐷
(𝑡
𝐷
) + ∫

𝑡𝐷

0

𝑞
𝐷
(𝑡
𝐷
− 𝜏) 𝑝

󸀠

𝑠𝐷
(𝜏) 𝑑𝜏. (9)

In (6) and (8), it is assumed that 𝑞󸀠
𝐷
(𝑡
𝐷
) exists. If 𝑞

𝐷
(𝑡
𝐷
) is

constant, then (7) and (9) must be used. Equations (6) and
(8) are known as a Volterra integral equation of first kind and
the convolution type.

Taking the Laplace transform of (6) yields

𝑝
𝑤𝐷

(𝑠) = 𝑠𝑞
𝐷
(𝑠) 𝑝
𝑠𝐷

(𝑠) . (10)

Rearranging (10) for the equivalent constant rate pressure
drop function, 𝑝

𝑠𝐷
(𝑠), we obtain

𝑝
𝑠𝐷

(𝑠) =
𝑝
𝑤𝐷

(𝑠)

𝑠𝑞
𝐷
(𝑠)

. (11)

By taking the Laplace transform of (1), one can easily obtain:

𝑞
𝐷
(𝑠) =

1

𝑠
−

1

𝑠 + 𝛽
. (12)

Substituting (12) into (11) and then taking the inverse Laplace
transform of (11) yield the beta deconvolution formula:

𝑝
𝑠𝐷

(𝑡
𝐷
) =

1

𝛽
𝑝
󸀠

𝑤𝐷
(𝑡
𝐷
) + 𝑝
𝑤𝐷

(𝑡
𝐷
) , (13)

where

𝑝
󸀠

𝑤𝐷
(𝑡
𝐷
) =

𝑑𝑝
𝑤𝐷

𝑑𝑡
𝐷

, (14)

where we note that (13) is specifically valid only for the
exponential sandface flow rate profile given by (1). This may
present a serious limitation in terms of practical application
of the 𝛽-deconvolutionmethod. To overcome this restriction,
we propose an idea. It would be assumed that𝛽 is not constant
in general. If 𝑞

𝐷
(𝑡
𝐷
)data are given, the procedure is as follows:

𝑞
𝐷
(𝑡
𝐷
) = 1 − 𝑒

−𝛽(𝑡𝐷)𝑡𝐷 . (15)

Rearranging (15) yields

1 − 𝑞
𝐷
(𝑡
𝐷
) = 𝑒
−𝛽(𝑡𝐷)𝑡𝐷 , (16)

then

−𝛽 (𝑡
𝐷
) 𝑡
𝐷
= ln (1 − 𝑞

𝐷
(𝑡
𝐷
)) , (17)

so

𝛽 (𝑡
𝐷
) = −

ln (1 − 𝑞
𝐷
(𝑡
𝐷
))

𝑡
𝐷

. (18)

Substituting of (18) into (13) instead of 𝛽 term yields the
modified 𝛽-deconvolution:

𝑝
𝑠𝐷

(𝑡
𝐷
) =

1

𝛽 (𝑡
𝐷
)
𝑝
󸀠

𝑤𝐷
(𝑡
𝐷
) + 𝑝
𝑤𝐷

(𝑡
𝐷
) . (19)

Plot of (19) versus (∫
𝑡𝐷

0
𝑞
𝐷
(𝜏)𝑑𝜏/𝑞

𝐷
(𝑡
𝐷
)) and (∫

𝑡𝐷

0
(1 −

𝑞
𝐷
(𝜏))𝑑𝜏/1 − 𝑞

𝐷
(𝑡
𝐷
)) for drawdown and buildup tests,

respectively, should be considered more accurate to use as a
practical tool for field applications. As mentioned before, the
variable 𝛽 quantity (rather than a constant) shows the general
and more accurate behavior of 𝑞

𝐷
(𝑡
𝐷
). So accuracy of (19) is

also more than (13). It can be emphasized that (13) and (19)
are applicable in the wellbore storage duration, and for the
later times, the given pressure data are correct. However, the
results of (19) show that this equation is not bad for the later
times.

2.2. Explicit Deconvolution Formula. A few types of approx-
imation functions can be used to approximate 𝑞

𝐷
(𝑡
𝐷
). An

approximate proof is given here to show that the exponential
function gives a good representation of 𝑞

𝐷
(𝑡
𝐷
). By setting

𝑞
𝐷
(𝑡
𝐷
) = 1 − 𝑓 (𝑡

𝐷
) , (20)

𝑓 (0) = 1. (21)

Equation (21) is an initial condition for (20).
Taking the time derivative of (20) gives

𝑞
󸀠

𝐷
(𝑡
𝐷
) = −𝑓

󸀠
(𝑡
𝐷
) . (22)

Taking the time derivative of (2) gives

𝑞
󸀠

𝐷
(𝑡
𝐷
) = −𝐶

𝐷
𝑝
󸀠󸀠

𝑤𝐷
. (23)

From (2) and (20), we have

𝑓 (𝑡
𝐷
) = 𝐶
𝐷
𝑝
󸀠

𝑤𝐷
. (24)

And from (22) and (23), we have

𝑓
󸀠
(𝑡
𝐷
) = 𝐶
𝐷
𝑝
󸀠󸀠

𝑤𝐷
. (25)

After dividing right and left hand sides of (25) by (24), the
result is

𝑓
󸀠
(𝑡
𝐷
)

𝑓 (𝑡
𝐷
)
=
𝑝
󸀠󸀠

𝑤𝐷
(𝑡
𝐷
)

𝑝󸀠
𝑤𝐷

(𝑡
𝐷
)
. (26)

Integrating both sides of (26) with respect to 𝑡
𝐷
from 0 to 𝑡

𝐷

yields

∫

𝑡𝐷

0

𝑓
󸀠
(𝜏)

𝑓 (𝜏)
𝑑𝜏 = ∫

𝑡𝐷

0

𝑝
󸀠󸀠

𝑤𝐷
(𝜏)

𝑝󸀠
𝑤𝐷

(𝜏)
𝑑𝜏. (27)
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Using elementary calculus yields

ln (
󵄨󵄨󵄨󵄨𝑓(𝜏)

󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨
𝑡𝐷

0
= ln (󵄨󵄨󵄨󵄨𝑓 (𝑡

𝐷
)
󵄨󵄨󵄨󵄨) − ln (1) = ∫

𝑡𝐷

0

𝑝
󸀠󸀠

𝑤𝐷
(𝜏)

𝑝󸀠
𝑤𝐷

(𝜏)
𝑑𝜏.

(28)

So

𝑓 (𝑡
𝐷
) = 𝑒
𝛼(𝑡𝐷), (29)

where

𝛼 (𝑡
𝐷
) = ∫

𝑡𝐷

0

𝑝
󸀠󸀠

𝑤𝐷
(𝜏)

𝑝󸀠
𝑤𝐷

(𝜏)
𝑑𝜏. (30)

Now, the explicit deconvolution of data based on (20) can be
written as follows:

𝑝
𝑠𝐷

(𝑡
𝐷
) = −

1

𝛼 (𝑡
𝐷
) /𝑡
𝐷

𝑝
󸀠

𝑤𝐷
+ 𝑝
𝑤𝐷

(𝑡
𝐷
) , (31)

or

𝑝
𝑠𝐷

(𝑡
𝐷
) = −

𝑡
𝐷

𝛼 (𝑡
𝐷
)
𝑝
󸀠

𝑤𝐷
+ 𝑝
𝑤𝐷

(𝑡
𝐷
) (32)

that is similar to (19). The other similarity between (19) and
(32) is that the plot of (32) versus (∫𝑡𝐷

0
𝑞
𝐷
(𝜏)𝑑𝜏/𝑞

𝐷
(𝑡
𝐷
)) and

(∫
𝑡𝐷

0
(1 − 𝑞

𝐷
(𝜏))𝑑𝜏/(1 − 𝑞

𝐷
(𝑡
𝐷
))) for drawdown and buildup

tests, respectively, yields the more accurate results and is
usable for practical applications. The applicability of (32) is
also for duration of wellbore storage effects. And for the other
times, the given pressure data are correct. However, using this
method for the later times yields not bad results.

3. Material Balance Deconvolution

Material balance deconvolution is an extension of the rate
normalization method. Johnston [17] defines a new 𝑥-axis
plotting function (material balance time) that provides an
approximate deconvolution of the variable rate pressure
transient problem. There are numerous assumptions associ-
ated with the material balance deconvolution methods; one
of the most widely accepted assumptions is that the rate
profilemust change smoothly andmonotonically. In practical
terms, this condition should be met for the wellbore storage
problem.

The general form of material balance deconvolution is
provided for the pressure drawdown case in terms of the
material balance time function and the rate-normalized
pressure drop function. The material balance time function
is given as

𝑡
𝑚𝑏

=
𝑁
𝑝

𝑞
𝐷 (𝑡)

, (33)

where

𝑁
𝑝
= ∫

𝑡

0

𝑞
𝐷 (𝜏) 𝑑𝜏. (34)

The rate-normalized pressure drop function is given by

Δ𝑝
𝑤𝑓 (𝑡)

𝑞
𝐷 (𝑡)

=
𝑝
𝑖
− 𝑝
𝑤𝑓 (𝑡)

𝑞
𝐷 (𝑡)

. (35)

The material balance time function for the pressure buildup
case is given as

𝑡
𝑚𝑏

=
𝑁
𝑝

1 − 𝑞
𝐷 (Δ𝑡)

, (36)

where

𝑁
𝑝
= ∫

Δ𝑡

0

(1 − 𝑞
𝐷 (𝜏)) 𝑑𝜏. (37)

The rate-normalized pressure drop function for the pressure
buildup case is given as

Δ𝑝
𝑤𝑠 (Δ𝑡)

1 − 𝑞
𝐷 (Δ𝑡)

=
𝑝
𝑤𝑠 (Δ𝑡) − 𝑝

𝑤𝑓 (Δ𝑡 = 0)

1 − 𝑞
𝐷 (Δ𝑡)

. (38)

4. Methodology

In this work several methods are provided to restore the
pressure datawithout any sandface flow rate information.The
values of sandface flow rate data for all methods that require
these data may be obtained from (20). We evaluated a very
old correctionmethod by Russell [14]. However, we modified
this method by least square method, but it was found that
this method is to be unacceptable for all applications. The
derivation of this method and its modification is given in
Appendix A.

The 𝛽-deconvolution and its modification are another
technique that is mentioned in this study. The formulation
of this method is presented in Section 2.1. The other explicit
deconvolutionmethod is an approach similar to themodified
𝛽-deconvolution that uses only the pressure data for decon-
volution of pressure and rate data. The formulation of this
method was derived in Section 2.2. The 𝛽-deconvolution, its
modification, and explicit deconvolution formula can be used
for practical applications. The applicability of these methods
is for duration of wellbore storage effects. However, using
these approaches for the other times yields not bad results.

The other technique is material balance deconvolution
method [17] that has sufficiently accurate results.Thismethod
can also be used as a good approach for practical applications.
The formulas for this method were given in Section 3.

In Appendix B, deconvolution is expressed as an inverse
problem that is analyzed by a tricky idea. Based on this
idea, an interesting proof is given for rate normalization
method and material balance deconvolution that is a good
approach to find the errors and limitations of these methods
and overcome them.
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Figure 1: Deconvolution for a drawdown test in a homogeneous
reservoir.

From the above-mentioned methods, we use the fol-
lowing two techniques to show the verification of these
approaches.

Explicit Deconvolution Formula. The final result of explicit
deconvolution method is given as follows:

𝑝
𝑠𝐷

(𝑡
𝐷
) = −

𝑡
𝐷

𝛼 (𝑡
𝐷
)
𝑝
󸀠

𝑤𝐷
+ 𝑝
𝑤𝐷

(𝑡
𝐷
) . (39)

Plotting of this term versus (∫
𝑡𝐷

0
𝑞
𝐷
(𝜏)𝑑𝜏/𝑞

𝐷
(𝑡
𝐷
)) and

(∫
𝑡𝐷

0
(1 − 𝑞

𝐷
(𝜏))𝑑𝜏/(1 − 𝑞

𝐷
(𝑡
𝐷
))) for drawdown and buildup

tests, respectively, yields more accurate results.This approach
performs well in field applications.

Material Balance Deconvolution. The material balance pres-
sure drop function for the pressure drawdown test is given
as

Δ𝑝
𝑤𝑓 (𝑡)

𝑞
𝐷 (𝑡)

=
𝑝
𝑖
− 𝑝
𝑤𝑓 (𝑡)

𝑞
𝐷 (𝑡)

, (40)

and the material balance time function for the pressure
drawdown test is given as

𝑡
𝑚𝑏

=
∫
𝑡𝐷

0
𝑞
𝐷 (𝜏) 𝑑𝜏

𝑞
𝐷 (𝑡)

. (41)

For the buildup test, the material balance pressure drop
function can be written as

Δ𝑝
𝑤𝑠 (Δ𝑡)

1 − 𝑞
𝐷 (Δ𝑡)

=
𝑝
𝑤𝑠 (Δ𝑡) − 𝑝

𝑤𝑓 (Δ𝑡 = 0)

1 − 𝑞
𝐷 (Δ𝑡)

. (42)
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Figure 2: Deconvolution for a drawdown test in a homogeneous
reservoir.

And the material balance time function can be written as

𝑡
𝑚𝑏

=
∫
𝑡𝐷

0
(1 − 𝑞

𝐷 (𝜏)) 𝑑𝜏

1 − 𝑞
𝐷 (Δ𝑡)

. (43)

This technique is a good approach for practical applications.

5. Verification Examples

We first use few synthetic cases for different reser-
voir/wellbore systems to validate the applicability of explicit
deconvolution formula and material balance deconvolution
method. Then the field applications of these techniques
will be shown by two real cases. The unloading rates are
calculated with (20).

The first case is a synthetic test derived from a test design
in a vertical oil well.The reservoir is homogenous and infinite
acting with a constant wellbore storage. The wellbore storage
coefficient is 𝐶

𝑠
= 0.015 bbl/psi. The pressure data are

obtained from the cylindrical source solution (test design).
We used the explicit deconvolution formula and material

balance deconvolution method to deconvolve the pressure
and unloading rate distorting by wellbore storage effects.The
results are presented in Figures 1 and 2 for the semilog and
log-log plots in the case of drawdown test and Figures 3
and 4 for the semilog and log-log plots in the case of buildup
test. Besides the deconvolved pressures and their logarithmic
derivatives, pressure responses with and without wellbore
storage are also plotted on the figures for comparison.
Through the deconvolution process, we have successfully
removed the wellbore storage effects so that radial flow can
be identified at early test times. The deconvolved pressures
and their logarithmic derivatives are almost identical to
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Figure 3: Deconvolution for a buildup test in a homogeneous
reservoir.
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Figure 4: Deconvolution for a buildup test in a homogeneous
reservoir.

the analytic solutions (without wellbore storage), which
enables us to estimate reservoir parameters accurately.

The second case is an oil well drawdown test in a
dual porosity reservoir. The storativity ratio (𝜔) and inter-
porosity flow coefficient (𝜆) are assumed to be 0.1 and
10
−6, respectively. The constant wellbore storage coefficient

is 𝐶
𝑠
= 0.15 bbl/psi. The dimensionless wellbore pressure
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Figure 5: Deconvolution for a drawdown test in a dual porosity
reservoir.

data were obtained from the cylindrical source solution with
pseudosteady-state interporosity flow (test design). It is not
possible to identify the dual porosity behavior characteristic
of the reservoir from wellbore pressure data because this
behavior has been masked completely by wellbore storage, as
indicated in Figures 5 and 6.

We deconvolved the pressure and unloading rate and
present the results in Figures 5 and 6. The deconvolved
results are reasonably consistent with the analytical solution.
After deconvolution, the dual porosity behavior can be
identified easily from the valley in the logarithmic derivative
of pressure. If wellbore storage effects were not removed at
early times, it easily could have incorrectly identified the
reservoir system as infinite acting.The estimation of reservoir
parameters can be obtained now from deconvolved pressure.

The third case is an oil well drawdown test in a reservoir
with a sealing fault 250 ft from the well. Synthetic pressure
responses were generated by simulation (test design) with a
constant wellbore storage coefficient of 0.1 bbl/psi. As we can
see in Figures 7 and 8, the early time infinite acting reservoir
behavior has been masked completely by wellbore storage.

To recover the hidden reservoir behavior, we performed
deconvolution on the pressure change to remove the wellbore
storage effect. As in Figures 7 and 8, the deconvolved pressure
change and logarithmic derivative data are almost identical
to the responses without wellbore storage.The deconvolution
results clearly indicate parallel horizontal lines for the loga-
rithmic derivative. However, without wellbore storage effects
elimination, this maymislead to identify the reservoir system
as infinite acting. So this allows us to correctly identify the
reservoir system having a sealing fault.

The fourth case is a field example that is taken from the
literature [23]. The basic reservoir and fluid properties are
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Table 1: Reservoir rock and fluid properties for the first field case.

𝑡
𝑝
(hr) ℎ (ft) 𝑟

𝑤
(ft) 𝑞

𝑜
(STB/D) 𝐵

𝑜
(RB/STB) 𝑐

𝑡
(psi−1) 𝜇

𝑜
(cp) 𝜙

15.33 107 0.29 174 1.06 4.2 × 10
−6 2.5 0.25

Table 2: Reservoir rock and fluid properties for the second field case.

𝑡
𝑝
(hr) ℎ (ft) 𝑟

𝑤
(ft) 𝑇 (∘F) 𝑝 (psi) 𝑞

𝑜
(STB/D) 𝑞

𝑔
(Mscf/D) 𝑐

𝑓
(psi−1) 𝑇

𝑑𝑝
(∘F) 𝑝

𝑑𝑝
(psi) ∘API 𝛾

𝑔

14.3111 100 0.354 279.5 7322 104 13925 3 × 10
−6 212 5445 45.375 0.68
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Figure 6: Deconvolution for a drawdown test in a dual porosity
reservoir.

shown in Table 1. In this case we provide the deconvolved
pressure data using the explicit deconvolution formula and
the material balance deconvolution method that is presented
in this work. The data are taken from a pressure buildup test
and can be reasonably used as field data. The deconvolution
results are shown in Figure 9 in semilog plot. As it is
illustrated from Figure 9, the corrected pressure provides a
clear straight line starting as early as 1.5 hours, in contrast to
the vague line from the uncorrected pressure response.

And the last (field) example is a gas condensate
well buildup test following a variable rate production
history. The duration of last pressure buildup test is
36.1556 hours (from 188.9 to 225.0556 hours). The basic
reservoir and fluid properties for the last drawdown test
are shown in Table 2. However, the properties of other
production tests are not shown here. To use our new
techniques effectively for gas wells, we use normalized
pseudopressure and pseudotime functions as defined by
Meunier et al. [24].The final results of explicit deconvolution
formula and material balance deconvolution method
show two different slopes (Figure 10) where the early
times slope is greater than the last one. This identifies
the radial composite behavior of the reservoir. With

the corrected pressures, the reservoir parameters can also be
estimated.

6. Conclusions

In this work we have provided some explicit deconvolution
methods for restoration of constant rate pressure responses
from measured pressure data dominated by wellbore storage
effects, without sandface rate measurements. Based on our
investigations, we can state the following specific conclusions
related to these techniques.

(1) The results obtained from the synthetic and field
examples show the practical and computational effi-
ciency of our deconvolution methods.

(2) Modification of 𝛽-deconvolution is presented where
the beta quantity is variable, rather than a constant.

(3) For situations in which there are no downhole rate
measurements, the explicit deconvolution methods
(blind deconvolution approaches) can be used to
derive the downhole rate function from the pressure
measurements and restore the reservoir pressure
response.

(4) We can unveil the early time behavior of a reservoir
systemmasked by wellbore storage effects using these
new approaches. Wellbore geometries and reservoir
types can be identified from this restored pressure
data. Furthermore, the conventional methods can
be used to analyze this restored formation pressure
to estimate formation parameters. So the presented
techniques can be used as the practical tools to
improve pressure transient test interpretation.

(5) Deconvolution in well test analysis is often expressed
as an inverse problem. This approach can be used as
an idea to justify the rate normalization method and
the material balance deconvolution method.

Appendices

A. Russel Method and Its Modification

A method for correcting pressure buildup pressure data free
of wellbore storage effects at early times has been developed
by Russell [14]. In this method it is not necessary to measure
the rate of influx after closing in at the surface. Instead, one
uses a theoretical equation, which gives the form that the
bottom hole pressure should have fluid accumulates in the
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Figure 7: Deconvolution for a drawdown test in a reservoir with a
sealing fault.
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Figure 8: Deconvolution for a drawdown test in a reservoir with a
sealing fault.

wellbore during buildup. This leads to the result that one
should plot

[𝑝
𝑤𝑠 (Δ𝑡) − 𝑝

𝑤𝑓 (Δ𝑡 = 0)]

[1 − (1/𝐶
2
Δ𝑡)]

(A.1)

versus log (Δ𝑡) in analyzing pressure buildup data during the
early fill-up period. The denominator makes a correction for
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Figure 9: Restored pressures for a buildup test in a homogeneous
reservoir.
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Figure 10: Restored pressures for a buildup test in a radial composite
reservoir.

the gradually decreasing flow into the wellbore. The quantity
𝐶
2
is obtained by trial and error as the value which makes the

curve straight at early times. After obtaining the straight line
section, the rest of the analysis is the same as for any other
pressure buildup. This method has the advantage or requires
no additional data over that taken routinely during a shut in
test.

Due to the time consuming and unconfident of trial and
error to determine 𝐶

2
in Russell method, we modify this

method. Russell’s wellbore storage correction is given as

[𝑝
𝑤𝑠 (Δ𝑡) − 𝑝

𝑤𝑓 (Δ𝑡 = 0)]

[1 − (1/𝐶
2
Δ𝑡)]

= 𝑓 (Δ𝑡 = 1 hr) + 𝑚
𝑠𝑙
log (Δ𝑡) .

(A.2)
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Defining the following function and using least squares
technique obtain the final result:

𝐸 (𝐶
2
, 𝑓,𝑚)

=

𝑁

∑

𝑖=1

(
Δ𝑝
𝑤𝑠𝑖

(1 − (1/𝐶
2
Δ𝑡
𝑖
))

− 𝑓(𝐶
2
) − 𝑚(𝐶

2
) log(Δ𝑡

𝑖
))

2

.

(A.3)

Tominimize the function𝐸, it can differentiate𝐸with respect
to 𝐶
2
, 𝑓, and 𝑚 and setting the results equal to zero. After

differentiation, it reduces to

𝜕𝐸

𝜕𝐶
2

= −2

𝑁

∑

𝑖=1

{(
Δ𝑝
𝑤𝑠𝑖

Δ𝑡
𝑖
(𝐶
2
− (1/Δ𝑡

𝑖
))
2
)

× (
Δ𝑝
𝑤𝑠𝑖

(1 − (1/𝐶
2
Δ𝑡
𝑖
))

− 𝑓 (𝐶
2
)

−𝑚 (𝐶
2
) log (Δ𝑡

𝑖
) )} = 0,

(A.4)

𝜕𝐸

𝜕𝑓

= −2

𝑁

∑

𝑖=1

(
Δ𝑝
𝑤𝑠𝑖

(1 − (1/𝐶
2
Δ𝑡
𝑖
))

− 𝑓 (𝐶
2
) − 𝑚 (𝐶

2
) log (Δ𝑡

𝑖
))

= 0,

(A.5)
𝜕𝐸

𝜕𝑚

= −2

𝑁

∑

𝑖=1

{log (Δ𝑡
𝑖
) (

Δ𝑝
𝑤𝑠𝑖

(1 − (1/𝐶
2
Δ𝑡
𝑖
))

− 𝑓 (𝐶
2
)

− 𝑚 (𝐶
2
) log (Δ𝑡

𝑖
))} = 0.

(A.6)

From (A.4), we define the following function:

𝑋(𝐶
2
)

=

𝑁

∑

𝑖=1

{(
Δ𝑝
𝑤𝑠𝑖

Δ𝑡
𝑖
(𝐶
2
− (1/Δ𝑡

𝑖
))
2
)

×(
Δ𝑝
𝑤𝑠𝑖

(1− (1/𝐶
2
Δ𝑡
𝑖
))
−𝑓 (𝐶

2
) −𝑚 (𝐶

2
) log (Δ𝑡

𝑖
))} .

= 0.

(A.7)

The roots of (A.7) can be found via the following algorithm:

𝐶
2(𝑖+1)

= 𝐶
2(𝑖)

−
𝑋 (𝐶
2
)

𝑋󸀠 (𝐶
2
)
, (A.8)

where

𝑋(𝐶
2
) =

𝑁

∑

𝑖=1

{(
Δ𝑝
𝑤𝑠𝑖

Δ𝑡
𝑖
(𝐶
2
− (1/Δ𝑡

𝑖
))
2
)

× (
Δ𝑝
𝑤𝑠𝑖

(1 − (1/𝐶
2
Δ𝑡
𝑖
))

− 𝑓 (𝐶
2
)

−𝑚 (𝐶
2
) log (Δ𝑡

𝑖
))} ,

𝑋
󸀠
(𝐶
2
) =

𝑁

∑

𝑖=1

{(−
2Δ𝑝
𝑤𝑠𝑖

Δ𝑡
𝑖
(𝐶
2
− (1/Δ𝑡

𝑖
))
3
)

× (
Δ𝑝
𝑤𝑠𝑖

Δ𝑡
𝑖
(𝐶
2
− (1/Δ𝑡

𝑖
))
2

× [
Δ𝑝
𝑤𝑠𝑖

(1 − (1/𝐶
2
Δ𝑡))

− 𝑓 (𝐶
2
)

−𝑚 (𝐶
2
) log (Δ𝑡

𝑖
)])

+ (
Δ𝑝
𝑤𝑠𝑖

Δ𝑡
𝑖
(𝐶
2
− (1/Δ𝑡

𝑖
))
2
)

× (−
Δ𝑝
𝑤𝑠𝑖

Δ𝑡
𝑖
(𝐶
2
− (1/Δ𝑡

𝑖
))
3
− 𝑓
󸀠
(𝐶
2
)

−𝑚
󸀠
(𝐶
2
) log (Δ𝑡

𝑖
))} ,

(A.9)

where the unknown functions are given by the following
relations:

𝑓 (𝐶
2
) =

𝛽𝑢 (𝐶
2
) − 𝛼V (𝐶

2
)

𝛽2 − 𝑁𝛼
(A.10)

whose derivative is

𝑓
󸀠
(𝐶
2
) =

𝛽𝑢
󸀠
(𝐶
2
) − 𝛼V󸀠 (𝐶

2
)

𝛽2 − 𝑁𝛼
,

𝑚 (𝐶
2
) =

𝑁𝑢 (𝐶
2
) − 𝛽V (𝐶

2
)

𝑁𝛼 − 𝛽2
,

(A.11)

where its derivative is

𝑚
󸀠
(𝐶
2
) =

𝑁𝑢
󸀠
(𝐶
2
) − 𝛽V󸀠 (𝐶

2
)

𝑁𝛼 − 𝛽2
,

𝑢 (𝐶
2
) =

𝑁

∑

𝑖=1

{log (Δ𝑡
𝑖
)

Δ𝑝
𝑤𝑠𝑖

(1 − (1/𝐶
2
Δ𝑡
𝑖
))
} ,

(A.12)
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and after differentiation, it yields

𝑢
󸀠
(𝐶
2
) = −

𝑁

∑

𝑖=1

{
log (Δ𝑡

𝑖
)

Δ𝑡
𝑖

Δ𝑝
𝑤𝑠𝑖

(𝐶
2
− (1/Δ𝑡

𝑖
))
2
} ,

V (𝐶
2
) =

𝑁

∑

𝑖=1

{
Δ𝑝
𝑤𝑠𝑖

(1 − (1/𝐶
2
Δ𝑡
𝑖
))
}

(A.13)

which has the following derivative:

V󸀠 (𝐶
2
) = −

𝑁

∑

𝑖=1

{
1

Δ𝑡
𝑖

Δ𝑝
𝑤𝑠𝑖

(𝐶
2
− (1/Δ𝑡

𝑖
))
2
} ; (A.14)

finally the values of 𝛼 and 𝛽 parameters are given by the
following formulas:

𝛼 =

𝑁

∑

𝑖=1

(log(Δ𝑡
𝑖
))
2
,

𝛽 =

𝑁

∑

𝑖=1

log (Δ𝑡
𝑖
) .

(A.15)

B. General Formula for Inverse Problem

The convolution of (6) yields

𝑝
𝑠𝐷

(𝑡
𝐷
) = ∫

𝑡𝐷

0

𝐾 (𝜏) 𝑝𝑤𝐷 (𝑡𝐷 − 𝜏) 𝑑𝜏

= ∫

𝑡𝐷

0

𝐾(𝑡
𝐷
− 𝜏) 𝑝

𝑤𝐷 (𝜏) 𝑑𝜏,

(B.1)

where

𝐾(𝑡
𝐷
) = 𝐿
−1
(

1

𝑠𝑞 (𝑠)
) , (B.2)

where 𝐿−1 is the inverse Lapalce transform operator. 𝐾(𝑡
𝐷
)

can be computed either from the Laplace transforms of
𝑞
𝐷
(𝑡
𝐷
) data, a curve-fitted equation of 𝑞

𝐷
(𝑡
𝐷
) data, or using

another technique with a relation between𝐾(𝑡
𝐷
) and 𝑞

𝐷
(𝑡
𝐷
).

However, it would be time consuming to invert all the 𝑞
𝐷
(𝑡
𝐷
)

data in Laplace space and transform it back to real space in
accordance with (B.2). Once an approximation is obtained, it
will be easy to compute𝐾(𝑡

𝐷
) and integrate (B.1) to determine

𝑝
𝑠𝐷
(𝑡
𝐷
). However, finding some approximation functions for

𝑞
𝐷
(𝑡
𝐷
) data may be difficult. We provide an approach to

overcome this problem.This idea is based on finding another
relation between 𝐾(𝑡

𝐷
) and 𝑞

𝐷
(𝑡
𝐷
); that is,

ℓ (1) =
1

𝑠
=

1

𝑠𝑞
𝐷
(𝑠)

𝑞
𝐷
(𝑠) = ℓ (∫

𝑡𝐷

0

𝐾 (𝜏) 𝑞𝐷 (𝑡𝐷 − 𝜏) 𝑑𝜏)

= ℓ(∫

𝑡𝐷

0

𝐾(𝑡
𝐷
− 𝜏) 𝑞

𝐷 (𝜏) 𝑑𝜏)

(B.3)
or

1 = ∫

𝑡𝐷

0

𝐾 (𝜏) 𝑞𝐷 (𝑡𝐷 − 𝜏) 𝑑𝜏 = ∫

𝑡𝐷

0

𝐾(𝑡
𝐷
− 𝜏) 𝑞

𝐷 (𝜏) 𝑑𝜏.

(B.4)

The other relations that can be used are

ℓ (𝑡
𝐷
) =

1

𝑠2
=

1

𝑠2𝑞
𝐷
(𝑠)

𝑞
𝐷
(𝑠) = ℓ (∫

𝑡𝐷

0

𝐿 (𝜏) 𝑞𝐷 (𝑡𝐷 − 𝜏) 𝑑𝜏)

= ℓ(∫

𝑡𝐷

0

𝐿 (𝑡
𝐷
− 𝜏) 𝑞

𝐷 (𝜏) 𝑑𝜏)

(B.5)

or

𝑡
𝐷
= ∫

𝑡𝐷

0

𝐿 (𝜏) 𝑞
𝐷
(𝑡
𝐷
− 𝜏) 𝑑𝜏 = ∫

𝑡𝐷

0

𝐿 (𝑡
𝐷
− 𝜏) 𝑞

𝐷
(𝜏) 𝑑𝜏,

(B.6)

ℓ (1) =
1

𝑠
=

1

𝑠2𝑞
𝐷
(𝑠)

𝑠𝑞
𝐷
(𝑠) = ℓ (∫

𝑡𝐷

0

𝐿 (𝜏) 𝑞
󸀠

𝐷
(𝑡
𝐷
− 𝜏) 𝑑𝜏)

= ℓ(∫

𝑡𝐷

0

𝐿 (𝑡
𝐷
− 𝜏) 𝑞

󸀠

𝐷
(𝜏) 𝑑𝜏)

(B.7)

or

1 = ∫

𝑡𝐷

0

𝐿 (𝜏) 𝑞
󸀠

𝐷
(𝑡
𝐷
− 𝜏) 𝑑𝜏 = ∫

𝑡𝐷

0

𝐿 (𝑡
𝐷
− 𝜏) 𝑞

󸀠

𝐷
(𝜏) 𝑑𝜏,

(B.8)

where

𝐿 (𝑡
𝐷
) = ℓ
−1
(

1

𝑠2𝑞 (𝑠)
) . (B.9)

Equation (B.4) can be used simultaneously with (B.1) to
analyze the deconvolution problem.

Equation (11) can be written as

𝑝
𝑠𝐷

(𝑠) = 𝑠𝑝
𝑤𝐷

(𝑠)
1

𝑠2𝑞
𝐷
(𝑠)

(B.10)

or

𝑝
𝑠𝐷

(𝑡
𝐷
) = ∫

𝑡𝐷

0

𝐿 (𝜏) 𝑝
󸀠

𝑤𝐷
(𝑡
𝐷
− 𝜏) 𝑑𝜏

= ∫

𝑡𝐷

0

𝐿 (𝑡
𝐷
− 𝜏) 𝑝

󸀠

𝑤𝐷
(𝜏) 𝑑𝜏.

(B.11)

The applications of (B.6) and (B.8) are with (B.11).
For justifying the rate normalizationmethod andmaterial

balance deconvolution, it can use (B.1), (B.4) ((B.11) can also
be used with (B.6) or (B.8) for this goal) and generalized
mean value theorem for integrals. This theorem is expressed
as follows.

Theorem 1. Let 𝑓 and 𝑔 be continuous on [𝑎, 𝑏], and suppose
that 𝑔 does not change sign on [𝑎, 𝑏]. Then there is a point 𝑐 in
[𝑎, 𝑏] such that

∫

𝑏

𝑎

𝑓 (𝑡) 𝑔 (𝑡) 𝑑𝑡 = 𝑓 (𝑐) ∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡. (B.12)
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By Theorem 1, there are some values 𝑐
1
and 𝑐
2
between 0

and 𝑡
𝐷
such that

𝑝
𝑠𝐷

(𝑡
𝐷
) = 𝑝
𝑤𝐷

(𝑐
1
) ∫

𝑡𝐷

0

𝐾(𝑡
𝐷
− 𝜏) 𝑑𝜏, (B.13)

1 = 𝑞
𝐷
(𝑐
2
) ∫

𝑡𝐷

0

𝐾(𝑡
𝐷
− 𝜏) 𝑑𝜏. (B.14)

By setting 𝑐
1

= 𝑐
2

= 𝑡
𝐷
and dividing the right and left

side of (B.13), respectively, the rate normalization technique
is developed. However, the values 𝑐

1
and 𝑐
2
are not equal

to each other and are not equal to 𝑡
𝐷

in general. This
is the reason of error in rate normalization and material
balance deconvolution methods. 𝑐

1
and 𝑐
2
are less than 𝑡

𝐷
in

these methods for the duration of wellbore storage distortion
during a pressure transient test. Since these conditions are
approximately satisfied in material balance deconvolution,
the results of material balance are more accurate and more
confident than rate normalization.

Nomenclature

API: API gravity, ∘API
𝐵
𝑜
: Oil formation volume factor, RB/STB

𝑐
𝑡
: Total isothermal compressibility factor,

psi
−1

𝐶
2
: Arbitrary constant, hr

−1

𝐶
𝐷
: Wellbore storage constant, dimensionless

𝐶
𝑠
: Wellbore storage coefficient, bbl/psi

ℎ: Formation thickness, ft
HTR: Horner time ratio, dimensionless
𝑘: Formation permeability, md
𝐾: Kernel of the convolution integral
𝐿: Kernel of the convolution integral
𝑁
𝑝
: Cumulative oil production, bbl

𝑝 : Pressure, psi
𝑝
𝑎
: Normalized pseudopressure, psi

𝑝: Average reservoir pressure, psi
𝑝
𝐷
: Formation pressure, dimensionless

𝑝
𝑑𝑝
: Dewpoint pressure, psi

𝑝
𝑖
: Initial reservoir pressure, psi

𝑝
𝑠𝐷
: Formation pressure including skin,

dimensionless
𝑝
𝑠
: Formation pressure including skin, psi

𝑝
𝑤𝐷

: Pressure draw down, dimensionless
𝑝
𝑤𝑓
: Flowing bottom hole pressure, psi

𝑝
𝑤𝑠
: Shut-in bottom hole pressure, psi

𝑞
𝐷
: Sandface flow rate, dimensionless

𝑞
𝑔
: Gas flow rate, Mscf/D

𝑞
𝑜
: Oil flow rate, STB/D

𝑟
𝑤
: Wellbore radius, ft

𝑠: Laplace variable
𝑆: Skin factor
𝑡: Time, hr
𝑡
𝐷
: Time, dimensionless

𝑡
𝑝
: Production time, hr

𝑇: Reservoir temperature, ∘F

𝑇
𝑑𝑝
: Dewpoint temperature, ∘F

𝛼: Explicit deconvolution variable,
dimensionless

𝛽: Beta deconvolution variable,
dimensionless

𝛾
𝑔
: Gas gravity (air = 1.0)

𝜆: Interporosity flow coefficient of dual
porosity reservoir

𝜙: Porosity of reservoir rock, dimensionless
𝜇
𝑔
: Gas viscosity, cp

𝜇
𝑜
: Oil viscosity, cp

𝜔: Storativity ratio of dual porosity reservoir
−: Laplace transform of a function
󸀠: Derivative of a function.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] Y. Cheng, W. J. Lee, and D. A. McVay, “Fast-Fourier-transform-
based deconvolution for interpretation of pressure-transient-
test data dominated by Wellbore storage,” SPE Reservoir Eval-
uation and Engineering, vol. 8, no. 3, pp. 224–239, 2005.

[2] M. M. Levitan and M. R. Wilson, “Deconvolution of pressure
and rate data from gas reservoirs with significant pressure
depletion,” SPE Journal, vol. 17, no. 3, pp. 727–741, 2012.

[3] Y. Liu and R. N. Horne, “Interpreting pressure and flow-rate
data from permanent downhole gauges by use of data-mining
approaches,” SPE Journal, vol. 18, no. 1, pp. 69–82, 2013.

[4] O. Ogunrewo and A. C. Gringarten, “Deconvolution of well
test data in lean and rich gas condensate, and volatile oil wells
below saturation pressure,” in Proceedings of the SPE Annual
Technical Conference and Exhibition, Document ID: 166340-
MS, New Orleans, La, USA, September-October 2013.

[5] R. C. Earlougher Jr., Advances in Well Test Analysis, vol. 5 of
Monogragh Series, SPE, Richardson, Tex, USA, 1977.

[6] F. Kucuk and L. Ayestaran, “Analysis of simultaneously mea-
sured pressure and sandface flow rate in transient well testing,”
Journal of PetroleumTechnology, vol. 37, no. 2, pp. 323–334, 1985.
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