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We introduce a simple and efficient series solution for a class of nonlinear fractional differential equations of Caputo’s type.The new
approach is a modified form of the well-known Taylor series expansion where we overcome the difficulty of computing iterated
fractional derivatives, which do not compute in general. The terms of the series are determined sequentially with explicit formula,
where only integer derivatives have to be computed. The efficiency of the new algorithm is illustrated through several examples.
Comparison with other series methods such as the Adomian decomposition method and the homotopy perturbation method is
made to indicate the efficiency of the new approach. The algorithm can be implemented for a wide class of fractional differential
equations with different types of fractional derivatives.

1. Introduction

During the last three decades, fractional calculus caught
the attention of many researchers in differential fields of
science and engineering. This is, mainly, due to the impor-
tance of noninteger order derivatives in modeling certain
physical phenomena [1–4]. It turns out that, in some cases,
modeling using fractional calculus is more realistic than
integer calculus. This is because of the fact that the behavior
of many physical phenomena depends not only upon the
instantaneous state but also on the previous time history.
Fractional derivative, comprising in its definition previous
time history about the function, makes it more suitable
for modeling systems whose evolution depends upon their
current and previous states.

Recently, many researchers got interested in looking
at fractional differential equations (FDEs) as new model
equations for many physical problems. However, many of
these such FDEs do not possess exact analytic solutions. This
difficulty prompted many researchers to develop numerical
schemes to find approximate solutions. Many numerical
methods used to solve integer order differential equations
have been adapted to treat FDEs such as the variational
iteration (VIM) [5–8], the homotopy analysismethod (HAM)
[9–14], and the Adomian decomposition method (ADM)

[15–20], just to name a few. For a survey of recent devel-
opment of methods in fractional calculus, the reader is
referred to [21]. All thesemethods can be classified as iterative
methods which produce a solution in the form of a series
expansionwhose terms are generated iteratively.However, for
many cases, the iterative process of thesemethods is not easily
implemented. For example, the ADM requires integration
at each step to find the next iterate and the ADM requires
solving a differential equation. Another approach is the
upper-lower iterative method [22]. Quadrature techniques
have been implemented to construct different formulations
of fractional backward difference methods [23–25]. Also,
fractional linear multistep methods presented for special
types of the Volterra integral equation [26, 27] have been
implemented for several types of fractional differential equa-
tions. As a result, a class of higher order backward difference
methods have been obtained [28]. For more details one
can refer to [29] and the references therein. Convenient
and easy presentations to discretize fractional derivative of
arbitrary order have been obtained in a form of triangular
strip matrices; see [30, 31]. The suggested approach leads
to a significant simplification of the solutions of differential
equations of fractional order.

In our present work we present a series solution method
in the spirit of the Taylor series expansion for a class of
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nonlinear differential equation of fractional order.The coeffi-
cients of the series expansion are also iteratively computed but
the iteration process involves only differentiation. Naturally,
if the problem is of fractional order, the differentiation is
also of fractional order. However, to overcome the use of
fractional differentiation, we employ a transformation that
allows us to use ordinary differentiation rather than fractional
differentiation to recursively compute the coefficient of the
series expansion. We see this as an advantage to the above-
mentioned methods.

In this paper, we consider the initial value problem of
fractional order:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) = 𝑢

𝑥𝑥
(𝑥, 𝑡) + ℎ (𝑥, 𝑡, 𝑢) , 𝑡 > 0, 𝑥 ∈ R, (1)

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ R, (2)

where 0 < 𝛼 < 1, ℎ ∈ 𝐶∞(R×R+ ×R,R), 𝑢
0
(𝑥) ∈ 𝐶

∞

(R,R),
and 𝐷𝛼

𝑡
is the Caputo partial fractional derivative of order 𝛼.

For 𝛼 ∈ R, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N+, the left Caputo fractional
derivative is defined by [3]

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝜕𝑢 (𝑥, 𝑠)

𝜕𝑠

1

(𝑡 − 𝑠)
𝛼+1−𝑛

𝑑𝑠 (3)

and satisfies the following properties:

(1) 𝐷𝛼
𝑡
𝑓(𝑥) = 0;

(2) 𝐷𝛼
𝑡
𝑡
𝑟

=
Γ(𝑟 + 1)

Γ(𝑟 − 𝛼 + 1)
𝑡
𝑟−𝛼

, 𝑟 > 𝑛 − 1, 𝑟 ∈ R;

(3) 𝐷𝛼
𝑡
(∑
𝑚

𝑖=0
𝑐
𝑖
𝑓
𝑖
(𝑥, 𝑡)) = ∑𝑚

𝑖=0
𝑐
𝑖
𝐷
𝛼

𝑡
𝑓
𝑖
(𝑥, 𝑡), where 𝑐

0
, 𝑐
1

, . . ., 𝑐
𝑚
are constants.

The Caputo partial fractional derivative in (3) is related to
the Riemann-Liouville partial fractional integral, 𝐼𝛼

𝑡
, of order

𝛼, by

𝐷
𝛼

𝑡
𝑓 (𝑥, 𝑡) = 𝐼

𝑛−𝛼

𝑡

𝜕
𝑛

𝑓 (𝑥, 𝑡)

𝜕𝑡𝑛
, (4)

where, for 𝑛 − 1 ≤ 𝛼 < 𝑛,

𝐼
𝛼

𝑡
𝑓 (𝑥, 𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑥, 𝑠) 𝑑𝑠. (5)

𝐼
𝛼

𝑡
can be considered as the inverse operator of𝐷𝛼

𝑡
in the sense

𝐼
𝛼

𝑡
𝐷
𝛼

𝑡
𝑓 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) −

𝑛−1

∑

𝑘=0

𝜕
𝑘

𝑓 (𝑥, 0
+

)

𝜕𝑡𝑘

𝑡
𝑘

𝑘!
,

𝐷
𝛼

𝑡
𝐼
𝛼

𝑡
𝑓 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) .

(6)

In this paper, we consider 𝛼 = 𝑝/𝑞 rational with 𝑔𝑐𝑑(𝑝, 𝑞) =
1. The paper is organized as follows. In Section 2, we
present the series solution method to problem (1) and (2).
In Section 3, we present numerical results to illustrate the
efficiency of the presented technique. Comparison with
other methods such as the Adomian decomposition method
(ADM) and the homotopy perturbation method (HPM) will
be also presented in Section 3. Finally, we concludewith some
remarks in Section 4.

2. Series Method

In this section, we present the series solutionmethod to solve
problem (1) and (2) and we give the final result for the ODE
version of (1) and (2). Given the order 𝛼 = 𝑝/𝑞, we assume
that the solution 𝑢(𝑥, 𝑡) takes the form

𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝑎
𝑘
(𝑥) 𝑡
𝑘/𝑞

, (7)

where 𝑢(𝑥, 0) = 𝑢
0
(𝑥) and 𝑎

𝑘
(𝑥) are functional coefficients to

be determined. Clearly, 𝑎
0
(𝑥) = 𝑢

0
(𝑥). Formal substitution of

(7) into (1) gives

𝐷
𝛼

𝑡
(

∞

∑

𝑘=0

𝑎
𝑘
(𝑥) 𝑡
𝑘/𝑞

) =

∞

∑

𝑘=0

𝑎
󸀠󸀠

𝑘
(𝑥) 𝑡
𝑘/𝑞

+ ℎ(𝑥, 𝑡,

∞

∑

𝑘=0

𝑢
𝑘
(𝑥) 𝑡
𝑘/𝑞

) .

(8)

Assuming we can interchange the summation and the frac-
tional derivative operator and using property 2 above, we
obtain

∞

∑

𝑘=1

𝑎
𝑘
(𝑥) 𝑠
𝑘
𝑡
(𝑘−𝑝)/𝑞

=

∞

∑

𝑘=0

𝑎
󸀠󸀠

𝑘
(𝑥) 𝑡
𝑘/𝑞

+ ℎ(𝑥, 𝑡,

∞

∑

𝑘=0

𝑎
𝑘
(𝑥) 𝑡
𝑘/𝑞

) ,

(9)

where 𝑠
𝑘
= Γ(𝑘/𝑞 + 1)/Γ(𝑘/𝑞 − 𝛼 + 1). Note that if 𝑝 > 1, we

will have negative powers of 𝑡 (for 𝑘 = 1, 2, . . . , 𝑝 − 1) in the
sum on the left hand side of (9). To avoid this, we multiply
(9) by 𝑡(𝑝−1)/𝑞 to get

∞

∑

𝑘=0

𝑎
𝑘+1
(𝑥) 𝑠
𝑘+1
𝑡
𝑘/𝑞

=

∞

∑

𝑘=0

𝑎
󸀠󸀠

𝑘
(𝑥) 𝑡
(𝑘+𝑝−1)/𝑞

+ 𝑡
(𝑝−1)/𝑞

ℎ

× (𝑥, 𝑡,

∞

∑

𝑘=0

𝑎
𝑘
(𝑥) 𝑡
𝑘/𝑞

) .

(10)

One way of finding the coefficients 𝑎
𝑘
(𝑥), in line with

finding the coefficients of a Taylor series, is to recursively
apply the operator𝐷1/𝑞

𝑡
to (10) and substitute 𝑡 = 0. However,

this is not convenient for implementation. To avoid the use
of the fractional differentiation, we introduce the change of
variable 𝑤 = 𝑡1/𝑞 which transforms (10) into

∞

∑

𝑘=0

𝑎
𝑘+1
(𝑥) 𝑠
𝑘+1
𝑤
𝑘

=

∞

∑

𝑘=0

𝑎
󸀠󸀠

𝑘
(𝑥) 𝑤
𝑘+𝑝−1

+ 𝑤
𝑝−1

ℎ

× (𝑥,𝑤
𝑞

,

∞

∑

𝑘=0

𝑎
𝑘
(𝑥)𝑤
𝑘

) .

(11)
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Now, differentiating ordinarily 𝑘 times with respect to 𝑤 and
substituting 𝑤 = 0, we find the following recursion relation
for 𝑘 ≥ 0:

𝑎
𝑘+1
(𝑥) =

1

𝑠
𝑘+1

𝑎
󸀠󸀠

𝑘−𝑝+1
(𝑥) +

1

𝑠
𝑘+1
𝑘!

× [
𝜕
𝑘

𝜕𝑤𝑘
[𝑤
𝑝−1

ℎ(𝑥,𝑤
𝑞

,

∞

∑

𝑚=0

𝑎
𝑚
(𝑥) 𝑤
𝑚

)]]

𝑤=0

,

(12)

where we assume that 𝑎
𝑙
(𝑥) ≡ 0 for 𝑙 < 0.

We note that if problem (1) and (2) is an ordinary
differential equation of fractional order, that is, 𝑢 ≡ 𝑢(𝑡)

and ℎ ≡ ℎ(𝑡, 𝑢), the coefficients 𝑎
𝑘
are real numbers and the

recursion relation (12) reduces to

𝑎
𝑘+1

=
1

𝑠
𝑘+1
𝑘!
[
𝜕
𝑘

𝜕𝑤𝑘
[𝑤
𝑝−1

ℎ(𝑤
𝑞

,

∞

∑

𝑚=0

𝑎
𝑚
𝑤
𝑚

)]]

𝑤=0

. (13)

Remark 1. We remark that the present method is different in
many ways from the ADM. A main difference between the
two methods is that the ADM, in its generation of successive
terms, uses fractional integration while the present method
uses ordinary differentiation. However, when 𝛼 = 1 (𝑝 = 𝑞 =
1), formula (13) will reduce to

𝑎
𝑘+1

=
1

(𝑘 + 1)!
[
𝜕
𝑘

𝜕𝑤𝑘
[ℎ(𝑤,

∞

∑

𝑚=0

𝑎
𝑚
𝑤
𝑚

)]]

𝑤=0

, (14)

which is the well-known Adomian polynomial formula [32].

In Section 3, we present several examples to show
the practicality of this approach and make a comparison
with other techniques such as the Adomian decomposition
method and homotopy perturbation method.

3. Numerical Results

Example 1. Consider the fractional initial value problem

𝐷
1/2

𝑡
𝑦 = Γ (

3

2
) (𝑦
2

− 𝑡 + 1) , 𝑦 (0) = 0, (15)

with 𝑦(𝑡) = 𝑡1/2 being the exact solution.

Applying the proposed algorithm, the solution takes the
form 𝑦 = ∑

∞

𝑘=0
𝑎
𝑘
𝑡
𝑘/2. The zeroth coefficient is readily given

by 𝑎
0
= 𝑦(0) = 0. For 𝑘 ≥ 0, we have from (13)

𝑎
𝑘+1

=
Γ (3/2)

𝑠
𝑘+1
𝑘!
[
𝜕
𝑘

𝜕𝑤𝑘
[(

∞

∑

𝑚=0

𝑎
𝑚
𝑤
𝑚

)

2

− 𝑤
2

+ 1]]

𝑤=0

(16)

=
Γ (3/2)

𝑠
𝑘+1
𝑘!
[𝑘!

𝑘

∑

𝑚=0

𝑎
𝑚
𝑎
𝑘−𝑚

− 2𝛿
𝑘−2
+ 𝛿
𝑘
] , (17)

where 𝛿
𝑗
= 1 if 𝑗 = 0 and 0 otherwise. With 𝑘 = 0, (17) gives

𝑎
1
= (Γ(3/2)/𝑠

1
)(𝑎
2

0
+1) = 1, since 𝑠

1
= Γ(3/2). It can be easily

verified that (17) gives 𝑎
𝑘
= 0 for 𝑘 ≥ 2. Hence the solution

is

𝑦 (𝑡) =

∞

∑

𝑘=0

𝑎
𝑘
𝑡
𝑘/2

= 𝑎
1
𝑡
1/2

= 𝑡
1/2

, (18)

which is the exact solution.
First, we compare our results with the Adomian decom-

position method (ADM). To apply the ADM, assume that
the solution 𝑦(𝑡) of (15) and the nonlinear function 𝑓(𝑦) =
𝑦
2 can be written in the series form as

𝑦 (𝑡) =

∞

∑

𝑛=0

𝑦
𝑛
(𝑡) , 𝑓 (𝑦) =

∞

∑

𝑛=0

𝐴
𝑛
, (19)

where A
𝑛
, 𝑛 = 0, 1, 2, . . ., are called the Adomian polyno-

mials. These polynomials can be derived by expanding the
function 𝑓(𝑦) about 𝑦

0
as follows:

𝑓 (𝑦) = 𝑓 (𝑦
0
) + 𝑓
󸀠

(𝑦
0
)
𝑦 − 𝑦
0

1!
+ 𝑓
󸀠󸀠

(𝑦
0
)
(𝑦 − 𝑦

0
)
2

2!
+ ⋅ ⋅ ⋅

(20)

or

𝑓 (𝑦) = 𝑓 (𝑦
0
) + 𝑓
󸀠

(𝑦
0
)
∑
∞

𝑛=1
𝑦
𝑛

1!
+ 𝑓
󸀠󸀠

(𝑦
0
)
(∑
∞

𝑛=1
𝑦
𝑛
)
2

2!
+⋅ ⋅ ⋅ .

(21)

Thus, 𝐴
𝑘
can be derived as

𝐴
𝑘
=
1

𝑘!

𝑑
𝑘

𝑑𝛽𝑘
[

[

𝑓(

∞

∑

𝑗=0

𝛽
𝑗

𝑦
𝑗
)]

]𝛽=0

, 𝑗 ≥ 0. (22)

Next, define the fractional differential operator 𝐿 as 𝐿 =
𝐷
1/2

𝑡
; then (15) can be written in the form

𝐿 (𝑦) = Γ (
3

2
) (𝑓 (𝑦) − 𝑡 + 1) . (23)

And defining the inverse operator as 𝐿−1(⋅) = 𝐼1/2
𝑡

, then the
solution 𝑦(𝑡) of (15) can be written in the form

𝑦 (𝑡) = Γ (
3

2
) 𝐼
1/2

𝑡
(𝑓 (𝑦)) + Γ (

3

2
) 𝐼
1/2

𝑡
((−𝑡 + 1))

= Γ (
3

2
) 𝐼
1/2

𝑡
(

∞

∑

𝑛=0

𝐴
𝑛
) + Γ(

3

2
) 𝐼
1/2

𝑡
((−𝑡 + 1))

=

∞

∑

𝑛=0

𝑦
𝑛
(𝑡) .

(24)

Now balancing the last equality in (24) yields

𝑦
0
(𝑡) = Γ (

3

2
) 𝐼
1/2

𝑡
(−𝑡 + 1) ,

𝑦
𝑘+1
(𝑡) = Γ (

3

2
) 𝐼
1/2

𝑡
(𝐴
𝑘
) , 𝑘 = 0, 1, . . . .

(25)
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The first few terms generated by ADM are given below:

𝑦
0
(𝑡) =

1

3
(3 − 2𝑡) 𝑡

1/2

,

𝑦
1
(𝑡) =

2

3
𝑡
3/2

−
32

45
𝑡
5/2

+
64

315
𝑡
7/2

,

𝑦
2
(𝑡) =

32

45
𝑡
5/2

−
1664

1575
𝑡
7/2

+
32768

59535
𝑡
9/2

−
65536

654885
𝑡
11/2

...
(26)

Next, we will compare our results with the homotopy
perturbation method (HPM). To apply the HPM, define the
homotopy𝐻 : [0,∞] × [0, 1] → R which satisfies

𝐻(𝑦, 𝑝) = (1 − 𝑝)𝐷
1/2

𝑦

+𝑝(𝐷
1/2

𝑦 − Γ (
3

2
) 𝑦
2

− Γ (
3

2
) (1 − 𝑡)) = 0.

(27)

The basic assumption is that the solution of problem (15)
can be expressed as a power series in 𝑝 :

𝑦 = 𝑦
0
+ 𝑝𝑦
1
+ 𝑝
2

𝑦
2
+ ⋅ ⋅ ⋅ , (28)

where 𝑦
𝑖
(0) = 0 for 𝑖 ≥ 0. The approximate solution of

problem (15) can be obtained as

𝑦 (𝑡) = lim
𝑝→1

(𝑦
0
+ 𝑝𝑦
1
+ 𝑝
2

𝑦
2
+ ⋅ ⋅ ⋅ ) . (29)

The convergence of the last series has been proved in [33].
Substituting (28) into (27) and equating the coefficients of

the terms with like powers of 𝑝, we have

𝑝
0

: 𝐷
1/2

𝑦
0
= 0, 𝑦

0
(0) = 0,

𝑝
1

: 𝐷
1/2

𝑦
1
− Γ (

3

2
) 𝑦
2

0
− Γ (

3

2
) (1 − 𝑡) = 0, 𝑦

1
(0) = 0,

𝑝
2

: 𝐷
1/2

𝑦
2
− 2Γ (

3

2
) 𝑦
0
𝑦
1
= 0, 𝑦

2
(0) = 0,

𝑝
3

: 𝐷
1/2

𝑦
3
− Γ (

3

2
) (𝑦
2

1
+ 2𝑦
0
𝑦
2
) = 0, 𝑦

3
(0) = 0,

...
(30)

which implies that

𝑦
0
(𝑡) = 0,

𝑦
1
(𝑡) = √𝑡 −

2

3
𝑡
3/2

,

𝑦
2
(𝑡) = 0,

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

y

yHPM
yADM

Figure 1: The exact and approximate solutions of Example 1 for 0 ≤
𝑡 ≤ 0.5.

𝑦
3
(𝑡) =

2

3
𝑡
3/2

−
32

45
𝑡
5/2

+
64

315
𝑡
7/2

,

𝑦
4
(𝑡) = 0,

𝑦
5
(𝑡) =

32

45
𝑡
5/2

−
1664

1575
𝑡
7/2

+
32768

59535
𝑡
9/2

−
65536

654885
𝑡
11/2

.

(31)

The approximate solution is

𝑦HPM (𝑡) = √𝑡 −
64

75
𝑡
7/2

+
32768

59535
𝑡
9/2

−
65536

654885
𝑡
11/2

+ ⋅ ⋅ ⋅ .

(32)

Figure 1 depicts the exact solution and the approximate
solutions 𝑦ADM(𝑡) = ∑

4

𝑘=0
𝑦
𝑘
(𝑡) and 𝑦HPM(𝑡) = ∑

4

𝑘=0
𝑦
𝑘
(𝑡)

obtained by the Adomian decomposition method and the
homotopy perturbation method, respectively.

Example 2. Consider the fractional initial value problem

𝐷
2/3

𝑡
𝑦 =

1

2Γ (4/3)
𝑡
1/3

(−3√𝑦 − 1) , 𝑦 (0) = 1, (33)

with 𝑦(𝑡) = (𝑡 − 1)2 being the exact solution.

Here 𝛼 = 2/3; hence 𝑝 = 2 and 𝑞 = 3. The solution
assumes the form 𝑦 = ∑

∞

𝑛=0
𝑎
𝑛
𝑡
𝑛/3 with 𝑎

0
= 𝑦(0) = 1. Then,

according to the previous section, we have for 𝑘 ≥ 0

𝑎
𝑘+1

=
1

2Γ (4/3) 𝑠
𝑘+1
𝑘!

× [
𝜕
𝑘

𝜕𝑤𝑘
𝑤
2

(−3[

∞

∑

𝑚=0

𝑎
𝑚
𝑤
𝑚

]

1/2

− 1)]

𝑤=0

.

(34)

Numerical computation of (34) gives 𝑎
3
= −2, 𝑎

6
= 1, and all

other coefficients are zero. Thus, our procedure produces the
solution

𝑦 (𝑡) = 𝑎
0
+ 𝑎
3
𝑡 + 𝑎
6
𝑡
2

= 1 − 2𝑡 + 𝑡
2

= (𝑡 − 1)
2

, (35)

which is the exact solution.
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Table 1: Error for various 𝑡 values and different values of 𝑛 for Example 3.

𝑛 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.7 𝑡 = 1.0

5 0.001798 0.0136945 0.0443229 0.101588 0.193623
10 3.2139 × 10

−6 0.0000989578 0.000725096 0.00295596 0.00874915
15 2.70532 × 10

−10

6.70364 × 10
−8

1.66634 × 10
−6 0.000016172 0.0000938036

20 1.30212 × 10
−13

1.29792 × 10
−10

7.29593 × 10
−9

1.26453 × 10
−7

1.15074 × 10
−6

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

2

4

6

8

10
×10−6

Figure 2: A plot of 𝑦
10
and 𝐸

10
, for Example 3, where 0 ≤ 𝑡 ≤ 1.

Example 3. Consider the fractional initial value problem

𝐷
𝛼

𝑡
𝑦 = 1 − 𝑦

2

, 𝑦 (0) = 0. (36)

For 𝛼 = 𝑝/𝑞, the solution assumes the form 𝑦 =

∑
∞

𝑘=0
𝑎
𝑘
𝑡
𝑘/𝑞 with 𝑎

0
= 𝑦(0) = 0. Then according to the

previous section, we have for 𝑘 ≥ 0

𝑎
𝑘+1

=
1

𝑠
𝑘+1
𝑘!
[
𝜕
𝑘

𝜕𝑤𝑘
𝑤
𝑝−1

(1 − [

∞

∑

𝑚=0

𝑎
𝑚
𝑤
𝑚

]

2

)]

𝑤=0

(37)

=
1

𝑠
𝑘+1
𝑘!
[
𝜕
𝑘

𝜕𝑤𝑘
𝑤
𝑝−1

(1 −

∞

∑

𝑚=0

𝐶
𝑚
𝑤
𝑚

)]

𝑤=0

, (38)

where

𝐶
𝑚
=

𝑚

∑

𝑗=0

𝑎
𝑗
𝑎
𝑚−𝑗
. (39)

Simplification of (38) reveals the following recursion, where
𝑘 ≥ 0:

𝑎
𝑘+1

=

{{

{{

{

0, if 𝑘 < 𝑝 − 1
𝛿
𝑘−𝑝+1

𝑠
𝑘+1

−
1

𝑠
𝑘+1

𝐶
𝑘−𝑝+1

, if 𝑘 ≥ 𝑝 − 1.
(40)

Numerical computation of (38) gives 𝑎
2𝑗
= 0, 𝑗 ≥ 0. We

consider 𝛼 = 1/2. Since the exact solution, in closed form,
is not available, we define the error

𝐸
𝑛
(𝑡) =

󵄨󵄨󵄨󵄨󵄨
𝐷
1/2

𝑡
𝑦
𝑛
− (1 − 𝑦

2

𝑛
)
󵄨󵄨󵄨󵄨󵄨
, (41)

where 𝑦
𝑛
= ∑
𝑛

𝑘=0
𝑎
𝑘
𝑡
𝑘/𝑞. Figure 2 on the left presents the

approximate solution 𝑦
10
= ∑
10

𝑘=0
𝑎
𝑘
𝑡
𝑘/2 and on the right the

error 𝐸
10
= |𝐷
1/2

𝑡
𝑦
10
− (1 − 𝑦

2

10
)|. Table 1 depicts the absolute

error 𝐸
𝑛
for different values of 𝑛 at various values of 𝑡. From

the results presented, it is clear that the series converges and
sufficient accuracy is achievedwith few terms.However,more
termswould be needed for larger values of 𝑡which is expected
for any initial value problem. We note that, for 𝛼 = 1, we get
𝑠
𝑘
= 𝑘 and 𝑎

1
= 1, 𝑎

3
= −1/3, 𝑎

5
= 2/15, 𝑎

7
= −17/315, 𝑎

9
=

62/2835, . . ., and the obtained series solution is

𝑦 (𝑡) = 𝑡 −
1

3
𝑡 −

1

3
𝑡
3

+
2

15
𝑡
5

−
17

315
𝑡
7

+
62

2835
𝑡
9

+ ⋅ ⋅ ⋅ (42)

which coincides with the Taylor series expansion of the exact
solution 𝑦(𝑡) = (𝑒2𝑡 − 1)/(𝑒2𝑡 + 1).

Example 4. Consider the fractional initial value problem

𝐷
𝛼

𝑡
𝑢 = 𝑢
𝑥𝑥
+
1

10
𝑢 (1 − 𝑢) , 𝑢 (𝑥, 0) = 𝑥. (43)

For this example we take 𝛼 = 1/2; hence 𝑝 = 1 and
𝑞 = 2.The solution assumes the form 𝑦 = ∑∞

𝑘=0
𝑎
𝑘
(𝑥)𝑡
𝑘/2 with

𝑎
0
(𝑥) = 𝑢(𝑥, 0) = 𝑥. Then from (12), we have, for 𝑘 ≥ 0,

𝑎
𝑘+1
(𝑥) =

1

𝑠
𝑘+1

𝑎
󸀠󸀠

𝑘−𝑝+1
(𝑥) +

1

𝑠
𝑘+1
𝑘!

× [
𝜕
𝑘

𝜕𝑤𝑘
[𝑤
𝑝−1

ℎ(𝑤
𝑞

, 𝑥,

∞

∑

𝑚=0

𝑎
𝑚
(𝑥)𝑤
𝑚

)]]

𝑤=0

,
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Table 2: Error for various 𝑥 and 𝑡 values and 𝑛 = 5.

𝑥 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

0 8.3726110 × 10
−6 0.0000474301 0.000130878 0.000269023

0.5 2.38184 × 10
−9

3.53911 × 10
−8

1.69571 × 10
−7

5.09316 × 10
−7

1 8.2742 × 10
−6 0.000046751 0.000128695 0.000263925

Table 3: Error for various 𝑥 and 𝑡 values and 𝑛 = 15.

𝑥 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

0 3.59581 × 10
−11

6.5209 × 10
−9

1.36682 × 10
−7

1.18428 × 10
−6

0.5 1.3542 × 10
−12

2.39819 × 10
−10

4.93086 × 10
−9

4.19941 × 10
−8

1 3.53848 × 10
−11

6.40568 × 10
−9

1.34033 × 10
−7

1.15927 × 10
−6

=
1

𝑠
𝑘+1

𝑎
󸀠󸀠

𝑘
(𝑥) +

1

10𝑠
𝑘+1
𝑘!

× [
𝜕
𝑘

𝜕𝑤𝑘
[

∞

∑

𝑚=0

𝑎
𝑚
(𝑥)𝑤
𝑚

−

∞

∑

𝑚=0

𝐶
𝑚
(𝑥) 𝑤
𝑚

] ]

𝑤=0

,

=
1

𝑠
𝑘+1

𝑎
󸀠󸀠

𝑘
(𝑥) +

1

10𝑠
𝑘+1

(𝑎
𝑘
(𝑥) − 𝐶

𝑘
(𝑥)) ,

(44)

where

𝐶
𝑘
(𝑥) =

𝑘

∑

𝑗=0

𝑎
𝑗
(𝑥) 𝑎
𝑘−𝑗
(𝑥) . (45)

The first few terms of the series solution are

𝑢 (𝑥, 𝑡) = 𝑥 +
√𝑡

√𝜋
(
262144

4849845
𝑥 −

262144

4849845
𝑥
2

)

+
𝑡

𝜋
(−

274877906944

4704199304805
+

68719476736

23520996524025
𝑥

−
68719476736

7840332174675
𝑥
2

+
137438953472

23520996524025
𝑥
3

)

+ (
𝑡

𝜋
)

3/2

(−
288230376151711744

22814637477412005225

+
414331165718085632

16296169626722860875
𝑥

−
36028797018963968

38024395795686675375
𝑥
2

+
36028797018963968

22814637477412005225
𝑥
3

−
18014398509481984

22814637477412005225
𝑥
4

) + ⋅ ⋅ ⋅ .

(46)

Tables 2 and 3 present the error

𝐸
𝑛
(𝑥, 𝑡) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐷
1/2

𝑡
𝑢
𝑛
− 𝑢
𝑛𝑥𝑥

−
1

10
𝑢
𝑛
(1 − 𝑢

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(47)

for various values of 𝑡 and 𝑥 and 𝑛 = 5, 15, where 𝑢
𝑛
(𝑥, 𝑡) =

∑
𝑛

𝑘=0
𝑎
𝑘
(𝑥)𝑡
𝑘/2. The presented data indicate the accuracy of

the series solutions obtained.

4. Concluding Remarks

We have presented a new algorithm for obtaining a series
solution for a class of fractional differential equations. The
algorithm is developed for a class of fractional partial dif-
ferential equations of the Caputo type. We have applied the
new algorithm to different examples. Accurate numerical
solutions have been obtained as well as exact solutions
for certain problems. The new algorithm is compared with
the two well-known methods, the Adomian decomposition
method (ADM) and the homotopy perturbation method
(HPM), for one example. The exact solution is obtained
after one step in the current method and after getting a
telescoping sum by the HAM, where an approximate solution
is obtained by theADM.The idea of the new algorithm can be
generalized to deal with various types of fractional functional
equations.
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