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This paper presents a branch and bound algorithm for globally solving the sumof concave-convex ratios problem (P) over a compact
convex set. Firstly, the problem (P) is converted to an equivalent problem (P1).Then, the initial nonconvex programming problem is
reduced to a sequence of convex programming problems by utilizing linearization technique.The proposed algorithm is convergent
to a global optimal solution by means of the subsequent solutions of a series of convex programming problems. Some examples are
given to illustrate the feasibility of the proposed algorithm.

1. Introduction

We consider the concave-convex ratios programming prob-
lems as follows:

(P)
{

{

{

V = max 𝑓 (𝑥) =
𝑝

∑
𝑖=1

𝑓𝑖 (𝑥)

𝑔𝑖 (𝑥)
,

s.t. 𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑅𝑛 | 𝐴𝑥 ⩽ 𝑏} ,

(1)

where 𝑝 ⩾ 2, 𝑓𝑖, 𝑖 = 1, 2, . . . , 𝑝, are concave and differentiable
functions defined on 𝑅

𝑛, 𝑔𝑖, 𝑖 = 1, 2, . . . , 𝑝, are convex and
differentiable functions defined on𝑅𝑛,𝑋 ⊆ 𝑅

𝑛 is a nonempty,
compact convex set, and for each 𝑖 = 1, 2, . . . , 𝑝,𝑓𝑖(𝑥) > 0 and
𝑔𝑖(𝑥) > 0 for all 𝑥 ∈ 𝑋.

During the past years, various algorithms have been
proposed for solving special cases of fractional programming
problem. For instance, algorithmic and computational results
for single ratio fractional programming can be found in [1, 2]
and in the literature cited therein. At present, there exist a
number of algorithms for globally solving sum of ratios prob-
lem in which the numerators and denominators are affine
functions or the feasible region is a polyhedron [3–5]. To my
knowledge, four algorithms have been proposed for solving
the nonlinear sum of ratios problem [6–9]. Freund and Jarre
[10] present a suitable interior-point approach for the solution

of much more general problems with convex-concave ratios
and convex constraints. Shen et al. [11] present a simplicial
branch and duality bound algorithm for globally solving
the sum of convex-convex ratios problem with nonconvex
feasible region.

In this paper, we implement a branch and bound algo-
rithm for globally solving problem (P). First, although the
branch and bound search involves rectangles defined in a
space of dimension 3𝑝, branching takes place in a space of
only dimension 𝑝, where 𝑝 is the number of ratios in the
objective function of problem (P). Second, all subproblems
that must be solved to implement the algorithm are convex
programming problems, each of which is guaranteed to have
an optimal solution. Finally, some examples are given to show
that the proposed method can treat all of the test problems
in finding globally optimal solutions within a prespecified
tolerance.The algorithms of this paper were motivated by the
seminal works of [12], the generalized concave multiplicative
programming problem.

The organization and content of this paper can be
summarized as follows. In Section 2, we demonstrate how
to convert problem (P) into an equivalent problem (P1).
By using the convex envelope of the bilinear function and
the special characteristics of quadratic function, we will
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illustrate how to generate the convex relaxation program for
problem (P1) in Section 3. In Section 4, the branch and
bound algorithm for globally solving (P) is presented. And
convergence properties of the algorithm and computational
considerations for implementing the algorithm are given.
Some numerical examples are given to demonstrate the
effectiveness of the proposed algorithm in Section 5. Some
concluding remarks are given in Section 6.

2. Equivalent Program

To globally solve problem (P), the branch and bound algo-
rithm globally solves a problem (P1) equivalent to problem
(P). In this section, the following main work is to show
how to convert problem (P) into an equivalent nonconvex
programming problem (P1).

Let 𝐼 = {1, 2, . . . , 𝑝}. For each 𝑖 ∈ 𝐼, let ℎ𝑖(𝑥) =

√𝑓𝑖(𝑥)/𝑔𝑖(𝑥). Then, we have the following result.

Proposition 1. Let 𝑋󸀠 be an open set containing 𝑋 such that
for each 𝑖 = 1, 2, . . . , 𝑝, 𝑓𝑖(𝑥) > 0, 𝑔𝑖(𝑥) > 0, for all 𝑥 ∈ 𝑋.
Then, for each 𝑖 = 1, 2, . . . , 𝑝, the function ℎ𝑖(𝑥) is semistrictly
quasiconcave on 𝑋󸀠.

Proof. For any 𝑖 ∈ 𝐼, it is easy to show that the function√𝑓𝑖(𝑥)

is concave and differentiable on 𝑋󸀠. Since 𝑔𝑖(𝑥) is positive,
convex, and differentiable on 𝑋󸀠, from Avriel et al. [13], this
implies that ℎ𝑖(𝑥) is semistrictly quasiconcave on𝑋󸀠.

Proposition 2. Let𝑋󸀠 be defined as in Proposition 1. For each
𝑖 ∈ 𝐼, we consider the problem

(P𝑖) 𝑈
0

𝑖
= max
𝑥∈𝑋

ℎ𝑖 (𝑥) . (2)

Then, any localmaximum is also a globalmaximumof problem
(P𝑖).

Proof. Since𝑋 is a convex set, the result follows directly from
Proposition 1 andTheorem 3.37 of [13].

Therefore, 𝑈0
𝑖
can be found by any number of convex

programming algorithms. Let 𝐻0 = {𝑢 ∈ 𝑅𝑝 | 0 ⩽ 𝑢𝑖 ⩽

𝑈0
𝑖
, 𝑖 ∈ 𝐼}. Then,𝐻0 is a full-dimensional rectangle in 𝑅𝑝. Let

Φ : 𝑋 × 𝐻0 → 𝑅 be defined for each (𝑥, 𝑢) ∈ 𝑋 × 𝐻0 by

Φ (𝑥, 𝑢) = ∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥) − 𝑢
2

𝑖
(𝑔𝑖 (𝑥))] . (3)

For any 𝑢 ∈ 𝐻0, define the problem (𝑆𝑢) by

(𝑆𝑢) 𝜑 (𝑢) = max
𝑥∈𝑋

Φ (𝑥, 𝑢) . (4)

Definition 3 (see [14]). Let 𝑋 and 𝑍 be convex subsets of 𝑅𝑚
and 𝑅𝑞, respectively. A real-valued function ℎ defined on𝑋×

𝑍 is biconcave if, for each fixed 𝑥 ∈ 𝑋, ℎ(𝑥, 𝑧) is a concave
function on 𝑍 and, for each fixed 𝑧 ∈ 𝑍, ℎ(𝑥, 𝑧) is a concave
function on𝑋. The following result shows that, for every 𝑢 ∈

𝐻0, the value of 𝜑(𝑢) can be determined by solving a convex
program.

Lemma 4. The objective function Φ(𝑥, 𝑢) of problem (𝑆𝑢) is
biconcave on𝑋 ×𝐻0.

Proof. For each 𝑖 ∈ 𝐼, let 𝐻0
𝑖
= {𝑢𝑖 ∈ 𝑅 | 0 ⩽ 𝑢𝑖 ⩽ 𝑈0

𝑖
}

and define Φ𝑖 : 𝑋 × 𝐻0
𝑖

→ 𝑅 by Φ𝑖(𝑥, 𝑢𝑖) = 2𝑢𝑖√𝑓𝑖(𝑥) −

𝑢2
𝑖
(𝑔𝑖(𝑥)). Therefore, for every 𝑥 ∈ 𝑋 and 𝑢 ∈ 𝐻0, we have

Φ(𝑥, 𝑢) = ∑
𝑝

𝑖=1
Φ𝑖(𝑥, 𝑢). Notice that 𝑋, 𝐻0 and 𝐻0

𝑖
(𝑖 ∈ 𝐼)

are convex sets; then it will suffice to show that, for every
𝑖 ∈ 𝐼, Φ𝑖 is biconcave on 𝑋 × 𝐻0

𝑖
. Given 𝑢̂𝑖 ∈ 𝐻0

𝑖
. Thus, for

any 𝑖 ∈ 𝐼, Φ𝑖(𝑥, 𝑢̂𝑖) = 2𝑢̂𝑖√𝑓𝑖(𝑥) − 𝑢̂2
𝑖
𝑔𝑖(𝑥). For all 𝑥 ∈ 𝑋,

2𝑢̂𝑖√𝑓𝑖(𝑥) (𝑖 = 1, 2, . . . , 𝑝) are concave, since the function
𝑓𝑖(𝑥) (𝑖 = 1, 2, . . . , 𝑝) is concave and 𝑢̂𝑖 ⩾ 0, 𝑓𝑖(𝑥) > 0

(𝑖 = 1, 2, . . . , 𝑝). Because the function 𝑔𝑖(𝑥) is positive convex
function on 𝑋 and 𝑢̂𝑖 ⩾ 0, −𝑢̂2

𝑖
𝑔𝑖(𝑥) is also concave on 𝑋.

Therefore, it follows thatΦ𝑖(𝑥, 𝑢̂𝑖) is a concave function on 𝑥.
Now, let 𝑥 ∈ 𝑋 be a fixed vector. For all 𝑢𝑖 ∈ 𝐻0

𝑖
,

Φ𝑖(𝑥, 𝑢𝑖) = 2𝑢𝑖√𝑓𝑖(𝑥) − 𝑢2
𝑖
𝑔𝑖(𝑥). Since 𝑔𝑖(𝑥) > 0, it follows

easily thatΦ𝑖(𝑥, 𝑢𝑖) is a concave function on𝐻
0

𝑖
. The proof is

complete.

We now define the problem (P1) by

(P1) V1 = max
𝑢∈𝑈0

𝜑 (𝑢) = max
𝑢∈𝑈0

max
𝑥∈𝑋

Φ (𝑥, 𝑢) . (5)

Theorem 5. The problem (P) is equivalent to the problem (P1)
in the following sense: if𝑢∗ is an optimal solution to the problem
(P1) and if 𝑥∗ is a corresponding optimal solution of problem
(𝑆𝑢) with 𝑢 = 𝑢∗, then 𝑥∗ is an optimal solution for problem
(P). Moreover, the following relations hold:

𝑢
∗
=

√𝑓𝑖 (𝑥
∗)

𝑔𝑖 (𝑥
∗)

, 𝑖 ∈ 𝐼, (6)

V1 = 𝜑 (𝑢
∗
) = 𝑓 (𝑥

∗
) = V. (7)

Conversely, if 𝑥∗ is an optimal solution of problem (P), the
value 𝑢∗ deduced from relation (6) corresponds to an optimal
solution of problem (P1) and relation (7) holds.

Proof. Let 𝑢∗ be a global optimal solution for problem (P1),
and let 𝑥∗ solve problem (𝑆𝑢) with 𝑢 = 𝑢∗; then (𝑥∗, 𝑢∗) ∈

𝑋 × 𝐻0. Then,

𝜑 (𝑢
∗
) = max
𝑢∈𝐻0

𝜑 (𝑢) = max
𝑥∈𝑋

∑
𝑖∈𝐼

[2𝑢
∗

𝑖
√𝑓𝑖 (𝑥) − (𝑢

∗

𝑖
)
2
𝑔𝑖 (𝑥)]

= ∑
𝑖∈𝐼

[2𝑢
∗

𝑖
√𝑓𝑖 (𝑥

∗) − (𝑢
∗

𝑖
)
2
𝑔𝑖 (𝑥
∗
)] .

(8)

It follows from the definition of 𝜑 and (10) that (𝑥∗, 𝑢∗) is a
global optimal solution to the problem

(P2) max
𝑥∈𝑋,𝑢∈𝐻0

Φ (𝑥, 𝑢) . (9)

Therefore, 𝑢∗ is global optimal solution to the problem

max
𝑢∈𝐻0

Φ(𝑥
∗
, 𝑢) . (10)
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For each 𝑖 ∈ 𝐼, define 𝑟𝑖 : 𝑅 → 𝑅 for each 𝑢𝑖 ∈ 𝑅 by

𝑟𝑖 (𝑢𝑖) = 2𝑢𝑖√𝑓𝑖 (𝑥
∗) − 𝑢

2

𝑖
𝑔𝑖 (𝑥
∗
) . (11)

Then, for all 𝑖 ∈ 𝐼, since 𝑔𝑖(𝑥) > 0, 𝑟𝑖(𝑢𝑖) is a strictly concave
function, and the maximum of 𝑟𝑖(𝑢𝑖) over 𝑢𝑖 ∈ 𝑅 is attained
uniquely at 𝑢0

𝑖
= √𝑓𝑖(𝑥

∗)/𝑔𝑖(𝑥
∗). By definition of𝐻0, (𝑢0)𝑇 ≜

(𝑢
0

1
, 𝑢
0

2
, . . . , 𝑢

0

𝑝
) ∈ 𝐻

0.The previous two statements imply that
𝑢0 is the unique optimal solution to (12). Therefore, 𝑢∗ = 𝑢0

and the objective function value in (12) of 𝑢∗ is

Φ(𝑥
∗
, 𝑢
∗
) = ∑
𝑖∈𝐼

[2𝑢
∗

𝑖
√𝑓𝑖 (𝑥

∗) − (𝑢
∗

𝑖
)
2
𝑔𝑖 (𝑥
∗
)]

= ∑
𝑖∈𝐼

[2
𝑓𝑖 (𝑥
∗)

𝑔𝑖 (𝑥
∗)

−
𝑓𝑖 (𝑥
∗)

𝑔𝑖 (𝑥
∗)
] = ∑
𝑖∈𝐼

𝑓𝑖 (𝑥
∗)

𝑔𝑖 (𝑥
∗)

= 𝑓 (𝑥
∗
) .

(12)

So, 𝑓(𝑥∗) is also the objective function value of (𝑥∗, 𝑢∗) in
problem (P2). Assume that there exist some 𝑥 ∈ 𝑋 such
that 𝑓(𝑥) > 𝑓(𝑥

∗). Let 𝑢𝑖 = (√𝑓𝑖(𝑥)/𝑔𝑖(𝑥)) (𝑖 ∈ 𝐼). Then,
𝑢𝑇 = (𝑢1, 𝑢2, . . . , 𝑢𝑝) ∈ 𝐻0, and the objective function value
of (𝑥, 𝑢) in problem (P2) is

Φ (𝑥, 𝑢) = ∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥) − (𝑢𝑖)
2
𝑔𝑖 (𝑥)]

= ∑
𝑖∈𝐼

𝑓𝑖 (𝑥)

𝑔𝑖 (𝑥)
= 𝑓 (𝑥) .

(13)

It follows from 𝑓(𝑥) > 𝑓(𝑥∗) and (16) that (𝑥∗, 𝑢∗) is
not a global optimal solution to problem (P2), which is a
contradiction. This implies that, for all 𝑥 ∈ 𝑋, 𝑓(𝑥) ⩽ 𝑓(𝑥

∗);
that is, 𝑥∗ is a global optimal solution for problem (P). From
(10) and (16), 𝜑(𝑢∗) = 𝑓(𝑥∗). Since 𝑓(𝑥∗) = V, this completes
the proof of the first statement of the theorem.

Now suppose that 𝑥∗ is a global optimal solution for
problem (P). Then, 𝑥∗ ∈ 𝑋 and 𝑓𝑖(𝑥

∗) > 0, 𝑔𝑖(𝑥
∗) > 0 for

all 𝑖 ∈ 𝐼. We compute (𝑢∗)𝑇 ≜ (𝑢∗
1
, 𝑢∗
2
, . . . , 𝑢∗

𝑝
) ∈ 𝐻0 by (7).

From the definition of 𝜑,

𝜑 (𝑢
∗
) = max
𝑥∈𝑋

{∑
𝑖∈𝐼

[2𝑢
∗

𝑖
√𝑓𝑖 (𝑥) − (𝑢

∗

𝑖
)
2
𝑔𝑖 (𝑥)]}

⩾ ∑
𝑖∈𝐼

[2𝑢
∗

𝑖
√𝑓𝑖 (𝑥

∗) − (𝑢
∗

𝑖
)
2
𝑔𝑖 (𝑥
∗
)]

= ∑
𝑖∈𝐼

𝑓𝑖 (𝑥
∗)

𝑔𝑖 (𝑥
∗)

= 𝑓 (𝑥
∗
) .

(14)

Suppose that 𝜑(𝑢1) > 𝜑(𝑢∗) for some 𝑢1 ∈ 𝑈0 and 𝑥1 is a
corresponding optimal solution of problem (𝑆𝑢) with 𝑢 = 𝑢1.
By the first part of the theorem, this implies that 𝑓(𝑢1) >

𝑓(𝑥∗) = V1. Therefore, since 𝑢∗ ∈ 𝐻0, 𝜑(𝑢∗) = V1, and 𝑢∗

is a global optimal solution for problem (P1).

3. Relaxation Problem for Problem (P1)
Let 𝐻 = {𝑢 ∈ 𝑅𝑝 | 𝐿 ⩽ 𝑢 ⩽ 𝑈} denote 𝐻0 or a subrectangle
of 𝐻0 that is generated by the branch and bound algorithm,
where 𝐿,𝑈 ∈ 𝑅𝑝 and 0 ⩽ 𝐿 𝑖 < 𝑈𝑖 for all 𝑖 ∈ 𝐼. We consider
the following problem:

(P1 (𝐻)) max
𝑢∈𝐻

𝜑 (𝑢) . (15)

For each 𝑖 ∈ 𝐼, let 𝑡𝑖 = max𝑥∈𝑋√𝑓𝑖(𝑥), and let 𝑠𝑖 satisfy

𝑠𝑖 ⩾ max
𝑥∈𝑋

𝑔𝑖 (𝑥) > 0. (16)

Since, for every 𝑖 ∈ 𝐼, 𝑐𝑖(𝑥) = √𝑓𝑖(𝑥) is a concave function on
𝑋, then, for each 𝑖 ∈ 𝐼, 𝑡𝑖 can be found by solving a convex
programming problem. For each 𝑖 ∈ 𝐼, 𝑠𝑖 can be chosen to be
a sufficiently large positive number.

Now, consider the function 𝐺 : 𝐻0 → 𝑅 which is given
for any 𝑢 ∈ 𝐻0 by

(P (𝑢)) 𝐺 (𝑢) = max
𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − 𝑢
2

𝑖
𝑠𝑖] ,

s.t. 𝑡𝑖 − √𝑓𝑖 (𝑥) ⩽ 0, 𝑖 ∈ 𝐼,

− 𝑠𝑖 + 𝑔𝑖 (𝑥) ⩽ 0, 𝑖 ∈ 𝐼,

0 ⩽ 𝑡𝑖 ⩽ 𝑡𝑖, 0 ⩽ 𝑠𝑖 ⩽ 𝑠𝑖, 𝑖 ∈ 𝐼,

𝑥 ∈ 𝑋.

(17)

Theorem 6. For each 𝑢 ∈ 𝐻0, 𝜑 (𝑢) = 𝐺(𝑢). Moreover, if 𝑢 ∈

𝐻0 and (𝑥∗, 𝑡∗, 𝑠∗) is an optimal solution to problem (P(𝑢)),
then 𝜑(𝑢) = ∑𝑖∈𝐼[2𝑢𝑖√𝑓𝑖(𝑥

∗) − 𝑢2
𝑖
𝑔𝑖(𝑥
∗)].

Proof. Let 𝑢 ∈ 𝐻0. On the basis of the definition 𝜑, for some
𝑥 ∈ 𝑋,

𝜑 (𝑢) = ∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥) − 𝑢
2

𝑖
𝑔𝑖 (𝑥)] . (18)

For every 𝑖 ∈ 𝐼, let

𝑡̂𝑖 = √𝑓𝑖 (𝑥), 𝑠𝑖 = 𝑔𝑖 (𝑥) . (19)

Assume that 𝑡̂𝑇 = (𝑡̂1, 𝑡̂2, . . . , 𝑡̂𝑝) and 𝑠𝑇 = (𝑠1, 𝑠2, . . . , 𝑠𝑝). So,
(𝑥, 𝑡̂, 𝑠) is a feasible solution to problem (P(𝑢)) with objective
function value

∑
𝑖∈𝐼

[2𝑢𝑖𝑡̂𝑖 − 𝑢
2

𝑖
𝑠𝑖] = 𝜑 (𝑢) , (20)
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where the equation follows from (18) and (19). Then, we
have 𝐺(𝑢) ⩾ 𝜑(𝑢). Thus, in order to show the first result in
theorem, we only show that 𝐺(𝑢) > 𝜑(𝑢) does not hold.

Assume that𝐺(𝑢) > 𝜑(𝑢). Based on (18), there exists some
feasible solution (𝑥, 𝑡, 𝑠) for problem (P(𝑢)) such that

∑
𝑖∈𝐼

[2𝑢𝑖𝑡𝑖 − 𝑢
2

𝑖
𝑠𝑖] > 𝜑 (𝑢)

= ∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥) − 𝑢
2

𝑖
𝑔𝑖 (𝑥)] .

(21)

According to definition of 0 ⩽ 𝑡𝑖 ⩽ √𝑓𝑖(𝑥) and 0 ⩽ 𝑔𝑖(𝑥) ⩽ 𝑠𝑖
in the problem (P(𝑢)), for all 𝑖 ∈ 𝐼 and 𝑢 ⩾ 0, we have

∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥) − 𝑢
2

𝑖
𝑔𝑖 (𝑥)] ⩾ ∑

𝑖∈𝐼

[2𝑢𝑖𝑡𝑖 − 𝑢
2

𝑖
𝑠𝑖] . (22)

From (18), (21), and (22), we obtain

∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥) − 𝑢
2

𝑖
𝑔𝑖 (𝑥)] > 𝜑 (𝑢) . (23)

Since 𝑥 ∈ 𝑋, this is a contradiction with the definition of
𝜑(𝑢).Therefore, the assumption that𝐺(𝑢) > 𝜑(𝑢) is false.This
implies that 𝜑(𝑢) = 𝐺(𝑢), for each 𝑢 ∈ 𝐻

0.
Now, we show the second part of the theorem. Let

(𝑥
∗, 𝑡∗, 𝑠∗) be an optimal solution to problem (P(𝑢)). Then,

for each 𝑖 ∈ 𝐼, 0 < 𝑡∗ ⩽ √𝑓𝑖(𝑥
∗), 𝑠∗ ⩾ 𝑔𝑖(𝑥

∗) > 0. So, we have

𝐺 (𝑢) = ∑
𝑖∈𝐼

[2𝑢𝑖𝑡
∗

𝑖
− 𝑢
2

𝑖
𝑠
∗

𝑖
]

⩽ ∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥
∗) − 𝑢

2

𝑖
𝑔𝑖 (𝑥
∗
)] .

(24)

Let 𝑡̂𝑇 = (𝑡̂1, 𝑡̂2, . . . , 𝑡̂𝑝) and 𝑠𝑇 = (𝑠1, 𝑠2, . . . , 𝑠𝑝), where, for
each 𝑖 ∈ 𝐼,

𝑡̂𝑖 = √𝑓𝑖 (𝑥), 𝑠𝑖 = 𝑔𝑖 (𝑥) . (25)

Then, (𝑥∗, 𝑡̂, 𝑠) is a feasible solution for problem (P(𝑢)), so
that, by definition of 𝐺(𝑢),

𝐺 (𝑢) ⩾ ∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥
∗) − 𝑢

2

𝑖
𝑔𝑖 (𝑥
∗
)] . (26)

From (24) and (26), it follows that

𝜑 (𝑢) = ∑
𝑖∈𝐼

[2𝑢𝑖√𝑓𝑖 (𝑥
∗) − 𝑢

2

𝑖
𝑔𝑖 (𝑥
∗
)] , (27)

since 𝜑(𝑢) = 𝐺(𝑢).

It follows formTheorem 6 that problem (P1(𝐻)) has the
same optimal value V(𝐻) with the following problem:

(PE1 (𝑀)) max
𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − 𝑢
2

𝑖
𝑠𝑖] ,

s.t. 𝑡𝑖 − √𝑓𝑖 (𝑥) ⩽ 0, 𝑖 ∈ 𝐼,

− 𝑠𝑖 + 𝑔𝑖 (𝑥) ⩽ 0, 𝑖 ∈ 𝐼,

(𝑡, 𝑠, 𝑢) ∈ 𝑀,

𝑥 ∈ 𝑋,

(28)

where 𝑀 = {(𝑡, 𝑠, 𝑢) ∈ 𝑅3𝑝 | 0 ⩽ 𝑡𝑖 ⩽ 𝑡𝑖, 0 ⩽ 𝑠𝑖 ⩽ 𝑠𝑖, 𝐿 𝑖 ⩽

𝑢𝑖 ⩽ 𝑈𝑖, 𝑖 ∈ 𝐼}.
In order to construct relaxation problem for problem

(PE1), we must use the concept of a concave envelope, which
may be defined as follows.

Definition 7 (see [15]). Let𝑀 ⊆ 𝑅
𝑞 be a compact, convex set,

and let 𝑓 : 𝑀 → 𝑅 be upper semicontinuous on 𝑀. Then,
𝑓𝑀 : 𝑀 → 𝑅 is called the concave envelope of𝑓 on𝑀when

(i) 𝑓𝑀(𝑥) is a concave function on𝑀,

(ii) 𝑓𝑀(𝑥) ⩽ 𝑓(𝑥) for all 𝑥 ∈ 𝑀,
(iii) there is no function 𝑤(𝑥) satisfying (i) and (ii) such

that 𝑤(𝑥) < 𝑓𝑀(𝑥) for some point 𝑥 ∈ 𝑀.

The convex envelope of a function 𝑓 on𝑀 is defined in a
similar manner.

Let, for each 𝑖 ∈ 𝐼, 𝑀𝑖 = {(𝑢𝑖, 𝑡𝑖, 𝑠𝑖) ∈ 𝑅3 | 𝐿 𝑖 ⩽ 𝑢𝑖 ⩽

𝑈𝑖, 0 ⩽ 𝑡𝑖 ⩽ 𝑡, 0 ⩽ 𝑠𝑖 ⩽ 𝑠}. Then, for each 𝑖 ∈ 𝐼, 0 ⩽ 𝐿 𝑖 < 𝑈𝑖,
and the concave envelope of 𝑞𝑀𝑖

𝑖
(𝑢𝑖) of the quadratic function

𝑞𝑖(𝑢𝑖) = 𝑢2
𝑖
is given by

𝑞
𝑀𝑖
𝑖

(𝑢𝑖) = 𝐾𝑖 (𝑢𝑖 − 𝐿 𝑖) + 𝐿
2

𝑖
, (29)

where 𝐾𝑖 = 𝐿 𝑖 + 𝑈𝑖. Let 𝑞
𝑖
(𝑢𝑖) represent the linear lower

bounding function of 𝑞𝑖(𝑢𝑖) over the interval 𝐿 𝑖 ⩽ 𝑢𝑖 ⩽ 𝑈𝑖.
Then, by the convexity of the function 𝑞𝑖, the function 𝑞

𝑖
(𝑢𝑖)

is given as follows:

𝑞
𝑖
(𝑢𝑖) = 𝐾𝑖 (𝑢𝑖 −

1

4
𝐾𝑖) . (30)

Lemma 8. Consider the functions 𝑞𝑖(𝑢𝑖), 𝑞
𝑖
(𝑢𝑖), and 𝑞

𝑀𝑖
𝑖
(𝑢𝑖)

for any 𝑢𝑖 ∈ 𝐻𝑖 = [𝐿 𝑖, 𝑈𝑖], where 𝑖 = 1, 2, . . . , 𝑝. Then, the
following two statements are valid.

(i) 𝑞𝑀𝑖
𝑖
(𝑢𝑖) is an affine concave envelope of 𝑞𝑖(𝑢𝑖) over

𝑀𝑖, and 𝑞
𝑖
(𝑢𝑖) is an affine function corresponding to

a supporting hyperplane of the graph of 𝑞𝑖(𝑢𝑖) over𝑀𝑖,
which is parallel to 𝑞𝑀𝑖

𝑖
(𝑢𝑖). Moreover, we have

𝑞
𝑖
(𝑢𝑖) ⩽ 𝑞𝑖 (𝑢𝑖) ⩽ 𝑞

𝑀𝑖
𝑖

(𝑢𝑖) , ∀𝑢𝑖 ∈ 𝐻𝑖; 𝑖 = 1, 2, . . . , 𝑝.

(31)
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(ii) When 𝜔𝑖 = 𝑈𝑖 − 𝐿 𝑖 → 0, the differences Δ1
𝑖
= 𝑞
𝑀𝑖
𝑖

− 𝑞𝑖
and Δ2

𝑗
= 𝑞𝑖 − 𝑞

𝑖
satisfy

max
𝑢𝑖∈𝐻𝑖

Δ
1

𝑖
= max
𝑢𝑖∈𝐻𝑖

Δ
2

𝑖
=

1

4
(𝑈𝑖 − 𝐿 𝑖) 󳨀→ 0. (32)

Proof. Consider the following:

(i) obviously,
(ii) since the Δ1

𝑖
is a concave function about 𝑢𝑖 for any

𝑢𝑖 ∈ 𝐻𝑖, Δ
1

𝑗
can attain the maximum Δ1

𝑖,max at the
point 𝑢∗

𝑖
= (1/2)𝐾𝑖. Thus, it is not difficult to have

Δ
1

𝑖,max =
1

4
(𝑈𝑖 − 𝐿 𝑖) . (33)

On the other hand, since the Δ2
𝑖
is a convex function about

𝑢𝑖 for any 𝑢𝑖 ∈ 𝐻𝑖, Δ
1

𝑖
can attain the maximum Δ

2

𝑖,max at the
point 𝑈𝑖 or 𝐿 𝑖. Thus,

Δ
2

𝑖,max =
1

4
(𝑈𝑖 − 𝐿 𝑖) . (34)

Obviously, when 𝜔𝑖 = 𝑈𝑖 − 𝐿 𝑖 → 0,

max
𝑢𝑖∈𝐻𝑖

Δ
1

𝑖
= max
𝑢𝑖∈𝐻𝑖

Δ
2

𝑖
=

1

4
(𝑈𝑖 − 𝐿 𝑖) 󳨀→ 0. (35)

This completes the proof.

Therefore, for all (𝑢𝑖, 𝑡𝑖, 𝑠𝑖) ∈ 𝑀𝑖, we can obtain

𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − 𝑞
𝑀𝑖
𝑖

(𝑢𝑖) 𝑠𝑖] ⩽

𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − 𝑢
2

𝑖
𝑠𝑖]

⩽

𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − 𝑞
𝑖
(𝑢𝑖) 𝑠𝑖] ,

(36)

that is,
𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − 𝐾𝑖𝑢𝑖𝑠𝑖 + (𝐾𝑖𝐿 𝑖 − 𝐿
2

𝑖
) 𝑠𝑖]

⩽

𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − 𝑢
2

𝑖
𝑠𝑖]

⩽

𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − 𝐾𝑖𝑢𝑖𝑠𝑖 +
1

4
𝐾
2

𝑖
𝑠𝑖] .

(37)

For each 𝑖 ∈ 𝐼, 0 ⩽ 𝐿 𝑖 ⩽ 𝑈𝑖, and, from Benson [16],
the concave envelope of ℎ𝑀𝑖

𝑖
(𝑢𝑖, 𝑡𝑖) of the bilinear functions

ℎ𝑖(𝑢𝑖, 𝑡𝑖) is given for each (𝑢𝑖, 𝑡𝑖, 𝑠𝑖) ∈ 𝑀𝑖 by

ℎ
𝑀𝑖
𝑖

(𝑢𝑖, 𝑡𝑖) = min {𝑡𝑖𝑢𝑖 + 𝐿 𝑖𝑡𝑖 − 𝑡𝑖𝐿 𝑖, 𝑈𝑖𝑡𝑖} , (38)

and the convex envelope of ℎ𝑖𝑀𝑖(𝑢𝑖, 𝑠𝑖) of the bilinear func-
tions ℎ𝑖(𝑢𝑖, 𝑠𝑖) is given for each (𝑢𝑖, 𝑡𝑖, 𝑠𝑖) ∈ 𝑀𝑖 by

ℎ𝑖𝑀𝑖 (𝑢𝑖, 𝑠𝑖) = max {𝐿 𝑖𝑠𝑖, 𝑠𝑖𝑢𝑖 + 𝑈𝑖𝑠𝑖 − 𝑠𝑖𝑈𝑖} . (39)

We now define the following problem:

PR1(𝑀)

UB (𝑀) = max
𝑝

∑
𝑖=1

[2𝑟𝑖 − 𝐾𝑖𝑧𝑖 +
1

4
𝐾
2

𝑖
𝑠𝑖]

s.t. 𝑟𝑖 ⩽ 𝑡𝑖𝑢𝑖 + 𝐿 𝑖𝑡𝑖 − 𝑡𝑖𝐿 𝑖, 𝑟𝑖 ⩽ 𝑈𝑖𝑡𝑖

𝑧𝑖 ⩾ 𝑠𝑖𝑢𝑖 + 𝑈𝑖𝑠𝑖 − 𝑠𝑖𝑈𝑖, 𝑧𝑖 ⩾ 𝐿 𝑖𝑠𝑖,

𝑡𝑖 − √𝑓𝑖 (𝑥) ⩽ 0,

− 𝑠𝑖 + 𝑔𝑖 (𝑥) ⩽ 0,

(𝑡, 𝑠, 𝑢) ∈ 𝑀, 𝑟𝑖 ⩾ 0, 𝑧𝑖 ⩾ 0,

𝑥 ∈ 𝑋, 𝑖 ∈ 𝐼.

(40)

Notice that the optimal value UB(𝑀) of problem PR1(𝑀)

satisfies UB(𝑀) ⩾ V(𝐻). It is also easy to see that the
feasible region of problem PR1(𝑀) is a nonempty compact
set. Since the objective function of problem PR1(𝑀) is affine
function over this set, problemPR1(𝑀) always has an optimal
solution.

4. Algorithm and Convergence

To globally solve problem (P1), the algorithm to be presented
uses a branch and bound approach. There are three funda-
mental processes in the algorithm: a branching process, a
lower bounding process, and an upper bounding process.

4.1. Branching Rule. The algorithm performs a branching
process in 𝑅

𝑝 that iteratively subdivides the 𝑝-dimensional
rectangle 𝐻0 of problem (P1) into smaller rectangles that
are also of dimension 𝑝. The branch and bound approach
is based on partitioning the set 𝐻 into subrectangles, each
concerned with a node of the branch and bound tree, and
each node is associated with a relaxation linear subproblem
on each subrectangle. These subrectangles are obtained by
the branching process, which helps the branch and bound
procedure identify a location in the feasible region of problem
(P1) that contains a global optimal solution to the problem.

During each iteration of the algorithm, the branching
process creates a more refined partition of a portion of𝐻1 =
𝐻 that cannot yet be excluded from consideration in the
search for a global optimal solution for problem (P1(𝐻1)).
The initial partition 𝑄1 consists simply of 𝐻1, since at the
beginning of the branch and bound procedure, no portion
of𝐻1 can as yet be excluded from consideration.

During iteration 𝑘 of the algorithm, 𝑘 ⩾ 1, the branching
process is used to help create a new partition 𝑄𝑘+1. First,
a screening procedure is used to remove any rectangle 𝐻𝑘

from 𝑄𝑘 that𝐻
𝑘 can, at this point of the search, be excluded

from further consideration, and𝑄𝑘+1 is temporarily set equal
to the set of rectangles that remain. Later in iteration 𝑘, a
rectangle 𝐻𝑘 in 𝑄𝑘+1 is identified for further examination.
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The branching process is then evoked to subdivide 𝐻𝑘 into
two subrectangles 𝐻2𝑘, 𝐻2𝑘+1. This subdivision is accom-
plished by a process called rectangular bisection.

Consider any node subproblem identified by the subrect-
angle 𝐻̂, where 𝐻̂ is defined as before. The branching rule is
as follows [17].

Step 1. Let 𝑈𝑘−1
𝑗

− 𝐿𝑘−1
𝑗

= max𝑖∈𝐼{𝑈
𝑘−1

𝑖
− 𝐿𝑘−1
𝑖

}.

Step 2. Let V𝑗 satisfy min{𝑈𝑘−1
𝑗

− V𝑗, V𝑗 −𝐿𝑘−1
𝑗

} = (1/2)(𝑈𝑘−1
𝑗

−

𝐿𝑘−1
𝑗

).

Step 3. Let

𝐻
𝑘−1

1

= {𝑢 ∈ R𝑁 | 𝐿
𝑘−1

𝑗
⩽ 𝑢𝑗 ⩽ V𝑗, 𝐿

𝑘−1

𝑖
⩽ 𝑢𝑖 ⩽ 𝑈

𝑘−1

𝑗
, 𝑖 ̸= 𝑗} ,

𝐻
𝑘−1

2

= {𝑢 ∈ R𝑁 | V𝑗 ⩽ 𝑢𝑗 ⩽ 𝑈
𝑘−1

𝑗
, 𝐿
𝑘−1

𝑖
⩽ 𝑢𝑖 ⩽ 𝑈

𝑘−1

𝑖
, 𝑖 ̸= 𝑗} .

(41)

The new partition 𝑄
𝑘 of the portion of 𝐻

0 remaining
under consideration is then given by 𝑄𝑘 = 𝑄𝑘−1 \

{𝐻𝑘−1}⋃{𝐻𝑘−1
1

, 𝐻𝑘−1
2

}.

4.2. Lower Bound and Upper Bound. The second fundamen-
tal process of the algorithm is the upper bounding process.
For each rectangle𝐻 ∈ 𝑅

𝑝 created by the branching process,
this process gives an upper bound UB(𝐻) for the optimal
value V(𝐻) of the problem (P1(H)), that is,

(P1 (H)) max
𝑢∈𝐻

𝜑 (𝑢) . (42)

For each rectangle𝐻 created by the branching process, from
(40), UB(𝐻) is found by solving a single convex program
(PR1(𝐻)).

During each iteration 𝑘 ⩾ 0, the upper bounding process
computes an upper bound for the optimal value V1 of problem
(P1). For each 𝑘 ⩾ 0, this upper bound UB𝑘 is given by

UB𝑘 = max {UB (𝐻) | 𝐻 ∈ 𝑄
𝑘
} . (43)

The lower bounding process is the third fundamental
process of the branch and bound algorithm. In each iteration
of the algorithm, this process finds a lower bound for V1. For
each 𝑘 ⩾ 0, this lower bound LB𝑘 is given by

LB𝑘 = 𝜑 (𝑢̂
𝑘
) , (44)

where 𝑢̂
𝑘 is the incumbent feasible solution for problem

(P1); that is, among all of optimal solutions (𝑟, 𝑧, 𝑡, 𝑠, 𝑢, 𝑥) for
problems of the form (PR1(𝐻)) found through iteration 𝑘,
𝑢 = 𝑢̂𝑘 achieves the largest value of 𝜑.

4.3. Branch and Bound Algorithm. Based on the results and
algorithmic processes discussed in this section, the basic steps

of the proposed global optimization are summarized in the
following.

Step 0 (initialization). (i) Determine an optimal solution
(𝑟
0, 𝑧0, 𝑡0, 𝑠0, 𝑢0, 𝑥0) and the optimal value UB(𝐻0) to prob-

lem PR1(𝐻0). Set UB0 = UB(𝐻0), LB0 = 𝜑(𝑢0), and 𝑢̂0 = 𝑢0.
(ii) Set 𝑄0 = {𝐻0} and 𝑘 = 1, and go to iteration 𝑘.

Iteration 𝑘.

Step k.1. If UB𝑘−1 = LB𝑘−1, then terminate. 𝑢̂𝑘−1 is a global
optimal solution for problem (P1), and V1 = LB𝑘−1. Then,
we can solve problem (P) on the basis of problem (𝑆𝑢) with
𝑢 = 𝑢̂𝑘−1. If UB𝑘−1 ̸= LB𝑘−1, continue.

Step k.2. Subdivide 𝐻𝑘−1 into two rectangles 𝐻𝑘−1
1

and 𝐻𝑘−1
2

via the rectangular bisection.

Step k.3. For each 𝑖 = 1, 2, find an optimal solution
(𝑟𝑖,𝑘−1, 𝑧𝑖,𝑘−1, 𝑡𝑖,𝑘−1, 𝑠𝑖,𝑘−1, 𝑢𝑖,𝑘−1, 𝑥𝑖,𝑘−1) and the optimal value
UB(𝐻𝑘−1

𝑖
) to problem PR1(𝐻𝑘−1

𝑖
).

Step k.4. Set LB𝑘 = max{𝜑(𝑢̂𝑘−1), 𝜑(𝑢1,𝑘−1), 𝜑(𝑢2,𝑘−1)}, and
choose 𝑢̂𝑘 so that LB𝑘 = 𝜑(𝑢̂𝑘).

Step k.5. Set 𝑄𝑘 = {𝑄𝑘−1 \ {𝐻
𝑘−1}} ⋃ {𝐻𝑘−1

1
, 𝐻𝑘−1
2

}.

Step k.6. Delete from 𝑄𝑘 all rectangles𝐻 such that UB(𝐻) ⩽

LB𝑘.

Step k.7. If 𝑄𝑘 = 0, set UB𝑘 = LB𝑘, set 𝑘 = 𝑘 + 1, and go to
iteration 𝑘. Otherwise, set UB𝑘 = max{UB(𝐻) | 𝐻 ∈ 𝑄𝑘}.
Choose a rectangle 𝐻𝑘 ∈ 𝑄𝑘 such that UB(𝐻𝑘) = UB𝑘, set
𝑘 = 𝑘 + 1, and go to iteration 𝑘.

4.4. Convergence. In this subsection, we give the global
convergence of the above algorithm. By the construction of
the algorithm, when the algorithm is finite, it either finds
a global optimal solution for problem (P1(𝐻)) or detects
that problem (P1(𝐻)) is infeasible. It is also possible for the
algorithm to be infinite. We will discuss this case in the
following.

Denote 𝑀0 = {(𝑠, 𝑡, 𝑢) ∈ 𝑅3𝑝 | 0 ⩽ 𝑠𝑖 ⩽ 𝑠𝑖, 0 ⩽ 𝑡𝑖 ⩽

𝑡𝑖, 0 ⩽ 𝑢𝑖 ⩽ 𝑈0
𝑖
, 𝑖 ∈ 𝐼}. Suppose that 𝑀̂ denotes 𝑀0 or a

subrectangle of𝑀0 that is generated by the branch and bound
algorithm. Then, 𝑀̂may be written as

𝑀̂ = 𝑀̂1 × 𝑀̂2 × ⋅ ⋅ ⋅ 𝑀̂𝑝, (45)

where, for any 𝑖 ∈ 𝐼,

𝑀̂𝑖

= {(𝑠𝑖, 𝑡𝑖, 𝑢𝑖) ∈ 𝑅
3
| 0 ⩽ 𝑠𝑖 ⩽ 𝑠𝑖, 0 ⩽ 𝑡𝑖 ⩽ 𝑡𝑖, 𝐿 𝑖 ⩽ 𝑢𝑖 ⩽ 𝑈𝑖} ,

(46)

where for each 𝑖 = 1, 2, . . . , 𝑝, 𝐿 𝑖, 𝑈𝑖 are positive scalars such
that 𝐿 𝑖 ⩽ 𝑈𝑖.
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If the algorithm is infinite, by the rectangular bisection,
since 𝑖 ∈ 𝐼 is finite, there exists an infinite sequence {𝑀𝑘}

∞

𝑘=1

of rectangles in 𝑅3𝑝 generated by the algorithm such that, for
any 𝑖 ∈ 𝐼,𝑀𝑘+1 ⊆ 𝑀𝑘 and𝑀𝑘+1 is formed from𝑀𝑘. By Step 1
of the rectangular bisection process, for some fixed 𝑗0 ∈ {𝑖 =

1, 2, . . . , 𝑝},

𝑈
𝑘

𝑗0
− 𝐿
𝑘

𝑗0
= max
𝑖∈𝐼

{𝑈
𝑘

𝑖
− 𝐿
𝑘

𝑖
} , 𝐼 = {1, 2, . . . , 𝑝} , (47)

where 𝑀𝑘 = {(𝑠, 𝑡, 𝑢) ∈ 𝑅3𝑝 | 0 ⩽ 𝑠𝑖 ⩽ 𝑠𝑖, 0 ⩽ 𝑡𝑖 ⩽ 𝑡𝑖, 𝐿
𝑘

𝑖
⩽

𝑢𝑖 ⩽ 𝑈𝑘
𝑖
} for all 𝑘. Next, let {𝑀𝑘}

∞

𝑘=1
be a sequence of rectangle

of this type, and, for all 𝑘 and any 𝑖 ∈ 𝐼, let

𝑀
𝑘

𝑖

= {(𝑠𝑖, 𝑡𝑖, 𝑢𝑖) ∈ 𝑅
3
| 0 ⩽ 𝑠𝑖 ⩽ 𝑠𝑖, 0 ⩽ 𝑡𝑖 ⩽ 𝑡𝑖, 𝐿

𝑘

𝑖
⩽ 𝑢𝑖 ⩽ 𝑈

𝑘

𝑖
} .

(48)

Lemma 9. For some subsequence 𝐾 of {1, 2, . . .}, the limit
rectangle

𝑀
∞

𝑗0
= ⋂
𝑘∈𝐾

𝑀
𝑘

𝑗0

= {(𝑠𝑗0 , 𝑡𝑗0 , 𝑢𝑗0) | 0 ⩽ 𝑠𝑗0 ⩽ 𝑠𝑗0 , 0 ⩽ 𝑡𝑗0 ⩽ 𝑡𝑗0 , 𝑢𝑗0 = V}
(49)

is rectangle in R3 parallel to the (𝑠𝑗0 , 𝑡𝑗0)-coordinate plane.

Proof. By Lemma 5.4 in [17] and the rectangle bisection,
there exists a subsequence𝐾 of {1, 2, . . .} such that

lim
𝑘∈𝐾

𝐿
𝑘

𝑗0
= 𝐿𝑗0 ∈ 𝑅, lim

𝑘∈𝐾
𝑈
𝑘

𝑗0
= 𝑈𝑗0 ∈ 𝑅,

lim
𝑘∈𝐾

V𝑘
𝑗0
= V∗
𝑗0
∈ {𝐿𝑗0 , 𝑈𝑗0} ,

(50)

where V𝑘
𝑗0

= (1/2)(𝐿𝑘−1
𝑗0

+ 𝑈𝑘−1
𝑗0

). So, either V∗
𝑗0

= 𝐿𝑗0 or V
∗

𝑗0
=

𝑈𝑗0 . Then,

𝑀
∞

𝑗0
= ⋂
𝑘∈𝐾

𝑀
𝑘

𝑗0

= {(𝑠𝑗0 , 𝑡𝑗0 , 𝑢𝑗0) | 0 ⩽ 𝑠𝑗0 ⩽ 𝑠𝑗0 , 0 ⩽ 𝑡𝑗0 ⩽ 𝑡𝑗0 , 𝑢𝑗0 = V} ,
(51)

which is a rectangle in 𝑅3 parallel to the (𝑡𝑗0 , 𝑠𝑗0)-coordinate
plane.

Theorem 10. Suppose that the proposed algorithm is infinite,
and let {𝑀𝑘}∞

𝑘=1
be a sequence of rectangles in 𝑅𝑝 generated by

the algorithm such that, for each 𝑘 = 1, 2, . . . ,𝑀𝑘+1 ⊂ 𝑀𝑘. Let
𝜓(𝑠, 𝑡, 𝑢) = ∑

𝑝

𝑖=1
[2𝑢𝑖𝑡𝑖−(𝑢𝑖)

2
𝑠𝑖]. Then, for some subsequence𝐾

of {1, 2, . . .},

(a) lim𝑘∈𝐾{𝑈𝐵(𝐻
𝑘) − 𝜓(𝑠𝑘, 𝑡𝑘, 𝑢𝑘)} = 0,

(b) any accumulation point (𝑡, 𝑠, 𝑢, 𝑥) of the sequence
of {(𝑡𝑘, 𝑠𝑘, 𝑢𝑘, 𝑥𝑘)}

∞

𝑘=1
is a global optimal solution of

problem (P1).

Proof. Consider the following.

(a) Notice that, according to (39) and (40), it follows that,
for each 𝑖 ∈ 𝐼,

𝑟𝑖 = ℎ
𝑀𝑖
𝑖

(𝑢𝑖, 𝑡𝑖) = min {𝑡𝑖𝑢𝑖 + 𝐿 𝑖𝑡𝑖 − 𝑡𝑖𝐿 𝑖, 𝑈𝑖𝑡𝑖} ,

𝑧𝑖 = ℎ𝑖𝑀𝑖 (𝑢𝑖, 𝑠𝑖) = max {𝐿 𝑖𝑠𝑖, 𝑠𝑖𝑢𝑖 + 𝑈𝑖𝑠𝑖 − 𝑠𝑖𝑈𝑖} ,
(52)

and problem PR1(𝑀𝑘) may be rewritten as

UB (𝑀
𝑘
) = max Ψ (𝑠, 𝑡, 𝑢)

s.t. 𝑡𝑖 − √𝑓𝑖 (𝑥) ⩽ 0, −𝑠𝑖 + 𝑔𝑖 (𝑥) ⩽ 0,

0 ⩽ 𝑡𝑖 ⩽ 𝑡𝑖, 0 ⩽ 𝑠𝑖 ⩽ 𝑠𝑖,

𝐿 𝑖 ⩽ 𝑢𝑖 ⩽ 𝑈𝑖, 𝑟𝑖 ⩾ 0, 𝑧𝑖 ⩾ 0,

𝑥 ∈ 𝑋,

(53)

where Ψ(𝑠, 𝑡, 𝑢) = ∑
𝑝

𝑖=1
[2ℎ
𝑀𝑖
𝑖
(𝑢𝑖, 𝑡𝑖) − 𝐾𝑖ℎ𝑖𝑀𝑖(𝑢𝑖, 𝑠𝑖) −

(1/4)𝐾2
𝑖
𝑠𝑖].

By the algorithm, since {𝑀𝑘}
∞

𝑘=1
is infinite, wemay choose

a sequence 𝐾 of {1, 2, . . .} such that, for each 𝑘 ∈ 𝐾,
UB{𝑀𝑘} ̸= −∞. At the same time, without loss of generality,
wemay assume that {𝑀𝑘}𝑘∈𝐾 have the properties of Lemma 9.
Since for each 𝑘 ∈ 𝐾, UB{𝑀𝑘} ̸= −∞, by the upper bounding
process

Ψ(𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
) = UB (𝑀

𝑘
) . (54)

By applying Lemma 9 repeatedly, we may assume that

lim
𝑘∈𝐾

𝑀
𝑘
= 𝑀
∞

1
×𝑀
∞

2
× ⋅ ⋅ ⋅ × 𝑀

∞

𝑝
= 𝑀
∞
, (55)

where for each 𝑖 = 1, 2, . . . , 𝑝, 𝑀∞
𝑖
is a rectangle in𝑅3 parallel

to the (𝑡𝑗0 , 𝑠𝑗0)-coordinate plane. Let 𝑍(𝑀𝑘) be the feasible
domain of problem (PR1(𝑀𝑘)). For each 𝑘 ∈ 𝐾,

UB (𝑀
𝑘
) = max
(𝑠,𝑡,𝑢,𝑥)∈𝑍(𝑀𝑘)

Ψ (𝑠, 𝑡, 𝑢)

⩾ V𝑀

⩾ 𝜓(𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
)

⩾ 𝜓 (𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
) ,

(56)

where the first equation follows, since (𝑠𝑘, 𝑡𝑘, 𝑢𝑘, 𝑥𝑘) ∈

𝑍(𝑀𝑘) ̸= 0, from the definition of UB(𝑀𝑘) in the upper
bounding process, the first inequality follows from Step 𝑘.2 of
the rectangle bisection algorithm and the validity of the upper
bounding process, the second inequality follows because
(𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
, 𝑥
𝑘
) ∈ 𝑍(𝑀𝑘), and the third inequality holds by

the choice of the incumbent solution in Step 𝑘.4 of algorithm.
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For each 𝑘 ∈ 𝐾, (𝑠𝑘, 𝑡𝑘, 𝑢𝑘, 𝑥𝑘) ∈ 𝑍(𝑀𝑘) ⊆ 𝑍(𝑀); therefore,
there is a convergence subsequence of {(𝑠𝑘, 𝑡𝑘, 𝑢𝑘, 𝑥𝑘)}𝑘∈𝐾,
and, by (56), the limit point of this sequence lies in 𝑀∞.
Without loss of generality, assume that

lim
𝑘∈𝐾

(𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
) = (𝑠, 𝑡, 𝑢) ∈ 𝑀

∞
. (57)

By the continuity of 𝜓(𝑠, 𝑡, 𝑢) on𝑀,

lim
𝑘∈𝐾

𝜓 (𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
) = 𝜓 (𝑠, 𝑡, 𝑢) . (58)

For all 𝑘 ∈ 𝐾, (𝑠𝑘, 𝑡𝑘, 𝑢𝑘) ∈ 𝑀𝑘, by (57),

lim
𝑘∈𝐾

Ψ(𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
) = 𝜓 (𝑠, 𝑡, 𝑢) . (59)

Combining (55), (57), and (58), we have

𝜓 (𝑠, 𝑡, 𝑢) = lim
𝑘∈𝐾

UB (𝑀
𝑘
) = lim
𝑘∈𝐾

𝜓 (𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
) = 𝜓 (𝑠, 𝑡, 𝑢) .

(60)

Since for each 𝑘 ∈ 𝐾, 𝜓(𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
) = ∑

𝑝

𝑖=1
[2𝑢𝑖𝑡𝑖 − (𝑢𝑖)

2
𝑠𝑖], this

confirms the assertion.

(b) By algorithm and (a), we obtain

lim
𝑘→∞

V𝑘 = lim
𝑘→∞

(

𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − (𝑢𝑖)
2
𝑠𝑖]) = V𝑀. (61)

Let (𝑠, 𝑡, 𝑢, 𝑥) be an accumulation point of {(𝑠𝑘, 𝑡𝑘, 𝑢𝑘, 𝑥𝑘)}
∞

𝑘=1
;

then for some𝐾 ⊆ {1, 2, . . .}

lim
𝑘∈K

(𝑠
𝑘
, 𝑡
𝑘
, 𝑢
𝑘
, 𝑥
𝑘
) = (𝑠, 𝑡, 𝑢, 𝑥) . (62)

By (62), since {∑𝑝
𝑖=1

[2𝑢
𝑘

𝑖
𝑡
𝑘

𝑖
− (𝑢
𝑘

𝑖
)
2

𝑠
𝑘

𝑖
]}
𝑘∈𝐾

is a subsequence of

{∑
𝑝

𝑖=1
[2𝑢
𝑘

𝑖
𝑡
𝑘

𝑖
− (𝑢
𝑘

𝑖
)
2

𝑠
𝑘

𝑖
]}
∞

𝑘=1
,

lim
𝑘∈𝐾

(

𝑝

∑
𝑖=1

[2𝑢
𝑘

𝑖
𝑡
𝑘

𝑖
− (𝑢
𝑘

𝑖
)
2

𝑠
𝑘

𝑖
]) = V𝑀. (63)

From (63) and the continuity of the objective function of
problem (P(𝑀)),

lim
𝑘∈𝐾

(

𝑝

∑
𝑖=1

[2𝑢
𝑘

𝑖
𝑡
𝑘

𝑖
− (𝑢
𝑘

𝑖
)
2

𝑠
𝑘

𝑖
]) =

𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − (𝑢𝑖)
2
𝑠𝑖] . (64)

From (63) and (64), we get

𝑝

∑
𝑖=1

[2𝑢𝑖𝑡𝑖 − (𝑢𝑖)
2
𝑠𝑖] = V𝑀. (65)

Since the feasible region 𝑍(𝑀) of problem (P(𝑀)) is a closed
set, (𝑠, 𝑡, 𝑢, 𝑥) ∈ 𝑍(𝑀). It follows from (65) that (𝑠, 𝑡, 𝑢, 𝑥)
is global optimal solution for problem (P(𝑀)); the proof is
complete.

By the algorithm, it may happen that, even after many
iterations, 𝑅𝑘 may remain nonempty. However, by the con-
vergence result, it follows that, for any 𝜖 > 0,

(UB𝑘 −
𝑝

∑
𝑖=1

[2𝑢
𝑘

𝑖
𝑡
𝑘

𝑖
− (𝑢
𝑘

𝑖
)
2

𝑠
𝑘

𝑖
]) ⩽ 𝜖 (66)

will hold for 𝑘 sufficiently large. In practice, it is rec-
ommended that the algorithm be terminated if, for some
prechosen, relatively small value of 𝜖 > 0, (66), holds. When
termination occurs in this way, it is easy to show that 𝑥𝑘 is
a global 𝜖-optimal solution, and 𝑓(𝑥

𝑘
) is a global 𝜖-optimal

value for problem (LMP) in the sense that 𝑥𝑘 ∈ 𝑋 and
𝑓(𝑥
𝑘
) + 𝜖 ⩽ V.

5. Numerical Experiments

To verify performance of the proposed global optimization
algorithm, some test problems were implemented. The test
problems are coded in C++ and the experiments are con-
ducted on a Pentium IV (3.06GHZ) microcomputer.

Example 11. Consider

(P)

V = max 𝑓 (𝑥) =
−𝑥
2

1
+ 3𝑥1 − 𝑥

2

2
+ 3𝑥2 + 3.5

𝑥1 + 1

+
𝑥2

𝑥2
1
− 2𝑥1 + 𝑥2

2
− 8𝑥2 + 20

,

s.t. 𝑥 ∈ 𝑋 =

{{{

{{{

{

2𝑥1 + 𝑥2 ⩽ 6,

3𝑥1 + 𝑥2 ⩽ 8,

𝑥1 − 𝑥2 ⩽ 1,

𝑥1 ⩾ 1, 𝑥2 ⩾ 1.

}}}

}}}

}

.

(67)

Prior to initiating the algorithm, we first determine
a rectangle 𝐻0 = {(𝑢1, 𝑢2) | 0.9354143 ⩽ 𝑢1 ⩽

1.561249, 0.0769230 ⩽ 𝑢2 ⩽ 0.6666667}. Then, the problem
(P1) is

V1 = max 𝜑 (𝑢1, 𝑢2)

s.t. 𝑢 ∈ 𝐻
0
,

(68)

where
𝜑 (𝑢1, 𝑢2)

= max
𝑥∈𝑋

[2𝑢1√−𝑥2
1
+ 3𝑥1 − 𝑥2

2
+ 3𝑥2 + 3.5 − 𝑢

2

1
(𝑥1 + 1)

+ 2𝑢2√𝑥2 − 𝑢
2

2
(𝑥
2

1
− 2𝑥1 + 𝑥

2

2
− 8𝑥2 + 20)] .

(69)

Solving the linear programming (PR1(𝐻0)) gets initial
upper bound UB0 = 5.793653, and the lower bound LB0 =
3.952468 with 𝑢1 = 1.181421, 𝑢2 = 0.2448056. Set 𝜀 = 0.01.
The algorithmfinds a global 𝜀-optimal value 4.060819 after 23
iterations at the global 𝜀-optimal solution 𝑥

∗ = (1, 1.743823).
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Table 1: Computational results of Example 12.

Methods 𝜀 𝜀—optimal solution 𝜀—optimal value Iteration number CPU time
[11] 1.0𝐸 − 5 (1.0000, 1.4142) 0.4856 90 6.9329 s
Our 1.0𝐸 − 5 (1.00000, 1.41422) 0.48560 58 3.4545 s

Table 2: Computational results of Example 13.

𝑛 𝑚 Ave. Iter Ave. CPU (s)
5 3 69 7.8
5 7 76 8.9
5 10 84 9.6
5 20 99 23.5
10 3 261 59.6
15 3 329 78.3

Example 12 (see [11]). Consider

V = max 𝑓 (𝑥) =
−2𝑥1 − 𝑥2

𝑥1 + 10
+

−2

𝑥2 + 10
,

s.t. − 𝑥
2

1
− 𝑥
2

2
+ 3 ⩽ 0,

− 𝑥
2

1
− 𝑥
2

2
+ 8𝑥2 − 14 ⩽ 0,

2𝑥1 + 𝑥2 ⩽ 6,

3𝑥1 + 𝑥2 ⩽ 8,

𝑥1 − 𝑥2 ⩽ 1,

𝑥1 ⩾ 1, 𝑥2 ⩾ 1.

(70)

See Table 1

Example 13. In this example, we solve 6 different random
instances:

max 𝑥𝑇𝑄1𝑥 − 𝑐1

𝑥𝑇𝑃1𝑥
+
𝑥𝑇𝑄2𝑥 − 𝑐1

𝑥𝑇𝑃2𝑥

s.t.
𝑛

∑
𝑖=1

𝑥𝑖 = 1,

𝐴𝑥 ⩽ 𝑏,

0 ⩽ 𝑥𝑖 ⩽ 1, 𝑖 = 1, 2, . . . , 𝑛,

(71)

where 𝑄1 and 𝑄2 are negative semidefinite, while 𝑃1 and 𝑃2
are definite, 𝐴 is 𝑚 × 𝑛 matrix, and all elements of 𝑄1, 𝑄2,
𝑃1, 𝑃2, 𝐴, 𝑏 are randomly generated, whose ranges are [0, 1].
Table 2 summarizes our computational results. In Table 2,
the following indices characterize performance in algorithm:
Ave. CPU (s) is the average CPU times in seconds; Ave. Iter
is average number of iterations.

6. Conclusion

In this paper, we present a branch and bound algorithm
for solving a class of fractional programming problems (P).

To globally solve problem (P), we first convert problem (P)
into an equivalent problem (P1); then through linearization
method, we obtain a convex relaxation programming prob-
lem (PR1(𝐻)) of problem (P1). In the algorithm, the branch
and bound tree creates rectangular regions that belong to𝑅3𝑝,
where 𝑝 is the number of ratios in the objective function
of problem (P1). However, the branching process only takes
place in 𝑅𝑝, rather than 𝑅3𝑝. In addition, all subproblems
that must be solved to implement the algorithm are convex
programming problems, each of which is guaranteed to have
an optimal solution.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Project is supported by the Ph.D. Start-Up Fund of Natural
Science Foundation of Guangdong Province, China (no.
S2013040012506), Project Science Foundation of Guang-
dong University of Finance (no. 2012RCYJ005), and the
Postdoctoral Fund of Shenyang Agricultural University (no.
770212025).

References

[1] T. Ibaraki, “Parametric approaches to fractional programs,”
Mathematical Programming, vol. 26, no. 3, pp. 345–362, 1983.

[2] S. S. Chadha, “Fractional programming with absolute-value
functions,” European Journal of Operational Research, vol. 141,
no. 1, pp. 233–238, 2002.

[3] T. Kuno, “A branch-and-bound algorithm for maximizing the
sum of several linear ratios,” Journal of Global Optimization, vol.
22, pp. 155–174, 2002.

[4] P.-P. Shen and C.-F. Wang, “Global optimization for sum of
linear ratios problem with coefficients,” Applied Mathematics
and Computation, vol. 176, no. 1, pp. 219–229, 2006.

[5] H. P. Benson, “On the global optimization of sums of linear
fractional functions over a convex set,” Journal of Optimization
Theory and Applications, vol. 121, no. 1, pp. 19–39, 2004.

[6] H. P. Benson, “Using concave envelopes to globally solve the
nonlinear sum of ratios problem,” Journal of Global Optimiza-
tion, vol. 22, pp. 343–364, 2002.

[7] H. P. Benson, “Global optimization algorithm for the nonlinear
sum of ratios problem,” Journal of Optimization Theory and
Applications, vol. 112, no. 1, pp. 1–29, 2002.

[8] C.-T. Chang, “On the posynomial fractional programming
problems,” European Journal of Operational Research, vol. 143,
no. 1, pp. 42–52, 2002.



10 Journal of Applied Mathematics

[9] Y.-J. Wang and K.-C. Zhang, “Global optimization of nonlinear
sum of ratios problem,” Applied Mathematics and Computation,
vol. 158, no. 2, pp. 319–330, 2004.

[10] R. W. Freund and F. Jarre, “Solving the sum-of-ratios problem
by an interior-point method,” Journal of Global Optimization,
vol. 19, no. 1, pp. 83–102, 2001.

[11] P.-P. Shen, Y.-P. Duan, and Y.-G. Pei, “A simplicial branch and
duality bound algorithm for the sum of convex-convex ratios
problem,” Journal of Computational and Applied Mathematics,
vol. 223, no. 1, pp. 145–158, 2009.

[12] H. P. Benson, “Global maximization of a generalized concave
multiplicative function,” Journal of Optimization Theory and
Applications, vol. 137, no. 1, pp. 105–120, 2008.

[13] M. Avriel, W. E. Diewart, S. Schaible, and I. Zang, Generalized
Concavity, Plenum, New York, NY, USA, 1988.

[14] R. Horst and N. V. Thoai, “Decomposition approach for the
global minimization of biconcave functions over polytopes,”
Journal of Optimization Theory and Applications, vol. 88, no. 3,
pp. 561–583, 1996.

[15] R. Horst and H. Tuy, Global Optimization: Deterministic
Approaches, Springer, Berlin, Germany, 1993.

[16] H. P. Benson, “On the construction of convex and concave
envelope formulas for bilinear and fractional functions on
quadrilaterals,” Computational Optimization and Applications,
vol. 27, no. 1, pp. 5–22, 2004.

[17] H. Tuy, Convex Analysis and Global Optimization, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998.


