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As far as linear integrable couplings are concerned, one has obtained some rich and interesting results. In the paper, we will deduce
two kinds of expanding integrable models of the Geng-Cao (GC) hierarchy by constructing different 6-dimensional Lie algebras.
One expanding integrable model (actually, it is a nonlinear integrable coupling) reduces to a generalized Burgers equation and
further reduces to the heat equation whose expanding nonlinear integrable model is generated. Another one is an expanding
integrable model which is different from the first one. Finally, the Hamiltonian structures of the two expanding integrable models
are obtained by employing the variational identity and the trace identity, respectively.

1. Introduction

Integrable couplings are a kind of expanding integrable
models of some known integrable hierarchies of equations.
Based on this theory, one has obtained some integrable
couplings of the known integrable hierarchies [1–8]. These
integrable couplings are all linear with respect to the coupled
variables. That is, if we introduce an evolution equation 𝑈

𝑡
=

𝐾(𝑢), the coupled variable 𝑉 satisfying 𝑉
𝑡
= 𝑆(𝑢, V) is linear

in𝑉. The reason for this may be given by special Lie algebras.
That is, such a Lie algebra 𝐺 can be decomposed into a sum
of the two subalgebras 𝐺

1
and 𝐺

2
, which meets

𝐺 = 𝐺
1
⊕ 𝐺
2
, [𝐺

1
, 𝐺
2
] ⊂ 𝐺
2
. (1)

If the subalgebra 𝐺
2
is not simple, then the integrable

coupling

𝑈
𝑡
= 𝐾 (𝑢) ,

𝑉
𝑡
= 𝑆 (𝑢, V)

(2)

is linear with respect to the variable 𝑉, which is obtained by
introducing Lax pairs through the Lie algebra 𝐺. However,
it is more interesting to seek for nonlinear integrable cou-
plings because most of the coupled dynamics from physics,
mechanics, and so forth are nonlinear. Recently, Ma and
Zhu [9] introduced a kind of Lie algebra to deduce the

nonlinear integrable couplings of the nonlinear Schrödinger
equation and so forth, where the Lie subalgebras are simple
and are different from the above. Based on this, Zhang
[10] proposed a simple and efficient method for generating
nonlinear integrable couplings and obtained the nonlinear
integrable couplings of the Giachetti-Johnson (GJ) hierarchy
and the Yang hierarchy, respectively. In addition, Zhang and
Hon [11] proposed another Lie algebra which is different from
those in [9, 10] to deduce nonlinear integrable couplings.
Wei and Xia [12] also obtained some nonlinear integrable
couplings of the known integrable hierarchies.

In the paper, we want to start from a spectral problem
proposed by Geng and Cao [13] to deduce an integrable
hierarchy (called the GC hierarchy) under the frame of zero
curvature equations by the Tu scheme [14] and obtain its new
Hamiltonian structure.Thenwith the help of a 6-dimensional
Lie algebra, a nonlinear expanding integrable model of the
GC hierarchy is obtained, whose Hamiltonian structure is
generated by the variational identity presented in [15]. The
expanding integrable model can reduce to a generalized
Burgers equation and further reduce to the heat equation.
Another new 6-dimensional Lie algebra is constructed for
which the second expanding integrable model is produced by
using the Tu scheme whose Hamiltonian structure is derived
from the trace identity proposed by Tu [14]. We shall find
the two expanding integrable models of the GC hierarchy are
different.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 860935, 7 pages
http://dx.doi.org/10.1155/2014/860935

http://dx.doi.org/10.1155/2014/860935


2 Abstract and Applied Analysis

2. The GC Integrable Hierarchy and Its
Hamiltonian Structure

We have known that

ℎ = (
1 0

0 −1
) , 𝑒 = (

0 1

0 0
) , 𝑓 = (

0 0

1 0
) , (3)

then one gets

[ℎ, 𝑒] = 2𝑒, [ℎ, 𝑓] = −2𝑓, [𝑒, 𝑓] = ℎ. (4)

It is well known that span{ℎ, 𝑒, 𝑓} = 𝐴
1
is a Lie algebra. A

loop algebra of 𝐴
1
is given by

𝐴
1
= span {ℎ (𝑛) , 𝑒 (𝑛) , 𝑓 (𝑛)} , (5)

where

ℎ (𝑛) = ℎ (0) 𝜆
𝑛
, 𝑒 (𝑛) = 𝑒 (0) 𝜆

𝑛
,

ℎ (𝑛) = ℎ (0) 𝜆
𝑛
,

𝑛 ∈ 𝑍.

(6)

By using the loop algebra 𝐴
1
, introduce an isospectral

problem [13]:

𝑈 = (
−𝜆 𝜆𝑢

V 𝜆
) = −ℎ (1) + 𝑢𝑒 (1) + V𝑓 (0) . (7)

Set

𝑉 = 𝑉
1
ℎ (0) + 𝑉

2
𝑒 (0) + 𝑉

3
𝑓 (0) , (8)

where

𝑉
𝑖
= ∑

𝑚≥0

𝑉
𝑖𝑚
ℎ (−𝑚) , 𝑖 = 1, 2, 3. (9)

The stationary equation 𝑉
𝑥

= [𝑈,𝑉] admits that a solution
for the 𝑉 is as follows:

(𝑉
1𝑚

)
𝑥
= 𝑢𝑉
3𝑚

− V𝑉
2𝑚

,

(𝑉
2𝑚

)
𝑥
= −2𝑉

2,𝑚+1
− 2𝑢𝑉

1,𝑚+1
,

(𝑉
3𝑚

)
𝑥
= 2𝑉
3,𝑚+1

+ 2V𝑉
1,𝑚+1

,

(10)

which gives rise to

(𝑉
1,𝑚+1

)
𝑥
=

1

2
𝑢(𝑉
3𝑚

)
𝑥
−

1

2
V(𝑉
2𝑚

)
𝑥
. (11)

Set

𝑉
1,0

= 𝑉
2,0

= 𝑉
3,0

= 0, 𝑉
1,1

= 𝛼; (12)

from (10) and (11) we have

𝑉
2,1

= −𝛼𝑢, 𝑉
3,1

= −𝛼V, 𝑉
1,2

= −
𝛼

2
𝑢V,

𝑉
2,2

=
𝛼

2
(𝑢
𝑥
+ 𝑢
2V) , 𝑉

3,2
=

𝛼

2
(−V
𝑥
+ 𝑢V2) , . . .

(13)

denote by

𝑉
(𝑛)

=

𝑛

∑

𝑚=0

(𝑉
1𝑚

ℎ (𝑛 − 𝑚) + 𝑉
2𝑚

𝑒 (𝑛 − 𝑚) + 𝑉
3𝑚

𝑓 (𝑛 − 𝑚)) .

(14)

We have

− 𝑉
(𝑛)

𝑥
+ [𝑈,𝑉

(𝑛)
] = (2𝑉

2,𝑛+1
+ 2𝑢𝑉

1,𝑛+1
) 𝑒 (1)

− 2 (𝑉
3,𝑛+1

+ 2𝑉
1,𝑛+1

) 𝑓 (0) .

(15)

The compatibility of the following Lax pair

𝑈 = −ℎ (1) + 𝑢𝑒 (1) + V𝑓 (0)

𝑉
(𝑛)

=

𝑛

∑

𝑚=0

(𝑉
1𝑚

ℎ (𝑛 − 𝑚) + 𝑉
2𝑚

𝑒 (𝑛 − 𝑚) + 𝑉
3𝑚

𝑓 (𝑛 − 𝑚))

(16)

gives rise to

(
𝑢

V)
𝑡
𝑛

= (
−2𝑉
2,𝑛+1

− 2𝑢𝑉
1,𝑛+1

2𝑉
3,𝑛+1

+ 2V𝑉
1,𝑛+1

) = (
(𝑉
2𝑛
)
𝑥

(𝑉
3𝑛
)
𝑥

)

= (
0 𝜕

𝜕 0
)(

𝑉
3𝑛

𝑉
2𝑛

) = 𝐽(
𝑉
3𝑛

𝑉
2𝑛

) ,

(17)

where

𝐽 = (
0 𝜕

𝜕 0
) (18)

is a Hamiltonian operator.
By the trace identity presented in [14], we have

⟨𝑉,
𝜕𝑈

𝜕𝑢
⟩ = 𝜆𝑉

3
, ⟨𝑉,

𝜕𝑈

𝜕V
⟩ = 𝜆𝑉

2
,

⟨𝑉,
𝜕𝑈

𝜕𝜆
⟩ = −2𝜆𝑉

1
+ 𝑢𝑉
3
.

(19)

Substituting the above results to the trace identity yields

𝛿

𝛿𝑤
(−2𝜆𝑉

1
+ 𝑢𝑉
3
) = 𝜆
−𝛾 𝜕

𝜕𝜆
𝜆
𝛾
(
𝜆𝑉
3

𝜆𝑉
2

) , (20)

where

𝛿

𝛿𝑤
= (

𝛿

𝛿𝑢
,
𝛿

𝛿V
)

𝑇

. (21)

Comparing the coefficients of 𝜆−𝑛 of both sides in (20) gives

𝛿

𝛿𝑤
(−2𝑉
1,𝑛+1

+ 𝑢𝑉
3,𝑛+1

) = (−𝑛 + 1 + 𝛾) (
𝜆𝑉
3𝑛

𝜆𝑉
2𝑛

) . (22)

It is easy to see 𝛾 = −1. Thus, we have

(
𝜆𝑉
3𝑛

𝜆𝑉
2𝑛

) =
𝛿

𝛿𝑢
(
2𝑉
1,𝑛+1

− 𝑢𝑉
3,𝑛+1

𝑛
) =

𝛿𝐻
𝑛

𝛿𝑢
, (23)
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where

𝐻
𝑛
=

2𝑉
1,𝑛+1

− 𝑢𝑉
3,𝑛+1

𝑛
(24)

are Hamiltonian conserved densities of the Lax integrable
hierarchy (17). Therefore, we get a Hamiltonian form of the
hierarchy (17) as follows:

(
𝑢

V)
𝑡
𝑛

= 𝐽
𝛿𝐻
𝑛

𝛿𝑢
. (25)

Let us consider the reduced cases of (17). When 𝑛 = 1, we get
that

𝑢
𝑡
1

= −𝛼𝑢
𝑥
, V

𝑡
1

= −𝛼V
𝑥
. (26)

Taking 𝑛 = 2, one gets a generalized Burgers equation:

𝑢
𝑡
2

=
𝛼

2
𝑢
𝑥𝑥

+ 𝛼𝑢𝑢
𝑥
V +

𝛼

2
𝑢
2V
𝑥
,

V
𝑡
2

= −
𝛼

2
V
𝑥𝑥

+
𝛼

2
𝑢
𝑥
V2 + 𝛼𝑢VV

𝑥
.

(27)

Remark 1. The Hamiltonian structure (23) is different from
that in [14]. We call (17) the GC hierarchy.

3. The First Expanding Integrable Model of the
GC Hierarchy

Zhang and Tam [16] proposed a few kinds of Lie algebras to
deduce nonlinear integrable couplings. In the section we will
choose one of them to investigate the nonlinear integrable
coupling of the hierarchy (17).

Consider the following Lie algebra:
𝐹 = span {𝑓

1
, . . . , 𝑓

6
} , (28)

where

𝑓
1
= (

𝑒
1

0

0 𝑒
1

) , 𝑓
2
= (

𝑒
2

0

0 𝑒
2

) , 𝑓
3
= (

𝑒
3

0

0 𝑒
3

) ,

𝑓
4
= (

0 𝑒
1

0 𝑒
1

) , 𝑓
5
= (

0 𝑒
2

0 𝑒
2

) , 𝑓
6
= (

0 𝑒
3

0 𝑒
3

) ,

𝑒
1
= (

1 0

0 −1
) , 𝑒

2
= (

0 1

0 0
) , 𝑒

3
= (

0 0

1 0
) .

(29)

Define

[𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎, ∀𝑎, 𝑏 ∈ 𝐹. (30)

It is easy to compute that

[𝑓
1
, 𝑓
2
] = 2𝑓

2
, [𝑓

1
, 𝑓
3
] = −2𝑓

3
, [𝑓

2
, 𝑓
3
] = 𝑓
1
,

[𝑓
1
, 𝑓
4
] = 0, [𝑓

1
, 𝑓
5
] = 2𝑓

5
,

[𝑓
1
, 𝑓
6
] = −2𝑓

6
, [𝑓

2
, 𝑓
4
] = −2𝑓

5
, [𝑓

2
, 𝑓
5
] = 0,

[𝑓
2
, 𝑓
6
] = 𝑓
4
, [𝑓

3
, 𝑓
4
] = 2𝑓

6
,

[𝑓
3
, 𝑓
5
] = −𝑓

4
, [𝑓

3
, 𝑓
6
] = 0, [𝑓

4
, 𝑓
5
] = 2𝑓

5
,

[𝑓
4
, 𝑓
6
] = −2𝑓

6
, [𝑓

5
, 𝑓
6
] = 𝑓
4
.

(31)

Set

𝐹
1
= span {𝑓

1
, 𝑓
2
, 𝑓
3
} , 𝐹

2
= span {𝑓

4
, 𝑓
5
, 𝑓
6
} ; (32)

we have

𝐹
1
= 𝐹
1
⊕ 𝐹
2
, [𝐹

1
, 𝐹
2
] ⊂ 𝐹
2
; (33)

𝐹
1
and 𝐹

2
are all simple Lie-subalgebras of the Lie algebra 𝐹.

The corresponding symmetric constant matrix 𝑀 appearing
in the variational identity is that

(

(

2𝜂
1

0 0 2𝜂
2

0 0

0 0 𝜂
1

0 0 𝜂
2

0 𝜂
1

0 0 𝜂
2

0

2𝜂
2

0 0 2𝜂
2

0 0

0 0 𝜂
2

0 0 𝜂
2

0 𝜂
2

0 0 𝜂
2

0

)

)

. (34)

A loop algebra corresponding to the Lie algebra 𝐹 is
defined by

𝐹 = span {𝑓
1
(𝑛) , . . . , 𝑓

6
(𝑛)} , 𝑓

𝑖
(𝑛) = 𝑓

𝑖
𝜆
𝑛
,

[𝑓
𝑖
(𝑚) , 𝑓

𝑗
(𝑛)] = [𝑓

𝑖
, 𝑓
𝑗
] 𝜆
𝑚+𝑛

, 1 ≤ 𝑖, 𝑗 ≤ 6, 𝑚, 𝑛 ∈ 𝑍.

(35)

We use the loop algebra 𝐹 to introduce a Lax pair:

𝑈 = −𝑓 (1) + 𝑢𝑓
2
(1) + V𝑓

3
(0) + 𝑢

1
𝑓
5
(1) + 𝑢

2
𝑓
6
(0) ,

𝑉 = ∑

𝑚≥0

(𝑉
1𝑚

𝑓
1
(1 − 𝑚) + 𝑉

2𝑚
𝑓
2
(1 − 𝑚) + 𝑉

3𝑚
𝑓
3
(−𝑚)

+𝑉
4𝑚

𝑓
4
(1 − 𝑚) + 𝑉

5𝑚
𝑓
5
(1 − 𝑚) + 𝑉

6𝑚
𝑓
6
(−𝑚)) .

(36)

The stationary equation 𝑉
𝑥
= [𝑈,𝑉] is equivalent to

(𝑉
1𝑚

)
𝑥
= 𝑢𝑉
3𝑚

− V𝑉
2𝑚

,

(𝑉
2𝑚

)
𝑥
= −2𝑉

2,𝑚+1
− 2𝑢𝑉

1,𝑚+1
,

(𝑉
3𝑚

)
𝑥
= 2𝑉
3,𝑚+1

+ 2V𝑉
1,𝑚+1

,

(𝑉
4𝑚

)
𝑥
= 𝑢
1
𝑉
3𝑚

− 𝑢
2
𝑉
2𝑚

− (V + 𝑢
2
) 𝑉
5𝑚

+ (𝑢 + 𝑢
1
) 𝑉
6𝑚

,

(𝑉
5𝑚

)
𝑥
= −2𝑉

5,𝑚+1
− 2𝑢
1
𝑉
1,𝑚+1

− 2 (𝑢 + 𝑢
1
) 𝑉
4,𝑚+1

,

(𝑉
6𝑚

)
𝑥
= 2𝑉
6,𝑚+1

+ 2𝑢
2
𝑉
1,𝑚+1

+ 2 (V + 𝑢
2
) 𝑉
4,𝑚+1

(37)

from which we have

(𝑉
1,𝑚+1

)
𝑥
=

1

2
𝑢(𝑉
3𝑚

)
𝑥
−

1

2
V(𝑉
2𝑚

)
𝑥
,

(𝑉
4,𝑚+1

) =
1

2
𝑢
1
(𝑉
3𝑚

)
𝑥
+

1

2
𝑢
2
(𝑉
2𝑚

)
𝑥

+
1

2
(𝑢 + 𝑢

2
) (𝑉
5𝑚

)
𝑥
+

1

2
(𝑢 + 𝑢

1
) (𝑉
6𝑚

)
𝑥
.

(38)



4 Abstract and Applied Analysis

Set

𝑉
1,0

= 𝑉
2,0

= 𝑉
3,0

= 𝑉
4,0

= 𝑉
5,0

= 𝑉
6,0

= 0, 𝑉
1,1

= 𝛼;

(39)

we obtain from (37)

𝑉
3,1

= −𝛼V, 𝑉
2,1

= −𝛼𝑢, 𝑉
4,1

= 0,

𝑉
4,1

= −𝛼𝑢
1
, 𝑉

6,1
= −𝛼𝑢

2
,

𝑉
1,2

= −
𝛼

2
𝑢V, 𝑉

4,2
= −

𝛼

2
(𝑢
1
V + 𝑢V

2
+ 𝑢
1
𝑢
2
) ,

𝑉
5,2

=
𝛼

2
(𝑢
1
𝑥 + 𝑢
1
𝑢V + (𝑢 + 𝑢

1
) (𝑢
1
V + 𝑢𝑢

2
+ 𝑢
1
𝑢
2
)) ,

𝑉
6,2

=
𝛼

2
(−𝑢
2
𝑥 + 𝑢
2
𝑢V + (V + 𝑢

2
) (𝑢
1
V + 𝑢𝑢

2
+ 𝑢
1
𝑢
2
)) , . . .

(40)

Note

𝑉
(𝑛)

=

𝑛

∑

𝑚=0

(𝑉
1𝑚

𝑓
1
(1 + 𝑛 − 𝑚) + 𝑉

2𝑚
𝑓
2
(1 + 𝑛 − 𝑚)

+ 𝑉
3𝑚

𝑓
3
(−𝑚) + 𝑉

4𝑚
𝑓
4
(1 + 𝑛 − 𝑚)

+𝑉
5𝑚

𝑓
5
(1 + 𝑛 − 𝑚) + 𝑉

6𝑚
𝑓
6
(𝑛 − 𝑚)) ;

(41)

a direct calculation yields

− 𝑉
(𝑛)

𝑥
+ [𝑈,𝑉

(𝑛)
]

= −2 (𝑉
3,𝑛+1

+ V𝑉
1,𝑛+1

) 𝑓
3
(0)

+ (2𝑉
2,𝑛+1

+ 2𝑢𝑉
1,𝑛+1

) 𝑓
2
(1)

− 2 ((V + 𝑢
2
) 𝑉
4,𝑛+1

+ 𝑢
2
) 𝑉
1,𝑛+1

+ 𝑉
6,𝑛+1

𝑓
6
(0)

+ 2 ((𝑢 + 𝑢
1
) 𝑉
4,𝑛+1

+ 𝑢
1
) 𝑉
1,𝑛+1

+ 𝑉
5,𝑛+1

𝑓
5
(1)

= −(𝑉
3𝑛
)
𝑥
𝑓
3
(0) − (𝑉

2𝑛
)
𝑥
𝑓
2
(1)

− (𝑉
6𝑛
)
𝑥
𝑓
6
(0) − (𝑉

5𝑛
)
𝑥
𝑓
5
(1) .

(42)

Therefore, zero curvature equation

𝑈
𝑡
− 𝑉
𝑛

𝑥
+ [𝑈,𝑉

(𝑛)
] = 0 (43)

admits that

(

𝑢

V
𝑢
1

𝑢
2

) = (

(𝑉
2𝑛
)
𝑥

(𝑉
3𝑛
)
𝑥

(𝑉
5𝑛
)
𝑥

(𝑉
6𝑛
)
𝑥

). (44)

Set 𝑢
1

= 𝑢
2

= 0, (44) reduces to the integrable hierarchy
(17). When we take 𝑛 = 2, we get an expanding nonlinear

integrable model of the generalized Burgers equation (27) as
follows:

𝑢
𝑡
2

=
𝛼

2
𝑢
𝑥𝑥

+ 𝛼𝑢𝑢
𝑥
V +

𝛼

2
𝑢
2V
𝑥
,

V
𝑡
2

= −
𝛼

2
V
𝑥𝑥

+
𝛼

2
𝑢
𝑥
V2 + 𝛼𝑢VV

𝑥
,

𝑢
1𝑡
2

=
𝛼

2
(𝑢
1𝑥𝑥

+ 𝑢
1𝑥
𝑢V + 𝑢

1
(𝑢V)
𝑥

+ (𝑢 + 𝑢
1
)
𝑥
(𝑢
1
V + 𝑢𝑢

2
+ 𝑢
1
𝑢
2
)

+ (𝑢 + 𝑢
1
) (𝑢
1
V + 𝑢𝑢

2
+ 𝑢
1
𝑢
2
)
𝑥
) ,

𝑢
2𝑡
2

=
𝛼

2
(−𝑢
2𝑥𝑥

+ 𝑢
2𝑥
𝑢V + 𝑢

2
(𝑢V)
𝑥

+ (V + 𝑢
2
)
𝑥
(𝑢
1
V + 𝑢𝑢

2
+ 𝑢
1
𝑢
2
)

+ (V + 𝑢
2
) (𝑢
1
V + 𝑢𝑢

2
+ 𝑢
1
𝑢
2
)
𝑥
) .

(45)

Obviously, the coupled equations are nonlinear with respect
to the coupled variables 𝑢

1
and 𝑢

2
. Therefore, the hierar-

chy (44) is a nonlinear expanding integrable model of the
integrable system (17); actually, it is a nonlinear integrable
coupling.

The nonlinear expanding integrable model (45) can be
written as two parts, one is just right (27); another one is
the latter two equations in (45), which can be regarded as
a coupled nonlinear equation with variable coefficients 𝑢, V,
and their derivatives in the variable 𝑥, where the functions 𝑢,
V satisfy (27). In particular, we take a trivial solution of (27)
to be 𝑢 = V = 0; then (45) reduces to the following equations:

𝑢
1𝑡
2

=
𝛼

2
[𝑢
1,𝑥𝑥

+ (𝑢
2

1
𝑢
2
)
𝑥
] ,

𝑢
2𝑡
2

=
𝛼

2
[−𝑢
2,𝑥𝑥

+ (𝑢
2

2
𝑢
1
)
𝑥
] .

(46)

When we set 𝑢
2
= 0, the above equations reduce to the well-

known heat equation.
In order to deduceHamiltonian structure of the nonlinear

integrable coupling (44), we define a linear functional [11]:

{𝑎, 𝑏} = 𝑎
𝑇
𝑀𝑏, (47)

where 𝑎 = (𝑎
1
, . . . , 𝑎

6
)
𝑇, 𝑏 = (𝑏

1
, . . . , 𝑏

6
)
𝑇.

It is easy to see that the Lie algebra 𝐹 is isomorphic to the
Lie algebra 𝑅6 if equipped with a commutator as follows:

[𝑎, 𝑏]
𝑇
= (𝑎
2
𝑏
3
− 𝑎
3
𝑏
2
, 2𝑎
1
𝑏
2
− 2𝑎
2
𝑏
1
, 2𝑎
3
𝑏
1
− 2𝑎
1
𝑏
3
, 𝑎
2
𝑏
6

− 𝑎
6
𝑏
2
+ 𝑎
5
𝑏
3
− 𝑎
3
𝑏
5
+ 𝑎
5
𝑏
6
− 𝑎
6
𝑏
5
, 2𝑎
1
𝑏
5

− 2𝑎
5
𝑏
1
+ 2𝑎
4
𝑏
2
− 2𝑎
2
𝑏
4
+ 2𝑎
4
𝑏
5

− 2𝑎
5
𝑏
4
, 2𝑎
3
𝑏
4
− 2𝑎
4
𝑏
3
+ 2𝑎
6
𝑏
1

−2𝑎
1
𝑏
6
+ 2𝑎
6
𝑏
4
− 2𝑎
4
𝑏
6
) .

(48)
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Thus, under the Lie algebra 𝑅
6, the Lax pair (36) can be

written as

𝑈 = (−𝜆, 𝑢𝜆, V, 0, 𝑢
1
, 𝜆, 𝑢
2
)
𝑇

,

𝑉 = (𝑉
1
𝜆, 𝑉
2
𝜆, 𝑉
3
, 𝑉
4
𝜆, 𝑉
5
𝜆, 𝑉
6
)
𝑇

.

(49)

In terms of (48) and (49) we obtain that

{𝑉,
𝜕𝑈

𝜕𝑢
} = (𝜂

1
𝑉
3
+ 𝜂
2
𝑉
6
) 𝜆,

{𝑉,
𝜕𝑈

𝜕V
} = (𝜂

1
𝑉
2
+ 𝜂
2
𝑉
5
) 𝜆,

{𝑉,
𝜕𝑈

𝜕𝑢
1

} = (𝜂
2
𝑉
3
+ 𝜂
2
𝑉
6
) 𝜆,

{𝑉,
𝜕𝑈

𝜕𝑢
2

} = (𝜂
2
𝑉
2
+ 𝜂
2
𝑉
5
) 𝜆,

{𝑉,
𝜕𝑈

𝜕𝜆
} = −2𝜂

1
𝑉
1
+ (𝜂
1
𝑢 + 𝜂
2
𝑢
1
) 𝑉
3

− 2𝜂
2
𝑉
4
+ (𝜂
2
𝑢 + 𝜂
2
𝑢
1
) 𝑉
6
.

(50)

Substituting the above results into the variational identity
yields

𝛿

𝛿𝑤
∫

𝑥

(−2𝜂
1
𝑉
1
+ (𝜂
1
𝑢 + 𝜂
2
𝑢
1
) 𝑉
3
+ 𝜂
2
(𝑢 + 𝑢

1
) 𝑉
6
) 𝑑𝑥

= 𝜆
−𝛾 𝜕

𝜕𝜆
𝜆
𝛾
(

(𝜂
1
𝑉
3
+ 𝜂
2
𝑉
6
) 𝜆

(𝜂
1
𝑉
2
+ 𝜂
2
𝑉
5
) 𝜆

(𝜂
2
𝑉
3
+ 𝜂
2
𝑉
6
) 𝜆

(𝜂
2
𝑉
2
+ 𝜂
2
𝑉
5
) 𝜆

) ,

(51)

where

𝛿

𝛿𝑤
= (

𝛿

𝛿𝑢
,
𝛿

𝛿V
,

𝛿

𝛿𝑢
1

,
𝛿

𝛿𝑢
2

)

𝑇

. (52)

Comparing the coefficients of 𝜆−𝑛 on both sides in (51) gives

𝛿

𝛿𝑤
∫

𝑥

(−2𝜂
1
𝑉
1,𝑛+1

+ (𝜂
1
𝑢 + 𝜂
2
𝑢
1
) 𝑉
3,𝑛+1

+2𝜂
2
𝑉
4,𝑛+1

+ 𝜂
2
(𝑢 + 𝑢

1
) 𝑉
6,𝑛+1

) 𝑑𝑥

= (−𝑛 + 1 + 𝛾)(

𝜂
1
𝑉
3𝑛

+ 𝜂
2
𝑉
6𝑛

𝜂
1
𝑉
2𝑛

+ 𝜂
2
𝑉
5𝑛

𝜂
2
𝑉
3𝑛

+ 𝜂
2
𝑉
6𝑛

𝜂
2
𝑉
2𝑛

+ 𝜂
2
𝑉
5𝑛

).

(53)

From (37) we have 𝛾 = −1. Thus, we get that

(

𝜂
1
𝑉
3𝑛

+ 𝜂
2
𝑉
6𝑛

𝜂
1
𝑉
2𝑛

+ 𝜂
2
𝑉
5𝑛

𝜂
2
𝑉
3𝑛

+ 𝜂
2
𝑉
6𝑛

𝜂
2
𝑉
2𝑛

+ 𝜂
2
𝑉
5𝑛

) =
𝛿𝐻
𝑛+1

𝛿𝑢
, (54)

where

𝐻
𝑛+1

= ∫

𝑥

1/𝑛

(2𝜂
1
𝑉
1,𝑛+1

− (𝜂
1
𝑢 + 𝜂
2
𝑢
1
) 𝑉
3,𝑛+1

+2𝜂
2
𝑉
4,𝑛+1

− 𝜂
2
(𝑢 + 𝑢

1
) 𝑉
6,𝑛+1

) 𝑑𝑥.

(55)

Therefore, we obtain the Hamiltonian structure of the non-
linear integrable coupling (44) as follows:

𝛿

𝛿𝑤
∫

𝑥

(−2𝜂
1
𝑉
1,𝑛+1

+ (𝜂
1
𝑢 + 𝜂
2
𝑢
1
) 𝑉
3,𝑛+1

−2𝜂
2
𝑉
4,𝑛+1

+ 𝜂
2
(𝑢 + 𝑢

1
) 𝑉
6,𝑛+1

) 𝑑𝑥,

𝑊
𝑡
𝑛

= (

𝑢

V
𝑢
1

𝑢
2

)

𝑡
𝑛

=

(
(
(
(
(
(
(

(

0
−𝜕

𝜂
1
− 𝜂
2

0
𝜕

𝜂
1
− 𝜂
2

−𝜕

𝜂
1
− 𝜂
2

0
𝜕

𝜂
1
− 𝜂
2

0

0
𝜕

𝜂
1
− 𝜂
2

0
𝜂
1
𝜕

(𝜂
1
− 𝜂
2
) 𝜂
2

𝜕

𝜂
1
− 𝜂
2

0
𝜂
1
𝜕

(𝜂
1
− 𝜂
2
) 𝜂
2

0

)
)
)
)
)
)
)

)

× (

𝜂
1
𝑉
3𝑛

+ 𝜂
2
𝑉
6𝑛

𝜂
1
𝑉
2𝑛

+ 𝜂
2
𝑉
5𝑛

𝜂
2
𝑉
3𝑛

+ 𝜂
2
𝑉
6𝑛

𝜂
2
𝑉
2𝑛

+ 𝜂
2
𝑉
5𝑛

)

= 𝐽(

𝜂
1
𝑉
3𝑛

+ 𝜂
2
𝑉
6𝑛

𝜂
1
𝑉
2𝑛

+ 𝜂
2
𝑉
5𝑛

𝜂
2
𝑉
3𝑛

+ 𝜂
2
𝑉
6𝑛

𝜂
2
𝑉
2𝑛

+ 𝜂
2
𝑉
5𝑛

) = 𝐽
𝛿𝐻
𝑛+1

𝛿𝑢
,

(56)

where 𝐽 is obviously Hamiltonian.

4. The Second Expanding Integrable Model of
the GC Hierarchy

In this section we construct a new 6-dimensional Lie algebra
to discuss the second integrable coupling of theGChierarchy.
Set

ℎ
1
= 𝑓
1
, ℎ

2
= 𝑓
2
, ℎ

3
= 𝑓
3
,

ℎ
𝑗
= (

0 𝑒
𝑗−3

𝑒
𝑗−3

0
) , 𝑗 = 4, 5, 6.

(57)

It is easy to see that

[ℎ
1
, ℎ
2
] = 2ℎ

2
, [ℎ

1
, ℎ
3
] = −2ℎ

3
, [ℎ

2
, ℎ
3
] = ℎ
1
,

[ℎ
1
, ℎ
4
] = 0, [ℎ

1
, ℎ
5
] = 2ℎ

5
, [ℎ

1
, ℎ
6
] = −2ℎ

6
,

[ℎ
2
, ℎ
4
] = −2ℎ

5
, [ℎ

2
, ℎ
5
] = 0, [ℎ

2
, ℎ
6
] = ℎ
4
,

[ℎ
3
, ℎ
4
] = 2ℎ

6
, [ℎ

3
, ℎ
5
] = −ℎ

4,
[ℎ
3
, ℎ
6
] = 0,

[ℎ
4
, ℎ
5
] = 2ℎ

2
, [ℎ

4
, ℎ
6
] = −2ℎ

3
, [ℎ

5
, ℎ
6
] = ℎ
1
.

(58)
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If we set𝐺 = span{ℎ
1
, . . . , ℎ

6
},𝐺
1
= span{ℎ

1
, ℎ
2
, ℎ
3
}, and𝐺

2
=

span{ℎ
4
, ℎ
5
, ℎ
6
}, then we have that

𝐺 = 𝐺
1
+ 𝐺
2
, [𝐺

1
, 𝐺
2
] not in 𝐺

2
. (59)

Hence, the integrable couplings of the GC hierarchy cannot
be generated by the Lie algebra 𝐺 as above under the frame
of the Tu scheme. In what follows, we will deduce a nonlinear
expanding integrable model of the GC hierarchy.

Set

𝑈 = −ℎ
1
(1) + 𝑢ℎ

2
(1) + Vℎ

3
(0) + 𝑤

1
ℎ
5
(1) + 𝑤

2
ℎ
6
(0) ,

𝑉 = ∑

𝑚≥0

(𝑉
1𝑚

ℎ
1
(1 − 𝑚) + 𝑉

2𝑚
ℎ
2
(1 − 𝑚) + 𝑉

3𝑚
ℎ
3
(−𝑚)

+ 𝑉
4𝑚

ℎ
4
(1 − 𝑚) + 𝑉

5𝑚
ℎ
5
(1 − 𝑚)

+𝑉
6𝑚

ℎ
6
(1 − 𝑚)) ,

(60)

where ℎ
𝑖
(𝑚) = ℎ

𝑖
𝜆
𝑚, 𝑖 = 1, 2, 3, 4, 5, 6.

Solving the stationary zero curvature equation

𝑉
𝑥
= [𝑈,𝑉] (61)

gives rise to

(𝑉
1𝑚

)
𝑥
= 𝑢𝑉
3𝑚

− V𝑉
2𝑚

− 𝑤
2
𝑉
5𝑚

+ 𝑤
1
𝑉
6𝑚

,

(𝑉
2𝑚

)
𝑥
= −2𝑉

2,𝑚+1
− 2𝑢𝑉

1,𝑚+1
− 2𝑤
1
𝑉
4,𝑚+1

,

(𝑉
3𝑚

)
𝑥
= 2𝑉
3,𝑚+1

+ 2V𝑉
1,𝑚+1

+ 2𝑤
2
𝑉
4,𝑚+1

,

(𝑉
4𝑚

)
𝑥
= 𝑢𝑉
6𝑚

− V𝑉
5𝑚

+ 𝑤
1
𝑉
3𝑚

− 𝑤
2
𝑉
2𝑚

,

(𝑉
5𝑚

)
𝑥
= −2𝑉

5,𝑚+1
− 2𝑢𝑉

4,𝑚+1
− 2𝑤
1
𝑉
1,𝑚+1

,

(𝑉
6𝑚

)
𝑥
= 2𝑉
6,𝑚+1

+ 2V𝑉
4,𝑚+1

+ 2𝑤
2
𝑉
1,𝑚+1

.

(62)

Let 𝑉
2,1

= −𝛼𝑢, 𝑉
3,1

= −𝛼V, 𝑉
5,1

= −𝛼𝑤
1
, and 𝑉

6,1
= 𝛼𝑤

2
;

then one gets from (62) that

𝑉
1,2

= −
𝛼

2
𝑢V, 𝑉

2,2
=

𝛼

2
(𝑢
𝑥
+ 𝑢
2V) ,

𝑉
3,2

=
𝛼

2
(−V
𝑥
+ 𝑢V2) , 𝑉

4,1
= 0,

𝑉
4,2

=
𝛼

2
(𝑢𝑤
2
− 𝑤
1
V) , 𝑉

5,2
=

𝛼

2
(𝑤
1,𝑥

− 𝑢
2
𝑤
2
+ 𝑤
1
𝑢V) ,

𝑉
6,2

=
𝛼

2
(𝑤
2,𝑥

+ V2𝑤
1
) , . . . .

(63)

Noting 𝑉
(𝑛)

+
= ∑
𝑛

𝑚=0
(𝑉
1𝑚

ℎ
1
(1 + 𝑛 − 𝑚) + 𝑉

2𝑚
ℎ
2
(1 + 𝑛 − 𝑚) +

𝑉
3𝑚

ℎ
3
(𝑛−𝑚)+𝑉

4𝑚
ℎ
4
(1+𝑛−𝑚)+𝑉

5𝑚
ℎ
5
(1+𝑛−𝑚)+𝑉

6𝑚
ℎ
6
(𝑛−

𝑚)) = 𝜆
𝑛
𝑉−𝑉
(𝑛)

−
, one infers that −𝑉(𝑛)

+,𝑥
+[𝑈,𝑉

(𝑛)

+
] = (2𝑉

2,𝑛+1
+

2𝑢𝑉
1,𝑛+1

+2𝑤
1
𝑉
4,𝑛+1

)ℎ
2
(1)−2(𝑉

3,𝑛+1
+V𝑉
1,𝑛+1

+𝑤
2
𝑉
4,𝑛+1

)ℎ
3
(0)+

(2𝑉
5,𝑛+1

+ 2𝑢𝑉
4,𝑛+1

+ 2𝑤
1
𝑉
1,𝑛+1

)ℎ
5
(1) − 2(𝑉

6,𝑛+1
+ V𝑉
4,𝑛+1

+

𝑤
2
𝑉
1,𝑛+1

)ℎ
6
(0).

Set𝑉(𝑛) = 𝑉
(𝑛)

+
, by employing the zero curvature equation

𝑈
𝑡
𝑛

− 𝑉
(𝑛)

𝑥
+ [𝑈,𝑉

(𝑛)
] = 0 (64)

we have

𝑢
𝑡
𝑛

= (

𝑢

V
𝑤
1

𝑤
2

)

𝑡
𝑛

= (

−2𝑉
2,𝑛+1

− 2𝑢𝑉
1,𝑛+1

− 2𝑤
1
𝑉
4,𝑛+1

2𝑉
3,𝑛+1

+ 2V𝑉
1,𝑛+1

+ 2𝑤
2
𝑉
4,𝑛+1

−2𝑉
5,𝑛+1

− 2𝑢𝑉
4,𝑛+1

− 2𝑤
1
𝑉
1,𝑛+1

2𝑉
6,𝑛+1

+ 2V𝑉
4,𝑛+1

+ 2𝑤
2
𝑉
1,𝑛+1

).

(65)

When 𝑛 = 2, 𝛼 = 2, (65) reduces to

𝑢
𝑡
2

= 𝑢
𝑥𝑥

+ (𝑢
2V)
𝑥
, V

𝑡
2

= −V
𝑥𝑥

+ (𝑢V2)
𝑥
,

𝑤
1,𝑡
2

= 𝑤
1,𝑥𝑥

− (𝑢
2
𝑤
2
)
𝑥
+ (𝑤
1
𝑢V)
𝑥
,

𝑤
2,𝑡
2

= 𝑤
2,𝑥𝑥

+ (V2𝑤
1
)
𝑥
.

(66)

It is remarkable that (66) is linear with respect to the variables
𝑤
1
, 𝑤
2
; however, it is nonlinear.

Equation (60) can be written as

𝑈 = (

−𝜆 𝑢𝜆 0 𝑤
1
𝜆

V 𝜆 𝑤
2

0

0 𝑤
1
𝜆 −𝜆 𝑢𝜆

𝑤
2

0 V 𝜆

) ,

𝑉 = (

𝑉
1
𝜆 𝑉
2
𝜆 𝑉
4
𝜆 𝑉
5
𝜆

𝑉
3

−𝑉
1
𝜆 𝑉
6

−𝑉
4
𝜆

𝑉
4
𝜆 𝑉
5
𝜆 𝑉
1
𝜆 𝑉
2
𝜆

𝑉
6

−𝑉
4
𝜆 𝑉
3

−𝑉
1
𝜆

) .

(67)

By computing that

𝜕𝑈

𝜕𝑢
= (

0 𝜆 0 0

0 0 0 0

0 0 0 𝜆

0 0 0 0

) ,
𝜕𝑈

𝜕V
= (

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

) ,

𝜕𝑈

𝜕𝑤
1

= (

0 0 0 𝜆

0 0 0 0

0 𝜆 0 0

0 0 0 0

) ,

𝜕𝑈

𝜕𝑤
2

= (

0 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

) ,
𝜕𝑈

𝜕𝜆
= (

−1 𝑢 0 𝑤
1

0 1 0 0

0 𝑤
1

−1 𝑢

0 0 0 1

) ,

(68)

thus, we have

⟨𝑉,
𝜕𝑈

𝜕𝑢
⟩ = 2𝜆𝑉

3
, ⟨𝑉,

𝜕𝑈

𝜕V
⟩ = 2𝜆𝑉

2
,

⟨𝑉,
𝜕𝑈

𝜕𝑤
1

⟩ = 2𝜆𝑉
6
, ⟨𝑉,

𝜕𝑈

𝜕𝑤
2

⟩ = 2𝜆𝑉
5
,

⟨𝑉,
𝜕𝑈

𝜕𝜆
⟩ = −4𝜆𝑉

1
+ 2𝑢𝑉

3
+ 2𝑤
1
𝑉
6
.

(69)
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Substituting the above consequences into the trace iden-
tity proposed by Tu [14] yields that

𝛿

𝛿𝑢
(−4𝜆𝑉

1
+ 2𝑢𝑉

3
+ 2𝑤
1
𝑉
6
) = 𝜆
−𝛾 𝜕

𝜕𝜆
𝜆
𝛾
(

2𝜆𝑉
3

2𝜆𝑉
2

2𝜆𝑉
6

2𝜆𝑉
5

). (70)

Comparing the coefficients of 𝜆−𝑛 gives

𝛿

𝛿𝑢
(−4𝑉
1,𝑛

+ 2𝑢𝑉
3,𝑛−1

+ 2𝑤
1
𝑉
6,𝑛−1

)

= (−𝑛 + 1 + 𝛾)(

2𝑉
3𝑛

2𝑉
2𝑛

2𝑉
6𝑛

2𝑉
5𝑛

).

(71)

Inserting the initial values in (62) gives 𝛾 = −1.Therefore,
we obtain that

(

2𝑉
3𝑛

2𝑉
2𝑛

2𝑉
6𝑛

2𝑉
5𝑛

) =
𝛿

𝛿𝑢
(
4𝑉
1𝑛

− 2𝑢𝑉
3,𝑛−1

− 2𝑤
1
𝑉
6,𝑛−1

𝑛
) ≡

𝛿𝐻
𝑛

𝛿𝑢
,

(72)

where𝐻
𝑛
= (1/𝑛)(4𝑉

1𝑛
−2𝑢𝑉

3,𝑛−1
−2𝑤
1
𝑉
6,𝑛−1

) are conserved
densities of the expanding integrable model (65). Thus, (65)
can be written as the Hamiltonian structure

𝑢
𝑡
𝑛

= (

𝑢

V
𝑤
1

𝑤
2

)

𝑡
𝑛

= 𝐽
𝛿𝐻
𝑛

𝛿𝑢
, (73)

where 𝐽 = (1/2) (

0 𝜕 0 0

𝜕 0 0 0

0 0 0 𝜕

0 0 𝜕 0

), 𝜕 = 𝜕/𝜕𝑥, is a Hamiltonian
operator.
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