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We investigate the existence of solutions for fractional boundary value problem including both left and right fractional derivatives
by using variational methods and iterative technique.

1. Introduction

Fractional differential equations appear naturally in a number
of fields such as physics, chemistry, biology, economics, con-
trol theory, signal and image processing, and blood flow
phenomena. During last decades, the theory of fractional
differential equations is an area intensively developed, due
mainly to the fact that fractional derivatives provide an
excellent tool for the description of memory and hereditary
properties of various materials and processes (see [1–4] and
the references therein).Therein, the composition of fractional
differential operators has got much attention from many
scientists, mainly due to its wide applications in modeling
physical phenomena exhibiting anomalous diffusion. Specif-
ically, the models involving a fractional differential oscillator
equation, which contains a composition of left and right
fractional derivatives, are proposed for the description of the
processes of emptying the silo [5] and the heat flow through a
bulkhead filled with granular material [6], respectively. Their
studies show that the proposed models based on fractional
calculus are efficient and describe well the processes.

In the aspect of theory, the study of fractional bound-
ary value problem including both left and right fractional
derivatives has attracted much attention by using variational
methods [7–12]. It is not easy to use the critical point theory to
study the fractional differential equations including both left
and right fractional derivatives, since it is often very difficult
to establish a suitable space and a variational functional for
the fractional boundary value problem.

For the first time, Jiao and Zhou in [7] showed that the
critical point theory is an effective approach to tackle the exis-
tence of solutions for the following fractional boundary value
problem:

𝑡
𝐷
𝛼

𝑇
(
0
𝐷
𝛼

𝑡
𝑢 (𝑡)) = ∇𝐹 (𝑡, 𝑢 (𝑡)) , a.e. 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0,

(1)

where
0
𝐷
𝛼

𝑡
and
𝑡
𝐷
𝛼

𝑇
are the left and right Riemann-Liouville

fractional derivatives of order 0 < 𝛼 ≤ 1, respectively, 𝐹 :

[0, 𝑇]×𝑅
𝑁
→ 𝑅 is a given function satisfying some assump-

tions, and ∇𝐹(𝑡, 𝑥) is the gradient of 𝐹 at 𝑥.
In [8], by performing variationalmethods combinedwith

iterative technique, Sun and Zhang investigated the solvabil-
ity of the following fractional boundary value problem:

𝑑

𝑑𝑥
(𝑝
0
𝐷
−𝛽

𝑥
(𝑢
󸀠
(𝑥)) + 𝑞

𝑥
𝐷
−𝛽

1
(𝑢
󸀠
(𝑥))) + 𝑓 (𝑥, 𝑢 (𝑥)) = 0,

𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(2)

where 𝛽 ∈ (0, 1), 0 < 𝑝 = 1 − 𝑞 < 1,
0
𝐷
−𝛽

𝑥
, and

𝑥
𝐷
−𝛽

1
denote

left and right Riemann-Liouville fractional integrals of order
𝛽, respectively, and 𝑓 : [0, 1] × 𝑅 → 𝑅 is continuous.

Motivated by the above works and [13, 14], in this paper,
we attempt to use Mountain Pass theorem and iterative
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technique to study the existence of solutions for the following
nonlinear fractional boundary value problem with depen-
dence on fractional derivative:

𝑡
𝐷
𝛼

𝑇
(𝑝 (𝑡)

0
𝐷
𝛼

𝑡
𝑢 (𝑡)) = 𝑓 (𝑡, 𝑢 (𝑡) ,

0
𝐷
𝛼

𝑡
𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0,

(3)

where
0
𝐷
𝛼

𝑡
and
𝑡
𝐷
𝛼

𝑇
are the left and right Riemann-Liouville

fractional derivatives of order 1/2 < 𝛼 ≤ 1, respectively, and
𝑓 ∈ 𝐶([0, 𝑇] × 𝑅 × 𝑅, 𝑅) and 𝑝 ∈ 𝐶

1
([0, 𝑇], 𝑅) with 𝑝(𝑡) > 0,

for 𝑡 ∈ [0, 𝑇].
In particular, if𝛼 = 1, problem (3) reduces to the standard

second order boundary value problem of the following form:

(𝑝 (𝑡) 𝑢
󸀠
(𝑡))
󸀠

+ 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠
(𝑡)) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0,

(4)

where 𝑓 : [0, 𝑇] × 𝑅 × 𝑅 → 𝑅 is a given function.
In fact, for problem (3), due to the appearance of left and

right Riemann-Liouville fractional integral, we cannot deal
with problem (3) by using fixed point theorems, because it is
difficult to find the equivalent integral equation correspond-
ing to problem (3). And since problem (3) is not variational,
we cannot find some functional such that its critical point is
the solution corresponding to problem (3). However, when
there is no presence of the fractional derivative of the solution
in the nonlinearity term and 𝑝(𝑡) is a constant function, then
problem (3) is studied by establishing corresponding varia-
tional structure in some suitable fractional space and apply-
ing the critical point theorems [7, 10, 12].

In order to use variational methods, we consider a family
of the following fractional boundary value problem with no
dependence on the fractional derivative of the solution; that
is, for each 𝑤 ∈ 𝐸

𝛼

0
(which is defined in Section 2), we

consider the following problem:

𝑡
𝐷
𝛼

𝑇
(𝑝 (𝑡)

0
𝐷
𝛼

𝑡
𝑢 (𝑡)) = 𝑓 (𝑡, 𝑢 (𝑡) ,

0
𝐷
𝛼

𝑡
𝑤 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0.

(5)

From [7, 10, 12], we know that problem (5) is variational and
we can treat it by variational methods.Thus, for each𝑤 ∈ 𝐸

𝛼

0
,

we can find a solution 𝑢
𝑤
∈ 𝐸
𝛼

0
with some bounds. Next, by

iterative methods we can show that there exists a solution for
problem (3).

2. Preliminaries and Several Lemmas

In this section, we introduce some basic definitions of frac-
tional calculus and several lemmas which are used further in
this paper.

Definition 1 (see [3]). Let 𝑓 be a function defined on [𝑎, 𝑏].
The left and right Riemann-Liouville fractional integrals of

order 𝛼 for function 𝑓 denoted by
𝑎
𝐷
−𝛼

𝑡
𝑓(𝑡) and

𝑡
𝐷
−𝛼

𝑏
𝑓(𝑡),

respectively, are defined by

𝑎
𝐷
−𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡−𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

𝑡
𝐷
−𝛼

𝑏
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑏

𝑡

(𝑠 − 𝑡)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

(6)

provided in both cases that the right-hand side is pointwise
defined on [𝑎, 𝑏].

Definition 2 (see [3]). Let 𝑓 be a function defined on [𝑎, 𝑏].
The left and right Riemann-Liouville fractional derivatives of
order 𝛼 for function 𝑓 denoted by

𝑎
𝐷
𝛼

𝑡
𝑓(𝑡) and

𝑡
𝐷
𝛼

𝑏
𝑓(𝑡),

respectively, exist almost everywhere on [𝑎, 𝑏],
𝑎
𝐷
𝛼

𝑡
𝑓(𝑡), and

𝑡
𝐷
𝛼

𝑏
𝑓(𝑡) and are represented by

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠,

𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

𝑡
𝐷
𝛼

𝑏
𝑓 (𝑡) =

(−1)
𝑛

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑏

𝑡

(𝑠 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠,

𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0.

(7)

Proposition3 (see [7, 10]). If𝑓 ∈ 𝐿
𝑝
([𝑎, 𝑏], 𝑅

𝑁
),𝑔 ∈𝐿𝑞([𝑎, 𝑏],

𝑅
𝑁
) and 𝑝 ≥ 1, 𝑞 ≥ 1, 1/𝑝 + 1/𝑞 ≤ 1 + 𝛼 or 𝑝 ̸= 1, 𝑞 ̸= 1,

1/𝑝 + 1/𝑞 = 1 + 𝛼, then

∫

𝑏

𝑎

[
𝑎
𝐷
−𝛼

𝑡
𝑓 (𝑡)] 𝑔 (𝑡) 𝑑𝑡 = ∫

𝑏

𝑎

[
𝑡
𝐷
−𝛼

𝑏
𝑔 (𝑡)] 𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0.

(8)

Proposition4 (see [7, 10]). If𝑓(𝑎) = 𝑓(𝑏) = 0,𝑓󸀠 ∈𝐿∞([𝑎, 𝑏],
𝑅
𝑁
), and 𝑔 ∈ 𝐿

1
([𝑎, 𝑏], 𝑅

𝑁
), or 𝑔(𝑎) = 𝑔(𝑏) = 0, 𝑔󸀠 ∈

𝐿
∞
([𝑎, 𝑏], 𝑅

𝑁
), and 𝑓 ∈ 𝐿

1
([𝑎, 𝑏], 𝑅

𝑁
), then

∫

𝑏

𝑎

[
𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡)] 𝑔 (𝑡) 𝑑𝑡=∫

𝑏

𝑎

[
𝑡
𝐷
𝛼

𝑏
𝑔 (𝑡)] 𝑓 (𝑡) 𝑑𝑡, 0 < 𝛼 ≤ 1.

(9)

In order to establish a variational structure which enables
us to reduce the existence of solutions of problem (5) to one of
finding critical points of corresponding functional, it is nec-
essary to construct appropriate function spaces.

Let us recall that for any fixed 𝑡 ∈ [0, 𝑇] and 1 ≤ 𝑝 < ∞,

‖𝑢‖
∞
= max
𝑡∈[0,𝑇]

|𝑢 (𝑡)| , ‖𝑢‖
𝐿
𝑝 = (∫

𝑇

0

|𝑢 (𝑠)|
𝑝
𝑑𝑠)

1/𝑝

.

(10)

Definition 5. Let 0 < 𝛼 ≤ 1.The fractional derivative space𝐸𝛼
0

is defined by the closure of 𝐶∞
0
([0, 𝑇], 𝑅) with respect to the

weighted norm

‖𝑢‖
𝛼
= (∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡 + ∫

𝑇

0

|𝑢 (𝑡)|
2
𝑑𝑡)

1/2

,

∀𝑢 ∈ 𝐸
𝛼

0
,

(11)
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where denote by 𝐶∞
0
([0, 𝑇], 𝑅) the set of all functions 𝑢 ∈

𝐶
∞
([0, 𝑇], 𝑅) with 𝑢(0) = 𝑢(𝑇) = 0.

Lemma 6 (see [7]). Let 1/2 < 𝛼 ≤ 1; for all 𝑢 ∈ 𝐸𝛼
0
, one has

(i)

‖𝑢‖
𝐿
2 ≤

𝑇
𝛼

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩 0
𝐷
𝛼

𝑡
𝑢(𝑡)

󵄩󵄩󵄩󵄩𝐿2
, (12)

(ii)

‖𝑢‖
∞
≤

𝑇
𝛼−1/2

Γ (𝛼)√2𝛼 − 1

󵄩󵄩󵄩󵄩 0
𝐷
𝛼

𝑡
𝑢(𝑡)

󵄩󵄩󵄩󵄩𝐿2
. (13)

Remark 7. Let𝑚 := min
𝑡∈[0,𝑇]

𝑝(𝑡), by (12) and (13); then

‖𝑢‖
𝐿
2 ≤

𝑇
𝛼

Γ (𝛼 + 1)√𝑚
(∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡)

1/2

,

(14)

‖𝑢‖
∞
≤

𝑇
𝛼−1/2

Γ (𝛼)√𝑚 (2𝛼 − 1)

(∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡)

1/2

.

(15)

At this point, by (14), we can consider 𝐸𝛼
0
with respect to

the norm

‖𝑢‖
𝛼
= (∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡)

1/2

, ∀𝑢 ∈ 𝐸
𝛼

0
, (16)

which is equivalent to (11).
Similarly to some results in [7], the properties of the

fractional derivative space 𝐸𝛼
0
are given, as follows.

Lemma 8. Let 0 < 𝛼 ≤ 1. The fractional derivative space 𝐸𝛼
0
is

a reflexive and a separable Banach space.

Lemma 9. Assume that 1/2 < 𝛼 ≤ 1 and the sequence {𝑢
𝑘
}

converges weakly to 𝑢 in 𝐸𝛼
0
; that is, 𝑢

𝑘
⇀ 𝑢. Then 𝑢

𝑘
→ 𝑢 in

𝐶([0, 𝑇], 𝑅
𝑁
); that is, ‖𝑢 − 𝑢

𝑘
‖
∞

→ 0, as 𝑘 → ∞.

One is now in a position to give the definition for the
solution of problem (3).

Definition 10. A function 𝑢 ∈ 𝐸
𝛼

0
is called a solution of pro-

blem (3), if

(i)
𝑡
𝐷
𝛼−1

𝑇
(𝑝(𝑡)
0
𝐷
𝛼

𝑡
𝑢(𝑡)) and

0
𝐷
𝛼−1

𝑡
𝑢(𝑡) are derivatives

for all 𝑡 ∈ [0, 𝑇],
(ii) 𝑢 satisfies (3).

Definition 11. A function 𝑢 ∈ 𝐸
𝛼

0
is called a weak solution of

problem (3), if

∫

𝑇

0

𝑝 (𝑡)
0
𝐷
𝛼

𝑡
𝑢 (𝑡)
0
𝐷
𝛼

𝑡
V (𝑡) 𝑑𝑡

− ∫

𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) ,
0
𝐷
𝛼

𝑡
𝑢 (𝑡)) V (𝑡) 𝑑𝑡 = 0,

(17)

for all V(𝑡) ∈ 𝐸𝛼
0
.

Associated to the boundary value problem (5), for given
𝑤(𝑡) ∈ 𝐸

𝛼

0
, we have the functional 𝐼

𝑤
(𝑢) : 𝐸

𝛼

0
→ 𝑅 defined by

𝐼
𝑤
(𝑢) =

1

2
∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡

− ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) 𝑑𝑡,

(18)

where 𝐹(𝑡, 𝜉, 𝜁) = ∫
𝜉

0
𝑓(𝑡, 𝑠, 𝜁)𝑑𝑠 and 𝑓 ∈ 𝐶([0, 𝑇] × 𝑅 × 𝑅, 𝑅).

Clearly, by the continuity hypothesis on𝑓 and𝑝, we have 𝐼
𝑤
∈

𝐶
1
(𝐸
𝛼

0
, 𝑅) and for all V(𝑡) ∈ 𝐸𝛼

0
,

𝐼
󸀠

𝑤
(𝑢) V = ∫

𝑇

0

𝑝 (𝑡)
0
𝐷
𝛼

𝑡
𝑢 (𝑡)
0
𝐷
𝛼

𝑡
V (𝑡) 𝑑𝑡

− ∫

𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) V (𝑡) 𝑑𝑡.

(19)

Moreover, similarly to the proof of [7,Theorem 5.1], we know
that the critical point of 𝐼

𝑤
is a solution of problem (5).

3. Main Results

First, we make the following assumptions:
(𝐻
1
) 𝑓(𝑡, 𝜉, 𝜁) = 𝑔(𝑡, 𝜉, 𝜁) + ℎ(𝑡)𝜁, where 𝑔(𝑡, 𝜉, 𝜁) = 𝑜(|𝜉|)

as 𝜉 → 0 uniformly for 𝑡 ∈ [0, 𝑇], 𝜁 ∈ 𝑅, and ℎ(𝑡) ∈
𝐶[0, 𝑇]; denote 𝐶

ℎ
= max

𝑡∈[0,𝑇]
|ℎ(𝑡)|.

(𝐻
2
) There exist constants 𝐶

0
> 0 and 𝑟 > 1 such that

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝜉, 𝜁)
󵄨󵄨󵄨󵄨 ≤ 𝐶
0
(1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑟

) , ∀𝑡 ∈ [0, 𝑇] , 𝜉 ∈ 𝑅, 𝜁 ∈ 𝑅.

(20)

(𝐻
3
) There exist constants 𝜇 > 2 and 𝜉

0
> 0 such that

𝜇𝐺 (𝑡, 𝜉, 𝜁) ≤ 𝜉𝑔 (𝑡, 𝜉, 𝜁) , ∀𝑡 ∈ [0, 𝑇] ,
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ≥ 𝜉
0
, 𝜁 ∈ 𝑅.

(21)

(𝐻
4
) There exist positive constants 𝐶

1
, 𝐶
2
> 0 such that

𝐺 (𝑡, 𝜉, 𝜁) ≥ 𝐶
1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝜇

− 𝐶
2
, ∀𝑡 ∈ [0, 𝑇] , 𝜉 ∈ 𝑅, 𝜁 ∈ 𝑅,

(22)

where 𝐺(𝑡, 𝜉, 𝜁) = ∫
𝜉

0
𝑔(𝑡, 𝑠, 𝜁)𝑑𝑠 and 𝑔 ∈ 𝐶([0, 𝑇] ×

𝑅 × 𝑅, 𝑅).
(𝐻
5
) For 𝑡 ∈ [0, 𝑇], 𝜉

1
, 𝜉
2
∈ [−𝜌

1
, 𝜌
1
], 𝜁
1
, 𝜁
2
∈ 𝑅, the

function𝑔 satisfies the following Lipschitz conditions:
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝜉1, 𝜁1) − 𝑔 (𝑡, 𝜉2, 𝜁2)

󵄨󵄨󵄨󵄨 ≤ 𝐿
1

󵄨󵄨󵄨󵄨𝜉1 − 𝜉2
󵄨󵄨󵄨󵄨 + 𝐿2

󵄨󵄨󵄨󵄨𝜁1 − 𝜁2
󵄨󵄨󵄨󵄨 ,

(23)

where 𝐿
1
, 𝐿
2
> 0 and 𝜌

1
is a positive constant, which

is given in (49).
We note that it obviously follows from (𝐻

1
) and (𝐻

2
) that

for all 𝜀 > 0, there exists a positive constant 𝐶
𝜀
, independent

of 𝑤, such that
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝜉, 𝜁)

󵄨󵄨󵄨󵄨 ≤ 𝜀
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 + 𝐶𝜀

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑟

. (24)

The main result of this paper is the following.
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Theorem 12. Assume that (𝐻
1
)–(𝐻
5
) hold and that 1/2 −

1/𝜇 > 𝐶
ℎ
𝑇
𝛼
/𝑚Γ(𝛼 + 1). If there exist 𝑏 ∈ (0, 1/2) and 𝜀 ∈

(0, (1 − 2𝑏)𝑚[Γ(𝛼 + 1)]
2
/𝑇
2𝛼
) such that

[
1

2
− 𝑏 −

𝜀𝑇
2𝛼

2𝑚[Γ (𝛼 + 1)]
2
]
(𝑟 + 1) [Γ (𝛼)√𝑚 (2𝛼 − 1)]

𝑟+1

𝐶
𝜀
𝑇(𝛼−1/2)(𝑟+1)+1

> [
𝐶
ℎ
𝑇
𝛼
𝑅

𝑏𝑚Γ (𝛼 + 1)

]

𝑟−1

,

(25)

𝐿 :=
𝑇
𝛼
(𝐿
2
+ 𝐶
ℎ
) Γ (𝛼 + 1)

𝑚[Γ (𝛼 + 1)]
2
− 𝐿
1
𝑇2𝛼

∈ (0, 1) , (26)

then problem (3) has one nontrivial solution.

Proof. In order to prove Theorem 12, we proceed by three
steps.

Step 1. Let 𝑤 ∈ 𝐸
𝛼

0
; with ‖𝑤‖

𝛼
≤ 𝐾, which is given in (48), we

show that 𝐼
𝑤
has a nontrivial critical point in 𝐸

𝛼

0
by the

Mountain Pass theorem.
Firstly, by (𝐻

1
) and (24) we have

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝜉, 𝜁)
󵄨󵄨󵄨󵄨 ≤ 𝜀

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 + 𝐶𝜀

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑟

+ 𝐶
ℎ

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨 ,

(27)

󵄨󵄨󵄨󵄨𝐹 (𝑡, 𝜉, 𝜁)
󵄨󵄨󵄨󵄨 ≤

𝜀

2

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

+
𝐶
𝜀

𝑟 + 1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑟+1

+ 𝐶
ℎ

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 .

(28)

By Remarks (15), (18), (28), and Hölder inequality

𝐼
𝑤
(𝑢) ≥

1

2
∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡

−
𝜀

2
∫

𝑇

0

|𝑢(𝑡)|
2
𝑑𝑡 −

𝐶
𝜀

𝑟 + 1
∫

𝑇

0

|𝑢 (𝑡)|
𝑟+1

𝑑𝑡

− 𝐶
ℎ
∫

𝑇

0

󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑤 (𝑡)

󵄨󵄨󵄨󵄨 ⋅ |𝑢 (𝑡)| 𝑑𝑡

≥
1

2
∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡

−
𝜀𝑇
2𝛼

2𝑚[Γ (𝛼 + 1)]
2
∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡

−
𝐶
𝜀
𝑇
(𝛼−1/2)(𝑟+1)+1

(𝑟 + 1) [Γ (𝛼)√𝑚 (2𝛼 − 1)]
𝑟+1

× (∫

𝑇

0

𝑝 (𝑡)
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢
󵄨󵄨󵄨󵄨

2

𝑑𝑡)

(𝑟+1)/2

−
𝐶
ℎ
𝑇
𝛼

𝑚Γ (𝛼 + 1)
‖𝑤‖
𝛼
⋅ ‖𝑢‖
𝛼

≥ [

[

1

2
− 𝑏 −

𝜀𝑇
2𝛼

2𝑚[Γ (𝛼 + 1)]
2

−
𝐶
𝜀
𝑇
(𝛼−1/2)(𝑟+1)+1

(𝑟 + 1) [Γ (𝛼)√𝑚 (2𝛼 − 1)]
𝑟+1

‖𝑢‖
𝑟−1

𝛼
]

]

‖𝑢‖
2

𝛼

+ [𝑏‖𝑢‖
𝛼
−

𝐶
ℎ
𝑇
𝛼
𝐾

𝑚Γ (𝛼 + 1)
] ‖𝑢‖
𝛼
.

(29)

By (25) we can choose 𝜌 > 0 such that

1

2
− 𝑏 −

𝜀𝑇
2𝛼

2𝑚[Γ (𝛼 + 1)]
2
>

𝐶
𝜀
𝑇
(𝛼−1/2)(𝑟+1)+1

(𝑟 + 1) [Γ (𝛼)√𝑚 (2𝛼 − 1)]
𝑟+1

𝜌
𝑟−1

,

𝜌 >
𝐶
ℎ
𝑇
𝛼
𝐾

𝑏𝑚Γ (𝛼 + 1)

.

(30)

Hence, let 𝑢 ∈ 𝐸
𝛼

0
; with ‖𝑢‖

𝛼
= 𝜌, we know that there exist

𝛼
1
> 0, such that for ‖𝑢‖

𝛼
= 𝜌, 𝐼

𝑤
(𝑢) ≥ 𝛼

1
uniformly for 𝑤 ∈

𝐸
𝛼

0
.
Secondly, for given 𝑢

∗
∈ 𝐸
𝛼

0
, with ‖𝑢

∗
‖
𝛼
= 1, it follows

from (𝐻
1
) and (𝐻

4
) that

𝐹 (𝑡, 𝜉, 𝜁) ≥ 𝐶
1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝜇

+ ℎ (𝑡) 𝜁𝜉 − 𝐶
2
. (31)

Then we have that for 𝜏 > 0

𝐼
𝑤
(𝜏𝑢
∗
) =

𝜏
2

2

󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩

2

𝛼
− ∫

𝑇

0

𝐹 (𝑡, 𝜏𝑢
∗
,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) 𝑑𝑡

≤
𝜏
2

2
− 𝐶
1
𝜏
𝜇
∫

𝑇

0

󵄨󵄨󵄨󵄨𝑢
∗󵄨󵄨󵄨󵄨

𝜇

𝑑𝑡

+ 𝜏𝐶
ℎ
∫

𝑇

0

󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑤
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑢
∗󵄨󵄨󵄨󵄨 𝑑𝑡 + 𝐶2𝑇

≤
𝜏
2

2
− 𝐶
1
𝜏
𝜇
∫

𝑇

0

󵄨󵄨󵄨󵄨𝑢
∗󵄨󵄨󵄨󵄨

𝜇

𝑑𝑡 + 𝜏𝐶
ℎ

𝑇
𝛼
𝐾

𝑚Γ (𝛼 + 1)
+ 𝐶
2
𝑇.

(32)

Since 𝜇 > 2, taking 𝜏 large enough and letting 𝑒 = 𝜏𝑢
∗, then

𝐼
𝑤
(𝑒) < 0 with ‖𝑒‖

𝛼
> 𝜌.

Thirdly, we show that 𝐼
𝑤
satisfies the Palais-Smale condi-

tion.
Let {𝑢

𝑘
} ⊂ 𝐸
𝛼

0
, such that

󵄨󵄨󵄨󵄨𝐼𝑤 (𝑢𝑘)
󵄨󵄨󵄨󵄨 ≤ 𝐾, lim

𝑘→∞

𝐼
󸀠

𝑤
(𝑢
𝑘
) = 0, for some 𝐾 > 0.

(33)

We have

𝐼
𝑤
(𝑢
𝑘
) =

1

2

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

2

𝛼
− ∫

𝑇

0

𝐹 (𝑡, 𝑢
𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) 𝑑𝑡,

𝐼
󸀠

𝑤
(𝑢
𝑘
) 𝑢
𝑘
=
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩

2

𝛼
− ∫

𝑇

0

𝑓 (𝑡, 𝑢
𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) 𝑢

𝑘
𝑑𝑡.

(34)



Abstract and Applied Analysis 5

Then by (33) and (𝐻
3
),

(
1

2
−
1

𝜇
)
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩

2

𝛼
= 𝐼
𝑤
(𝑢
𝑘
) −

1

𝜇
𝐼
󸀠

𝑤
(𝑢
𝑘
) 𝑢
𝑘

+
𝜇 − 1

𝜇
∫

𝑇

0

ℎ (𝑡) 𝑢
𝑘
(𝑡) ⋅
0
𝐷
𝛼

𝑡
𝑤 (𝑡) 𝑑𝑡

+ ∫
{|𝑢𝑘|≥𝜉0}

𝐺 (𝑡, 𝑢
𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡))

−
𝑢
𝑘

𝜇
𝑔 (𝑡, 𝑢

𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) 𝑑𝑡

+ ∫
{|𝑢𝑘|≤𝜉0}

𝐺 (𝑡, 𝑢
𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡))

−
𝑢
𝑘

𝜇
𝑔 (𝑡, 𝑢

𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) 𝑑𝑡

≤ 𝐼
𝑤
(𝑢
𝑘
) −

1

𝜇
𝐼
󸀠

𝑤
(𝑢
𝑘
) 𝑢
𝑘

+
𝐶
ℎ
𝑇
𝛼

𝑚Γ (𝛼 + 1)
‖𝑤‖
𝛼
⋅
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝛼
+ 𝐶
3

≤ 𝐾+[
1

𝜇

󵄩󵄩󵄩󵄩󵄩
𝐼
󸀠

𝑤
(𝑢
𝑘
)
󵄩󵄩󵄩󵄩󵄩
+

𝐶
ℎ
𝑇
𝛼
𝐾

𝑚Γ (𝛼 + 1)
]
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝛼
+𝐶
3
,

(35)

where 𝐶
3
> 0. Combining with 𝐼󸀠

𝑤
(𝑢
𝑘
) → 0, as 𝑘 → ∞, we

know that {𝑢
𝑘
} is bounded in 𝐸𝛼

0
.

Since 𝐸𝛼
0
is a reflexive space, we can assume that 𝑢

𝑘
⇀ 𝑢.

In 𝐸𝛼
0
, according to Remark 7 and Lemma 9 we have that {𝑢

𝑘
}

is bounded in 𝐶[0, 𝑇] and lim
𝑘→∞

‖𝑢
𝑘
− 𝑢‖
∞

= 0. By the
assumption (𝐻

2
), one gets

∫

𝑇

0

[𝑓 (𝑡, 𝑢
𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) − 𝑓 (𝑡, 𝑢 (𝑡) ,

0
𝐷
𝛼

𝑡
𝑤 (𝑡))]

× (𝑢
𝑘
− 𝑢) 𝑑𝑡

= ∫

𝑇

0

[𝑔 (𝑡, 𝑢
𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡)) − 𝑔 (𝑡, 𝑢 (𝑡) ,

0
𝐷
𝛼

𝑡
𝑤 (𝑡))]

× (𝑢
𝑘
− 𝑢) 𝑑𝑡

󳨀→ 0, 𝑘 󳨀→ ∞.

(36)

Notice that

[𝐼
󸀠

𝑤
(𝑢
𝑘
) − 𝐼
󸀠

𝑤
(𝑢)] (𝑢

𝑘
− 𝑢)

= 𝐼
󸀠

𝑤
(𝑢
𝑘
) (𝑢
𝑘
− 𝑢) − 𝐼

󸀠

𝑤
(𝑢) (𝑢

𝑘
− 𝑢)

≤
󵄩󵄩󵄩󵄩󵄩
𝐼
󸀠

𝑤
(𝑢
𝑘
)
󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢

󵄩󵄩󵄩󵄩𝛼
− 𝐼
󸀠

𝑤
(𝑢) (𝑢

𝑘
− 𝑢)

󳨀→ 0, 𝑘 󳨀→ ∞.

(37)

Moreover,

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢
󵄩󵄩󵄩󵄩

2

𝛼
= ∫

𝑇

0

[𝑓 (𝑡, 𝑢
𝑘
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡))

−𝑓 (𝑡, 𝑢 (𝑡) ,
0
𝐷
𝛼

𝑡
𝑤 (𝑡))] (𝑢

𝑘
− 𝑢) 𝑑𝑡

+ [𝐼
󸀠

𝑤
(𝑢
𝑘
) − 𝐼
󸀠

𝑤
(𝑢)] (𝑢

𝑘
− 𝑢) ,

(38)

so ‖𝑢
𝑘
− 𝑢‖
𝛼

→ 0, as 𝑘 → ∞. That is, {𝑢
𝑘
} converges

strongly to 𝑢 in 𝐸𝛼
0
.

Obviously, 𝐼
𝑤
(0) = 0; therefore, by Mountain Pass

theorem, 𝐼
𝑤
has a nontrivial critical point 𝑢

𝑤
in 𝐸𝛼
0
, with

𝐼
𝑤
(𝑢
𝑤
) = inf
𝑢∈Γ

max
𝑡∈[0,1]

𝐼
𝑤
(𝑢 (𝑡)) ≥ 𝛼

1
> 0, (39)

where Γ = {𝑢 ∈ 𝐶([0, 1], 𝐸
𝛼

0
) | 𝑢(0) = 0, 𝑢(1) = 𝑒}.

Step 2. We construct iterative sequence {𝑢
𝑛
} and estimate its

norm in 𝐸𝛼
0
.

We consider the solutions {𝑢
𝑛
} of the following problem:

𝑡
𝐷
𝛼

𝑇
(𝑝 (𝑡)

0
𝐷
𝛼

𝑡
𝑢
𝑛
(𝑡)) = 𝑓 (𝑡, 𝑢

𝑛
(𝑡) ,
0
𝐷
𝛼

𝑡
𝑢
𝑛−1

(𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

𝑢
𝑛
(0) = 𝑢

𝑛
(𝑇) = 0,

(40)

starting with 𝑢
1
≡ 0. By iterative technique, we can get a

sequence of {𝑢
𝑛
}, the nontrivial critical points obtained by

Step 1, provided that there exists some constant 𝐾 > 0, such
that ‖𝑢

𝑛
‖
𝛼
≤ 𝐾, 𝑛 ≥ 1.

In the following, we estimate the norm of {𝑢
𝑛
} by the

inductionmethod. In fact, we need to prove that if we assume
that for some 𝐾 > 0, ‖𝑢

𝑛−1
‖
𝛼
≤ 𝐾, then 𝑢

𝑛
, the nontrivial

critical point of 𝐼
𝑢𝑛−1

, also satisfies ‖𝑢
𝑛
‖
𝛼
≤ 𝐾.

By theMountain Pass characterization of the critical level,
and (𝐻

4
) and Cauchy’s inequality with positive constant 𝜀,

which is given in the sequel, it follows that
󵄨󵄨󵄨󵄨󵄨
𝐼
𝑢𝑛−1

(𝑢
𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤ max
𝜏∈[0,∞)

𝐼
𝑢𝑛−1

(𝜏𝑢
∗
)

≤ max
𝜏∈[0,∞)

{
𝜏
2

2
− 𝐶
1
𝜏
𝜇
∫

𝑇

0

󵄨󵄨󵄨󵄨𝑢
∗󵄨󵄨󵄨󵄨

𝜇

𝑑𝑡

+𝜏𝐶
ℎ
∫

𝑇

0

󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑢
𝑛−1

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑢
∗󵄨󵄨󵄨󵄨 𝑑𝑡 + 𝐶2𝑇}

≤ max
𝜏∈[0,∞)

{
𝜏
2

2
− 𝐶
1
𝜏
𝜇󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩

𝜇

𝐿
𝜇

+𝜏
𝐶
ℎ
𝑇
𝛼

𝑚Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩𝛼
+ 𝐶
2
𝑇}

≤ max
𝜏∈[0,∞)

{[
1

2
+

[𝐶
ℎ
𝑇
𝛼
]
2

4𝜀[𝑚Γ (𝛼 + 1)]
2
] 𝜏
2

− 𝐶
1
𝜏
𝜇󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩

𝜇

𝐿
𝜇 + 𝐶2𝑇} + 𝜀

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩

2

𝛼
.

(41)
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Let

𝐻(𝜏) := [
1

2
+

[𝐶
ℎ
𝑇
𝛼
]
2

4𝜀[𝑚Γ (𝛼 + 1)]
2
] 𝜏
2
− 𝐶
1
𝜏
𝜇󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩

𝜇

𝐿
𝜇 + 𝐶2𝑇,

𝜏 ≥ 0,

(42)

and since 𝜇 > 2, 𝐻(𝜏) can achieve its maximum at some 𝜏
0
.

Hence
󵄨󵄨󵄨󵄨󵄨
𝐼
𝑢𝑛−1

(𝑢
𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐻 (𝜏

0
) + 𝜀𝐾

2
. (43)

By (35), ‖𝑢
𝑛−1

‖
𝛼
≤ 𝐾, and 𝐼󸀠

𝑢𝑛−1
(𝑢
𝑛
)𝑢
𝑛
= 0, we have

(
1

2
−
1

𝜇
)
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

2

𝛼
≤ 𝐼
𝑢𝑛−1

(𝑢
𝑛
) −

1

𝜇
𝐼
󸀠

𝑢𝑛−1
(𝑢
𝑛
) 𝑢
𝑛

+
𝐶
ℎ
𝑇
𝛼

𝑚Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑢𝑛−1
󵄩󵄩󵄩󵄩𝛼
⋅
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩𝛼
+ 𝐶
4

≤ 𝐻 (𝜏
0
) + 𝜀𝐾

2
+

𝐶
ℎ
𝑇
𝛼
𝐾

𝑚Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩𝛼
+ 𝐶
4
,

(44)

where 𝐶
4
> 0 is independent of 𝐾. For convenience, we

denote 𝑎 = 1/2−1/𝜇, 𝑏 = 𝐶
ℎ
𝑇
𝛼
/𝑚Γ(𝛼+1), and 𝑐 = 𝐻(𝜏

0
)+𝐶
4
;

then (44) can be written as

𝑎
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

2

𝛼
− 𝑏𝐾

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩𝛼
− (𝑐 + 𝜀𝐾

2
) ≤ 0, (45)

which implies

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩𝛼

≤

𝑏𝐾 + √𝑏2𝐾2 + 4𝑎 (𝑐 + 𝜀𝐾2)

2𝑎
.

(46)

Let

𝑏𝐾 + √𝑏2𝐾2 + 4𝑎 (𝑐 + 𝜀𝐾2)

2𝑎
≤ 𝐾,

(47)

together with the assumption 𝑎 > 𝑏; by simple calculation, for
enough small 𝜀 ∈ (0, 𝑎 − 𝑏) we obtain

𝐾 ≥ √
𝑐

𝑎 − 𝑏 − 𝜀
. (48)

Hence we can choose 𝐾 ∈ [√𝑐/(𝑎 − 𝑏 − 𝜀),∞), such that
‖𝑢
𝑛
‖
𝛼
≤ 𝐾, 𝑛 ≥ 1.

Step 3. We show that the iterative sequence {𝑢
𝑛
} constructed

in Step 2 is convergent to a nontrivial solution of problem (3).
By Step 2, we know ‖𝑢

𝑛
‖
𝛼
≤ 𝐾, and by Remark 7, there

exists positive constant 𝜌
1
, such that

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩∞

≤
𝑇
𝛼−1/2

𝐾

Γ (𝛼)√𝑚 (2𝛼 − 1)

=: 𝜌
1
. (49)

By (19), 𝐼󸀠
𝑢𝑛
(𝑢
𝑛+1

)(𝑢
𝑛+1

−𝑢
𝑛
) = 0, and 𝐼󸀠

𝑢𝑛−1
(𝑢
𝑛
)(𝑢
𝑛+1

−𝑢
𝑛
) = 0,

we obtain

∫

𝑇

0

𝑝 (𝑡)
0
𝐷
𝛼

𝑡
𝑢
𝑛+1

⋅
0
𝐷
𝛼

𝑡
(𝑢
𝑛+1

− 𝑢
𝑛
) 𝑑𝑡

− ∫

𝑇

0

𝑓 (𝑡, 𝑢
𝑛+1

,
0
𝐷
𝛼

𝑡
𝑢
𝑛
) (𝑢
𝑛+1

− 𝑢
𝑛
) 𝑑𝑡 = 0,

∫

𝑇

0

𝑝 (𝑡)
0
𝐷
𝛼

𝑡
𝑢
𝑛
⋅
0
𝐷
𝛼

𝑡
(𝑢
𝑛+1

− 𝑢
𝑛
) 𝑑𝑡

− ∫

𝑇

0

𝑓 (𝑡, 𝑢
𝑛
,
0
𝐷
𝛼

𝑡
𝑢
𝑛−1

) (𝑢
𝑛+1

− 𝑢
𝑛
) 𝑑𝑡 = 0;

(50)

hence

∫

𝑇

0

𝑝 (𝑡) [
0
𝐷
𝛼

𝑡
(𝑢
𝑛+1

− 𝑢
𝑛
)]
2

𝑑𝑡

= ∫

𝑇

0

[𝑓 (𝑡, 𝑢
𝑛+1

,
0
𝐷
𝛼

𝑡
𝑢
𝑛
)−𝑓 (𝑡, 𝑢

𝑛
,
0
𝐷
𝛼

𝑡
𝑢
𝑛−1

)] (𝑢
𝑛+1

−𝑢
𝑛
) 𝑑𝑡.

(51)

By (𝐻
5
) it follows that

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩

2

𝛼

= ∫

𝑇

0

[𝑔 (𝑡, 𝑢
𝑛+1

,
0
𝐷
𝛼

𝑡
𝑢
𝑛
)−𝑔 (𝑡, 𝑢

𝑛
,
0
𝐷
𝛼

𝑡
𝑢
𝑛−1

)] (𝑢
𝑛+1

−𝑢
𝑛
) 𝑑𝑡

+ ∫

𝑇

0

ℎ (𝑡)
0
𝐷
𝛼

𝑡
(𝑢
𝑛
− 𝑢
𝑛−1

) ⋅ (𝑢
𝑛+1

− 𝑢
𝑛
) 𝑑𝑡

≤ 𝐿
1
∫

𝑇

0

󵄨󵄨󵄨󵄨𝑢𝑛+1 − 𝑢𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ (𝐿
2
+ 𝐶
ℎ
) ∫

𝑇

0

󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
(𝑢
𝑛
− 𝑢
𝑛−1

)
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑢𝑛+1 − 𝑢𝑛

󵄨󵄨󵄨󵄨 𝑑𝑡

≤
𝐿
1
𝑇
2𝛼

𝑚[Γ (𝛼 + 1)]
2

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩

2

𝛼

+ (𝐿
2
+ 𝐶
ℎ
)
󵄩󵄩󵄩󵄩 0
𝐷
𝛼

𝑡
(𝑢
𝑛
− 𝑢
𝑛−1

)
󵄩󵄩󵄩󵄩𝐿2

⋅
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩𝐿2

≤
𝐿
1
𝑇
2𝛼

𝑚[Γ (𝛼 + 1)]
2

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩

2

𝛼

+
(𝐿
2
+ 𝐶
ℎ
) 𝑇
𝛼

𝑚Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1
󵄩󵄩󵄩󵄩𝛼
⋅
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩𝛼
;

(52)

hence

(1 −
𝐿
1
𝑇
2𝛼

𝑚[Γ (𝛼 + 1)]
2
)
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩𝛼

≤
(𝐿
2
+ 𝐶
ℎ
) 𝑇
𝛼

𝑚Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1
󵄩󵄩󵄩󵄩𝛼
.

(53)

Since 0 < 𝐿 < 1, we know that {𝑢
𝑛
} is a Cauchy sequence in

𝐸
𝛼

0
, so there exists a 𝑢 ∈ 𝐸𝛼

0
such that {𝑢

𝑛
} converges strongly

to 𝑢 in 𝐸𝛼
0
.
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In order to show that 𝑢 is a solution of problem (3), we
need to prove that

∫

𝑇

0

𝑝 (𝑡)
0
𝐷
𝛼

𝑡
𝑢 (𝑡)
0
𝐷
𝛼

𝑡
V (𝑡) 𝑑𝑡

= ∫

𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) ,
0
𝐷
𝛼

𝑡
𝑢 (𝑡)) V (𝑡) 𝑑𝑡, ∀V (𝑡) ∈ 𝐸𝛼

0
.

(54)

It suffices to show that

∫

𝑇

0

𝑓 (𝑡, 𝑢
𝑛
,
0
𝐷
𝛼

𝑡
𝑢
𝑛−1

) V (𝑡) 𝑑𝑡 󳨀→ ∫

𝑇

0

𝑓 (𝑡, 𝑢,
0
𝐷
𝛼

𝑡
𝑢) V (𝑡) 𝑑𝑡,

as 𝑛 󳨀→ ∞.

(55)

Indeed, it follows from the assumption (𝐻
5
) that

∫

𝑇

0

[𝑓 (𝑡, 𝑢
𝑛
,
0
𝐷
𝛼

𝑡
𝑢
𝑛−1

) − 𝑓 (𝑡, 𝑢,
0
𝐷
𝛼

𝑡
𝑢)] V (𝑡) 𝑑𝑡

= ∫

𝑇

0

[𝑔 (𝑡, 𝑢
𝑛
,
0
𝐷
𝛼

𝑡
𝑢
𝑛−1

) − 𝑔 (𝑡, 𝑢,
0
𝐷
𝛼

𝑡
𝑢)] V (𝑡) 𝑑𝑡

+ ∫

𝑇

0

ℎ (𝑡)
0
𝐷
𝛼

𝑡
(𝑢
𝑛−1

− 𝑢) V (𝑡) 𝑑𝑡

≤ 𝐿
1
∫

𝑇

0

󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢
󵄨󵄨󵄨󵄨 ⋅ |V (𝑡)| 𝑑𝑡

+ (𝐿
2
+ 𝐶
ℎ
) ∫

𝑇

0

󵄨󵄨󵄨󵄨 0𝐷
𝛼

𝑡
(𝑢
𝑛−1

− 𝑢)
󵄨󵄨󵄨󵄨 ⋅ |V (𝑡)| 𝑑𝑡

≤ [
𝐿
1
𝑇
2𝛼

𝑚[Γ (𝛼 + 1)]
2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩𝛼

+
(𝐿
2
+ 𝐶
ℎ
) 𝑇
𝛼

𝑚Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑢𝑛−1 − 𝑢
󵄩󵄩󵄩󵄩𝛼
] ⋅ ‖V‖

𝛼

󳨀→ 0, 𝑛 󳨀→ ∞.

(56)

Then, 𝑢(𝑡) is a solution of (3), and since 𝐼
𝑢𝑛−1

(𝑢
𝑛
) ≥ 𝛼
1
> 0 for

𝑛 = 2, 3, . . ., we obtain that 𝑢(𝑡) is a nontrivial solution of
problem (3).

4. Example

In this section, we provide an explicit example to illustrate our
main results.

Example 1. Consider the following fractional boundary value
problem:

𝑡
𝐷
0.75

1
(
0
𝐷
0.75

𝑡
𝑢 (𝑡)) = 𝑢

3
(𝑡) (2 + sin

0
𝐷
0.75

𝑡
𝑢 (𝑡)) ,

𝑡 ∈ [0, 1] ,

𝑢 (0) = 𝑢 (1) = 0.

(57)

Obviously, 𝛼 = 0.75, 𝑓(𝑡, 𝜉, 𝜁) = 𝜉
3
(2 + sin 𝜁), 𝑝(𝑡) = 1, and

ℎ(𝑡) = 0. Let 𝐶
0
= 𝑟 = 3, 𝜇 = 4, and 𝐶

1
= 1/4, for all 𝜉

0
,

𝐶
2
> 0; it is not difficult to verify that function 𝑓 satisfies the

assumptions (𝐻
1
)–(𝐻
4
).

For (𝐻
5
), for all 𝑡 ∈ [0, 𝑇], 𝜉

1
, 𝜉
2
∈ [−𝜌

1
, 𝜌
1
], 𝜁
1
, 𝜁
2
∈ 𝑅, it

follows that
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝜉1, 𝜁1) − 𝑓 (𝑡, 𝜉2, 𝜁2)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝜉
3

1
(2 + sin 𝜁

1
) − 𝜉
3

1
(2 + sin 𝜁

2
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝜉
3

1
(2 + sin 𝜁

2
) − 𝜉
3

2
(2 + sin 𝜁

2
)
󵄨󵄨󵄨󵄨󵄨

≤ 9𝜌
2

1

󵄨󵄨󵄨󵄨𝜉1 − 𝜉2
󵄨󵄨󵄨󵄨 + 𝜌
3

1

󵄨󵄨󵄨󵄨𝜁1 − 𝜁2
󵄨󵄨󵄨󵄨 .

(58)

Thenwe choose 𝐿
1
= 9𝜌
2

1
, 𝐿
2
= 𝜌
3

1
, where 𝜌

1
= √2𝐾/Γ(0.75).

Since ℎ(𝑡) = 0, it obviously follows that 1/2−1/𝜇 > 0 and that
(25) is valid. It suffices to verify that

𝐿 =
Γ (1.75) 𝐿

2

[Γ (1.75)]
2
− 𝐿
1

=
1.5√2𝐾

3

(0.75)
2
[Γ (0.75)]

4
− 18𝐾2

∈ (0, 1) .

(59)

From (48), nowwe estimate the value of 𝑐 = 𝐻(𝜏
0
)+𝐶
4
, where

𝐶
4
is dependent on 𝜉

0
and

𝐻(𝜏) =
1

2
𝜏
2
−
1

4
𝜏
4
∫

1

0

󵄨󵄨󵄨󵄨𝑢
∗
(𝑡)
󵄨󵄨󵄨󵄨

4

𝑑𝑡 + 𝐶
2
, 𝜏 ≥ 0. (60)

Since ∫1
0
|
0
𝐷
0.75

𝑡
(𝑡
2
− 𝑡)|
2

𝑑𝑡 = (1/[Γ(1.25)]
2
)(2/3 − 96/175),

we can choose 𝑢∗(𝑡) = (Γ(1.25)/√2/3 − 96/175)(𝑡
2
− 𝑡) ≈

2.6375745(𝑡
2
− 𝑡), such that 𝑢∗(𝑡) ∈ 𝐸0.75

0
with ‖𝑢∗(𝑡)‖

0.75
= 1.

By direct calculation, we have that 𝜏
0

=

1/√∫
1

0
|𝑢∗(𝑡)|

4
𝑑𝑡 ≈ 0.1853281; moreover,

𝐻(𝜏
0
) =

1

4
𝜏
2

0
+ 𝐶
2
≈ 0.008586625 + 𝐶

2
. (61)

Then 𝑐 ≈ 0.008586625+𝐶
2
+𝐶
4
; by the arbitrariness of 𝜉

0
and

𝐶
2
, we can choose enough small 𝜉

0
,𝐶
2
> 0, such that 𝑐 = 0.01,

𝑎 = 1/4, 𝑏 = 0, and 𝜀 = 0.1.
Let 𝐾 = √𝑐/(𝑎 − 𝑏 − 𝜀) = 1/√15 ≈ 0.2581989; we get

𝐿 =
0.03651484

1.2684044 − 1.2000001
≈ 0.5338091 ∈ (0, 1) .

(62)

Then all conditions ofTheorem 12 are satisfied. Consequently
we obtain that problem (57) has a nontrivial solution.
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