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Recently, hybrid stochastic and local volatility models have become an industry standard for the pricing of derivatives and other
problems in finance. In this study, we use a multiscale stochastic volatility model incorporated by the constant elasticity of variance
to understand the price structure of continuous arithmetic average Asian options.Themultiscale partial differential equation for the
option price is approximated by a couple of single scale partial differential equations. In terms of the elasticity parameter governing
the leverage effect, a correction to the stochastic volatility model is made for more efficient pricing and hedging of Asian options.

1. Introduction

Since the well-known work of Black and Scholes [1] on the
classical vanilla European option, there has been concern
about the pricing of more complicated exotic options. An
exotic option is a derivative which has a payoff structure
more complex than commonly traded vanilla options. They
are usually traded in over-the-counter market or embedded
in structured products. Also, the pricing of them tends to
require more complex methods than the classical Black-
Scholes approach.

This paper is concerned with one of the exotic options
called anAsian option.This option is a path dependent option
whose final payoff depends on the paths of its underlying
asset. More precisely, the payoff is determined by the average
value of underlying prices over some prescribed period of
time.The name of “Asian” options is known to come from the
fact that they were first priced in 1987 by David Spaughton
andMark Standish of Bankers Trust when they were working
in Tokyo, Japan (cf. [2]). The main motivation of creating
these options is that their averaging feature could reduce the
risk of market manipulation of the underlying risky asset at
maturity. Since Asian options reduce the volatility inherent
in the option, the price of these options is usually lower than
the price of classical European vanilla options. Note that there

are two types of Asian options depending on the style of
averaging: one is the arithmetic average Asian option and the
other is the geometric average Asian option.

Since there is no general analytical formula for the price
of Asian option, a variety of techniques have been developed
to approximate the price of this option. Subsequently, there
has been quite an amount of literature devoted to studying
this option. For instance, Geman and Yor [3] computed the
Laplace transform of the price of continuously sampled Asian
options. However, there is a problem of slow convergence for
low volatility or short time-to-maturity cases as indicated by
Fu et al. [4]. Linetsky [5] derived a new integral formula for
the price of Asian options but with the same convergence
problem. Apart from this approximation technique, there
are Monte Carlo simulation approach and partial differential
equation (PDE) approach. Monte Carlo simulation methods
typically require variance reduction techniques and also have
to take into account the discretization error caused by discrete
sampling. Refer to Kemna and Vorst [6] for a discussion of
the pricing of Asian options with Monte Carlo methods. On
the other hand, the PDE methods must deal with an extra
state variable representing the running sum of the underlying
process, which leads to an issue for reducing the dimension
of the PDE. Refer to Ingersoll [7] and Rogers and Shi [8] and
Vecer [9] for the PDE methods.
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It is well known that the constant volatility assumption,
on which a review of literature quoted above is based, for
the underlying asset price is severely in contrast with many
empirical studies which demonstrate the skew or smile effect
of implied volatility, fat-tailed and asymmetric returns distri-
butions, and the mean-reversion of volatility. Thus a number
of alternative underlying models have been proposed. The
constant elasticity of variance model by Cox [10], a stochastic
volatility model by Heston [11] or Fouque et al. [12], and a
Levymodel by Carr et al. [13] are among those representative
ones that can reproduce an empirically reasonable outcome.

So, it is desirable to study Asian options based on
these alternative models. In fact, there are a number of
recent studies along the lines of this type of extension.
For instance, B. Peng and F. Peng [14] for the CEV model,
Fouque and Han [15] for a stochastic volatility model, and
Lemmens et al. [16] for a Levy type model are among those
works extending the price for the Black-Scholes framework
with constant volatility. As long as we understand, up to now,
however, there has been no work for Asian options based
on a hybrid stochastic and local volatility model. Recently,
hybrid stochastic and local volatility models have become an
industry standard for the pricing of derivatives and several
financial institutions have incorporated those models into
their systems [17]. Therefore, it is worth studying Asian
options on the hybrid models.

This paper studies the pricing of an arithmetic Asian
option under a hybrid stochastic and local volatility model
which was introduced by Choi et al. [18], where the volatility
is given by the product of a multiscale stochastic process and
a power (the elasticity of variance) of the underlying’s price.
The hybrid nature of this volatility enables us to capture the
leverage effect produced by the constant elasticity of variance
(CEV) model as well as the smile effect of implied volatility,
fat-tailed and asymmetric returns distributions, the tendency
of the volatility process to revert towards a long-term mean
at a certain rate, and a degree of correlation between the
randomness of volatility and the randomness of underlying’s
price produced by a “pure” stochastic volatility (SV) model.
This hybrid model is called the SVCEVmodel. So, this paper
will generalize both [14, 15] into an approximation problem
for the price of arithmetic average Asian options based on the
SVCEV model.

This paper is structured as follows. In Section 2, we review
the SVCEV model introduced by [18]. A multiscale partial
differential equation for the price of an arithmetic average
Asian option is obtained in Section 3. Section 4 is devoted to
obtain an approximated option price under the condition of
fastmean-reverting volatility. In Section 5, the effect of hybrid
structure on the pricing of the Asian option is illustrated by a
numerical study.

2. The SVCEV Model

In this section, we establish a partial differential equation for
the price of Asian floating strike call option based on the
SVCEV model.

As introduced by [18], the SVCEV model for the under-
lying’s price is given by the stochastic differential equations
(SDEs):

𝑑𝑆
𝑡
= 𝜇𝑆
𝑡
𝑑𝑡 + 𝜎

𝑡
𝑆
1+𝛾

𝑡
𝑑𝑊
𝑡
,

𝜎
𝑡
:= 𝑓 (𝑌

𝑡
) ,

𝑑𝑌
𝑡
= 𝛼 (𝑚 − 𝑌

𝑡
) 𝑑𝑡 + 𝛽𝑑𝐵

𝑡
,

(1)

where 𝜇 and 𝑚 are some constants, 𝛾 is greater than −1, 𝛼
and 𝛽 are positive constants, and 𝑊

𝑡
and 𝐵

𝑡
are correlated

Brownian motions such that 𝑑⟨𝑊, 𝐵⟩
𝑡
= 𝜌𝑑𝑡 for some 𝜌.

If 𝜌 > 0, then 𝑆
𝑡
may fail to be a true martingale since 𝑌

𝑡

may go infinite. Refer to [19]. Therefore, 𝜌 < 0 is assumed
here. It is observed in most financial markets that there is a
minus correlation or leverage effect between stock price and
volatility impact. However, some commodity markets show
the opposite effect (the inverse leverage effect). So, the model
under the negative correlation condition can apply to many
financialmarkets but has limits for some commoditymarkets.
Also, generally speaking, the correlation 𝜌 may rely on time
but it is assumed to be a constant for simplicity. In fact, in
most real situations, it is taken to be such. We do not specify
the function𝑓 but it has to satisfy a growth condition to avoid
the nonexistence of moments of 𝑆

𝑡
. It is assumed in this paper

that 0 < 𝑐
1
≤ 𝑓 ≤ 𝑐

2
< ∞ for some constants 𝑐

1
and 𝑐
2
.

From the 𝐼 to formula, the solution 𝑌 of the second
equation in (1) is an ergodic process given by the Ornstein-
Uhlenbeck process:

𝑌
𝑡
= 𝑚 + (𝑌

0
− 𝑚) 𝑒

−𝛼𝑡
+ 𝛽∫
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(2)

and so𝑌
𝑡
∼ 𝑁(𝑚+(𝑌

0
−𝑚)𝑒
−𝛼𝑡
, (𝛽
2
/2𝛼)(1−𝑒

−2𝛼𝑡
)), which has

an invariant distribution given by𝑁(𝑚, 𝛽2/2𝛼). Later, we will
use notation ⟨⋅⟩ for the average with respect to this invariant
distribution; that is,

⟨𝑔⟩ =
1

√2𝜋]2
∫

+∞

−∞

𝑔 (𝑦) 𝑒
−(𝑦−𝑚)

2
/2]2
𝑑𝑦, ]2 ≡

𝛽
2

2𝛼
(3)

for arbitrary function 𝑔.
Now, we take the process 𝑌

𝑡
to be a fast mean-reverting

process as in Fouque et al. [20]. This means that we take into
account a fast time scale volatility factor as a major driving
force for the volatility movement of the underlying asset.This
assumption can be justified by an empirical analysis of high-
frequency S&P 500 index data. The analysis confirms that
volatility is fast mean-reverting when looked at over the time
scale of a derivative contract although it reverts slowly to its
mean in comparison to the tick-by-tick fluctuations of the
index value. See [20] for details. Also, this assumption will
provide us with analytic tractability for an approximation for
the price of theAsian option as also shown in [15]. So, in terms
of a parameter, say 𝜖, which is taken as positive and small, we
assume that

𝛼 =
1

𝜖
, 𝛽 =

]√2
√𝜖

, (4)
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where ] ∼ O(1) which implies that the long run magnitude
of volatility fluctuations remains fixed as a constant. Then,
under a risk-neutral probability measure 𝑃∗, we have

𝑑𝑆
𝑡
= 𝑟𝑆
𝑡
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,
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(5)

where 𝑊∗
𝑡

and 𝐵∗
𝑡
are two Brownian motions under the

measure 𝑃∗ whose correlation is given by 𝑑⟨𝑊∗
𝑡
, 𝐵
∗

𝑡
⟩ = 𝜌𝑑𝑡

andΛ(𝑦) denotes the combined market price of risk given by

Λ (𝑦) = 𝜌
𝜇 − 𝑟

𝑓 (𝑦)
+ 𝜆 (𝑦)√1 − 𝜌2. (6)

Here, 𝜆 is the market price of volatility risk, which is assumed
to be a bounded function depending on 𝑦.

3. A PDE for Option Price

In this section, we utilize the generalization of Vecer’s dimen-
sion reduction technique given by Fouque and Han [15] to
derive a two-space dimensional PDE representation for the
option price.

In this paper, a payoff function for arithmetic average
Asian options is given by

ℎ(
1

𝑇
∫

𝑇

0

𝑆
𝑡
𝑑𝑡 − 𝐾

1
𝑆
𝑇
− 𝐾
2
) , (7)

where ℎ is a function satisfying

ℎ (𝛼𝑥) = 𝛼ℎ (𝑥) , (8)

for any real number 𝛼. Note that, when 𝐾
1
= 0, it becomes a

payoff for fixed strike Asian options, whereas, when 𝐾
2
= 0,

it becomes a payoff for floating strike Asian options. So, the
option price 𝑃(𝑡, 𝑥, 𝑦; 𝑇,𝐾

1
, 𝐾
2
) is defined by
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2
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2
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(9)

under a risk-neutral measure 𝑃∗.
First, we would like to replicate the averaged process

(1/𝑡) ∫
𝑡

0
𝑆
𝑢
𝑑𝑢 with a portfolio
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Here, 𝛼
𝑡
is assumed to be a nonrandom function. By the self-

financing strategy, we note that
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The assumption of the nonrandomness of 𝛼
𝑡
yields
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Thus, using (11) and (12), one can obtain

𝑑 (𝑒
𝑟(𝑇−𝑡)

𝑋
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By integration of (13), we obtain

𝑋
𝑇
− 𝑒
𝑟𝑇
𝑋
0
= ∫

𝑇

0

𝑑 (𝛼
𝑡
𝑒
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𝑆
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𝑒
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𝑆
𝑡
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which can be written as

𝑋
𝑇
= −∫

𝑇

0

𝑒
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𝑆
𝑡
𝑑𝛼
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𝑋
0
+ 𝛼
𝑇
𝑆
𝑇
− 𝛼
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𝑆
0
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For technical reason, if we choose the trading strategy 𝛼
𝑡
as

𝛼
𝑡
=
1 − 𝑒
−𝑟(𝑇−𝑡)

𝑟𝑇
(16)

and the initial portfolio price𝑋
0
as

𝑋
0
= 𝑥 = 𝛼

0
𝑆
0
− 𝑒
−𝑟𝑇
𝐾
2
, (17)

then the final portfolio price𝑋
𝑇
becomes (1/𝑇) ∫𝑇

0
𝑆
𝑡
𝑑𝑡 − 𝐾

2

and so the general payoff function of arithmetic averageAsian
options given by (8) becomes ℎ(𝑋

𝑇
−𝐾
1
𝑆
𝑇
). Refer to [9, 21] or

[15] for details. In terms of the portfolio process𝑋
𝑡
, the price

of an arithmetic average Asian option at time 𝑡 = 0 is given
by

𝑃 (0, 𝑠, 𝑦; 𝑇, 𝐾
1
, 𝐾
2
)

= E
∗
[𝑒
−𝑟𝑇
ℎ (𝑋
𝑇
− 𝐾
1
𝑆
𝑇
) | 𝑆
0
= 𝑠, 𝑌

0
= 𝑦] .

(18)

Next, we change the probability measure 𝑃∗ into the
probability measure �̃�∗ defined by

𝑑�̃�
∗

𝑑𝑃∗
= 𝑒
−𝑟𝑇 𝑆𝑇

𝑆
0

= exp [∫
𝑇

0

𝑓 (𝑌
𝑡
) 𝑆
𝛾

𝑡
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∗

𝑡
−
1

2
∫

𝑇

0

𝑓
2
(𝑌
𝑡
) 𝑆
2𝛾

𝑡
𝑑𝑡] .

(19)

Then we are ready to obtain the option price as the
solution of a partial differential equation.

Theorem 1. Let 𝜓
𝑡
:= 𝑋
𝑡
/𝑆
𝑡
. Then the Asian option price at

time 𝑡 = 0 can be expressed by

𝑃 (0, 𝑠, 𝑦; 𝑇, 𝐾
1
, 𝐾
2
)

= 𝑠Ẽ
∗
[ℎ (𝜓
𝑇
− 𝐾
1
) | 𝜓
0
= 𝜓, 𝑌

0
= 𝑦]

(20)



4 Journal of Applied Mathematics

under the measure �̃�∗, where

𝜓 =
𝑥

𝑠
=
1 − 𝑒
−𝑟𝑇

𝑟𝑇
−
𝐾
2

𝑠
𝑒
−𝑟𝑇
. (21)

If 𝑢(𝑡, 𝜓, 𝑦; 𝑇,𝐾
1
, 𝐾
2
) := Ẽ∗[ℎ(𝜓

𝑇
− 𝐾
1
) | 𝜓
𝑡
= 𝜓, 𝑌

𝑡
= 𝑦],

then 𝑢 is given by the solution of the PDE:

𝑢
𝑡
+
1

2
(𝛼
𝑡
− 𝜓)
2

𝑓
2
(𝑦) 𝑠
2𝛾
𝑢
𝜓𝜓

+
𝜌]√2
√𝜖

(𝛼
𝑡
− 𝜓)𝑓 (𝑦) 𝑠

𝛾
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+ (
1

𝜖
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]√2
√𝜖

(Λ (𝑦) − 𝜌𝑓 (𝑦))) 𝑢
𝑦

+
]2

𝜖
𝑢
𝑦𝑦
= 0

(22)

with the terminal condition

𝑢 (𝑇, 𝜓, 𝑦; 𝑇,𝐾
1
, 𝐾
2
) = ℎ (𝜓 − 𝐾

1
) . (23)

Proof. By the Itô formula, we obtain the following two results:

𝑑 (𝑆
−1

𝑡
) =

1

𝑆
𝑡

[(𝑓
2
(𝑌
𝑡
) 𝑆
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𝛾
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𝑑𝑋
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𝑡
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𝑑𝑊
∗

𝑡
] .

(24)

Then we have

𝑑𝜓
𝑡
= 𝑋
𝑡
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𝑡
) + 𝑆
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𝑡
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𝑡
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𝑡
𝑑 (𝑆
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𝑡
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2
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𝑡
]

− 𝛼
𝑡
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2
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𝑑𝑊
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𝑡
]

= 𝑓 (𝑌
𝑡
) 𝑆
𝛾
(𝛼
𝑡
− 𝜓
𝑡
) (𝑑𝑊

∗

𝑡
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𝑡
) 𝑆
𝛾

𝑡
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𝑡
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𝑡
− 𝜓
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) 𝑑�̃�
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where

�̃�
∗

𝑡
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∗

𝑡
− ∫

𝑡

0

𝑓 (𝑌
𝑢
) 𝑆
𝛾

𝑢
𝑑𝑢, (26)

which is a Brownian motion under the measure �̃�∗ by the
Girsanov theorem (cf. [22]).

From (8) and (18), we have
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, 𝐾
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−𝑟𝑇
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− 𝐾
1
𝑆
𝑇
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0
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= 𝑦]
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∗
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𝑆
0
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− 𝐾
1
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0
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0
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= 𝑠Ẽ
∗
[ℎ (𝜓
𝑇
− 𝐾
1
) | 𝜓
0
= 𝜓, 𝑌

0
= 𝑦] ,

(27)

where

𝜓 =
𝑥

𝑠
=
1 − 𝑒
−𝑟𝑇

𝑟𝑇
−
𝐾
2

𝑠
𝑒
−𝑟𝑇
. (28)

If 𝑢(𝑡, 𝜓, 𝑦; 𝑇,𝐾
1
, 𝐾
2
) := Ẽ∗[ℎ(𝜓

𝑇
−𝐾
1
) | 𝜓
𝑡
= 𝜓, 𝑌

𝑡
= 𝑦],

the Asian option price at time 𝑡 = 0 is given by

𝑃 (0, 𝑠, 𝑦; 𝑇, 𝐾
1
, 𝐾
2
) = 𝑠𝑢 (0, 𝜓, 𝑦; 𝑇,𝐾

1
, 𝐾
2
) . (29)

Then, by the Feynman-Kac formula (cf. [22]) and (25), one
can obtain (22).

Once the solution𝑃(0, 𝑠, 𝑦; 𝑇,𝐾
1
, 𝐾
2
) is determined, from

the result of Fouque andHan [15], the price𝑃(𝑡, 𝑠, 𝑦;𝑇,𝐾
1
, 𝐾
2
)

is given by

𝑃 (𝑡, 𝑠, 𝑦; 𝑇, 𝐾
1
, 𝐾
2
) =

𝑇 − 𝑡

𝑇
𝑃 (0, 𝑠, 𝑦; 𝑇, 𝐾

1
, 𝐾
2
)

=
𝑇 − 𝑡

𝑇
𝑠𝑢 (0, 𝜓, 𝑦; 𝑇,𝐾

1
, 𝐾
2
) ,

(30)

where 𝑢 is the solution of the PDE (22) at time 𝑡 = 0.

4. Multiscale Analysis

In this section, we are interested in the solution of the
multiscale PDE (22) in the asymptotic form 𝑢 = 𝑢

0
+ √𝜖𝑢

1
+

⋅ ⋅ ⋅+𝜖
𝑖/2
𝑢
𝑖
+⋅ ⋅ ⋅ .Then one can come up with single scale PDEs

much easier to solve than the PDE (22) itself as follows.
Substituting the asymptotic form of 𝑢 into the PDE (22)

yields

1

𝜖
L
0
𝑢
0
+
1

√𝜖
(L
0
𝑢
1
+L
1
𝑢
0
) + (L

0
𝑢
2
+L
1
𝑢
1
+L
2
𝑢
0
)

+ √𝜖 (L
0
𝑢
3
+L
1
𝑢
2
+L
2
𝑢
1
) + ⋅ ⋅ ⋅

+ 𝜖
𝑖/2
(L
0
𝑢
𝑖+2
+L
1
𝑢
𝑖+1
+L
2
𝑢
𝑖
) + ⋅ ⋅ ⋅ = 0

(31)

with the terminal condition

∞

∑

𝑖=0

𝜖
𝑖/2
𝑢
𝑖
= ℎ (𝜓 − 𝐾

1
) , (32)

where

L
0
:= (𝑚 − 𝑦)

𝜕

𝜕𝑦
+ ]2

𝜕
2

𝜕𝑦2
,

L
1
(𝑓 (𝑦)) := 𝜌]√2 (𝛼

𝑡
− 𝜓)𝑓 (𝑦) 𝑠

𝛾 𝜕
2

𝜕𝜓𝜕𝑦

+ √2] (Λ (𝑦) − 𝜌𝑓 (𝑦))
𝜕

𝜕𝑦
,

L
2
(𝑓 (𝑦)) :=

𝜕

𝜕𝑡
+
1

2
(𝛼
𝑡
− 𝜓)
2

𝑓(𝑦)
2

𝑠
2𝛾 𝜕
2

𝜕𝜓2
.

(33)
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Note that L
0

is the infinitesimal generator of the
Ornstein-Uhlenbeck process 𝑌

𝑡
. Then we have a hierarchy of

PDEs as follows:
1

𝜖
− term :L

0
𝑢
0
= 0,

1

√𝜖
− term :L

0
𝑢
1
+L
1
𝑢
0
= 0,

𝜖
−(𝑖+2)/2

− term :L
0
𝑢
𝑖+2
+L
1
𝑢
𝑖+1
+L
2
𝑢
𝑖
= 0, ∀𝑖 ≥ 0,

(34)

with the following terminal condition:

𝑢
0
(𝑇, 𝜓, 𝑦; 𝑇,𝐾

1
, 𝐾
2
) = ℎ (𝜓 − 𝐾

1
) ,

𝑢
𝑖
(𝑇, 𝜓, 𝑦; 𝑇,𝐾

1
, 𝐾
2
) = 0, ∀𝑖 ≥ 1.

(35)

In the following two theorems, we obtain PDEs for the
leading order term 𝑢

0
as well as the first correction term 𝑢

1
.

Theorem 2. Assume that the term 𝑢
𝑖
does not grow as much

as 𝑢
𝑖
∼ 𝑒
𝑦
2
/2 with respect to the variable 𝑦 for 𝑖 = 0, 1. Then the

leading order term 𝑢
0
is independent of 𝑦 and satisfies the PDE

problem:

L
2
(𝜎) 𝑢
0
(𝑡, 𝜓; 𝑇,𝐾

1
, 𝐾
2
)

=
𝜕𝑢
0

𝜕𝑡
+
1

2
(𝜓 − 𝛼

𝑡
)
2

𝜎
2
𝑠
2𝛾 𝜕
2
𝑢
0

𝜕𝜓2
= 0,

𝑢
0
(𝑇, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) = ℎ (𝜓 − 𝐾

1
) ,

(36)

where

𝜎 = √⟨𝑓2⟩ = √
1

√2𝜋]2
∫

∞

−∞

𝑓2 (𝑦) 𝑒−(𝑦−𝑚)
2
/2]2𝑑𝑦. (37)

Proof. From the O(1/𝜖) term in (34) and the fact that L
0
is

the generator of 𝑌
𝑡
, the growth condition of 𝑢

0
with respect

to the variable 𝑦 leads to the fact that 𝑢
0
does not depend on

𝑦. So, it is represented as

𝑢
0
= 𝑢
0
(𝑡, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) (38)

without dependence on the variable 𝑦. From this fact,
equation L

0
𝑢
1
+ L
1
𝑢
0
= 0 becomes L

0
𝑢
1
= 0 and so, by

the same reason as for 𝑢
0
, 𝑢
1
also does not depend on the

variable 𝑦:

𝑢
1
= 𝑢
1
(𝑡, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) . (39)

Since L
1
is an operator in which every term contains the

derivative with respect to the variable 𝑦, L
0
𝑢
2
+ L
1
𝑢
1
+

L
2
𝑢
0
= 0 becomes L

0
𝑢
2
+ L
2
𝑢
0
= 0. By applying

the Fredholm alternative (cf. Ramm [23]) to this Poisson
equation with respect to the operatorL

0
, we have ⟨L

2
𝑢
0
⟩ =

0; that is,

L
2
(𝜎) 𝑢
0
=
𝜕𝑢
0

𝜕𝑡
+
1

2
(𝜓 − 𝛼

𝑡
)
2

𝜎
2
𝑠
2𝜃 𝜕
2
𝑢
0

𝜕𝜓2
= 0. (40)

By adding the boundary condition (35) for 𝑢
0
to this PDE, we

obtain the PDE problem (36) as desired.

Next, we obtain a PDE for the first correction term 𝑢
1
.

Theorem 3. Assume that the term 𝑢
𝑖
does not grow as much

as 𝑢
𝑖
∼ 𝑒
𝑦
2
/2 with respect to the variable 𝑦 for 𝑖 = 0, 1. Then the

first order correction term 𝑢
1
is independent of 𝑦 and satisfies

the PDE problem:

L
2
(𝜎) 𝑢
1
(𝑡, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) = 𝑉
2
(𝛼
𝑡
− 𝜓)
2

𝑠
2𝛾 𝜕
2
𝑢
0

𝜕𝜓2

+ 𝑉
3
(𝛼
𝑡
− 𝜓)
3

𝑠
2𝛾 𝜕
3
𝑢
0

𝜕𝜓3
,

𝑢
1
(𝑇, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) = 0,

(41)

where 𝑉
2
and 𝑉

3
are constants, respectively, given by

𝑉
2
=

]
√2

(⟨Λ𝜙

⟩ − 𝜌 ⟨𝑓𝜙


⟩) ,

𝑉
3
= −

𝜌]
√2

⟨𝑓𝜙⟩ .

(42)

Here, 𝜙 is the solution of

L
0
𝜙 (𝑦) = 𝑓(𝑦)

2

− 𝜎
2
. (43)

Proof. Since ⟨L
2
𝑢
0
⟩ = 0 andL

0
𝑢
2
+L
2
𝑢
0
= 0, we obtain

L
0
𝑢
2
= −L

2
𝑢
0

= − (L
2
𝑢
0
− ⟨L
2
𝑢
0
⟩)

= −
1

2
(𝜓 − 𝛼

𝑡
)
2

(𝑓(𝑦)
2

− 𝜎
2
) 𝑠
2𝜃 𝜕
2
𝑢
0

𝜕𝜓2
.

(44)

Then, from the definition of 𝜙, we obtain

𝑢
2
(𝑡, 𝜓, 𝑦; 𝑇, 𝐾

1
, 𝐾
2
)

= −
1

2
(𝜓 − 𝛼

𝑡
)
2

(𝜙 (𝑦) + 𝑐 (𝑡, 𝜓)) 𝑠
2𝛾 𝜕
2
𝑢
0

𝜕𝜓2

(45)

for some function 𝑐(𝑡, 𝜓) independent of 𝑦.
By applying the Fredholm alternative to the Poisson

equation L
0
𝑢
3
+ L
1
𝑢
2
+ L
2
𝑢
1
= 0, we have equation

⟨L
1
𝑢
2
+L
2
𝑢
1
⟩ = 0; that is,

L
2
(𝜎) 𝑢
1
= − ⟨L

1
(𝑓 (⋅)) 𝑢

2
⟩ . (46)

Combining (45) and (46), we obtain (41).

5. Approximate Option Price

From the results in Section 4, we formally obtain the first
order approximation:

𝑢 (𝑡, 𝜓, 𝑦; 𝑇,𝐾
1
, 𝐾
2
)

≈ 𝑢
0
(𝑡, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) + √𝜖𝑢

1
(𝑡, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) ,

(47)

where 𝑢
0
and 𝑢

1
are independent of the unobservable

variable 𝑦 and they are given by the PDEs in Theorems
2 and 3, respectively. Note that 𝑢

0
solves a homogeneous
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Figure 1: The leading order term 𝑃
0
and the first order correction term �̃�

1
of the price of an arithmetic average Asian option are drawn for

three different values of the elasticity of variance parameter 𝛾, where 𝑟 = 0.06, 𝜎 = 0.5, 𝑇 = 1, 𝐾
1
= 0, 𝐾

2
= 2, 𝑉

2
= −0.01, and �̃�

3
= 0.004.
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Figure 2: The correction term �̃�
1
with respect to the group parameters 𝑉

2
and �̃�

3
; 𝑟 = 0.06, 𝜎 = 0.5, 𝑇 = 1, 𝑆 = 2, 𝐾

1
= 0, and 𝐾

2
= 2.

equation with the nonzero final condition while 𝑢
1
solves a

nonhomogeneous equation with the zero final condition. In
terms of accuracy of the approximation (47), if the payoff
function ℎ is smooth enough, it follows straightforwardly
from [20] that the approximation is of order 𝜖 in the pointwise
convergent sense. Otherwise, it requires a regularization of
the payoff as done for European vanilla options in [24]. Since
the relevant argument (with an exact form of the density

function for 𝛼
𝑇
) is omitted in this paper, we limit ourselves

to the case of regularized payoffs here.
If we define 𝑃

0
and 𝑃

1
by

𝑃
0
(𝑡, 𝑠; 𝑇, 𝐾

1
, 𝐾
2
) :=

𝑇 − 𝑡

𝑇
𝑠𝑢
0
(0, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) ,

𝑃
1
(𝑡, 𝑠; 𝑇, 𝐾

1
, 𝐾
2
) :=

𝑇 − 𝑡

𝑇
𝑠𝑢
1
(0, 𝜓; 𝑇,𝐾

1
, 𝐾
2
) ,

(48)
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respectively, then, from (30), the option price 𝑃(𝑡, 𝑠, 𝑦; 𝑇,
𝐾
1
, 𝐾
2
) has an approximation given by

𝑃 (𝑡, 𝑠, 𝑦; 𝑇, 𝐾
1
, 𝐾
2
)

≈ 𝑃
0
(𝑡, 𝑠; 𝑇, 𝐾

1
, 𝐾
2
) + √𝜖𝑃

1
(𝑡, 𝑠; 𝑇, 𝐾

1
, 𝐾
2
) .

(49)

In this section, we compute numerically the leading order
price 𝑃

0
and the first correction term �̃�

1
:= √𝜖𝑃

1
by using the

finite difference method (the Crank-Nicolson method). The
solution has the truncation errorO((Δ𝑡)2) +O((Δ𝜓)2), where
Δ𝑡 = 0.005 and Δ𝜓 = 0.0104.

Figure 1 shows 𝑃
0
and �̃�

1
at time 𝑡 = 0 for three different

values of 𝛾 (the elasticity parameter). The parameter values
used in this figure are 𝑟 = 0.06,𝜎 = 0.5,𝑇 = 1,𝐾

1
= 0,𝐾

2
= 2,

�̃�
2
:= √𝜖𝑉

2
= −0.01, and �̃�

3
:= √𝜖𝑉

3
= 0.004. Note that the

parameter 𝜖 is absorbed by �̃�
2
and �̃�

3
. We call the price𝑃

0
+�̃�
1

the (approximate) SVCEV price for the arithmetic average
Asian option. It can reduce to the price for the well-known
models. In particular, the price 𝑃

0
with 𝛾 = 0 is the Black-

Scholes price.The price 𝑃
0
+ �̃�
1
with 𝛾 = 0 corresponds to the

stochastic volatility model studied by Fouque and Han [15].
Let us call it the SV price. When the leverage effect (𝛾 < 0)
takes place, the SVCEV price becomes lower than the SV
price.When the inverse leverage effect (𝛾 > 0) takes place, the
SVCEV price becomes higher than the SV price. Regardless
of the value of 𝛾, the first order stochastic volatility correction
term �̃�

1
is positive and has the maximum value near 𝑠 = 𝐾

2
.

Figure 2 shows the correction term �̃�
1
with respect to

the group parameters �̃�
2
and �̃�

3
. This figure shows that the

correction term �̃�
1
decreases as the parameter �̃�

2
increases

whereas it increases as the �̃�
3
increases. Figure 2 also shows

that as the parameter 𝛾 becomes larger, the correction term
�̃�
1
becomes larger.

6. Conclusion

A frequent criticism of the stochastic volatility or local
volatility models for path dependent options is that they do
not produce deltas precise enough for hedging purposes.
So, relevant industry experts recommend using a hybrid
stochastic local volatility model of their own development for
best pricing option products. See, for instance, [25]. In this
paper, by transforming the path dependent problem forAsian
options in the hybrid SVCEV model into a European vanilla
style problem, we approximate the volatility dependent price
by the nonvolatility dependent price. The approximate price
provides not only a correction to the price of [15] for different
values of the elasticity of variance parameter but also a
correction to the CEV price based on the assumption of
fast mean-reverting stochastic volatility. The elasticity of
variance plays an important role in characterizing volatile
markets as well as differentiating commodity markets from
financialmarkets. Refer to [26].Thenumerically solvedAsian
option prices show that both the leading order option price
(the CEV price) and the corrected price (the approximate
SVCEV price) increase as the elasticity of variance goes up.

This result can provide more efficient risk hedging by choos-
ing an appropriate elasticity parameter based on the observed
market volatility or the chosen commodity.
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