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The asymptotic equilibrium results for fuzzy differential systems (𝐺𝐶𝑃) 𝑥 = 𝑓
1
(𝑡, 𝑥, 𝑦), 𝑦


= 𝑓
2
(𝑡, 𝑥, 𝑦) are investigated, where

𝑓
1
(𝑡, 𝑥, 𝑦) satisfies the compactness-type and 𝑓

2
(𝑡, 𝑥, 𝑦) satisfies the dissipative-type conditions. It is worth mentioning that the

uniformly continuous conditions of 𝑓(𝑡, 𝑥, 𝑦) are removed in Song et al. (2005). That is to say, the results of Song et al. (2005)
are extended. In addition, the global existence and asymptotic equilibrium results of fuzzy differential systems (𝐶𝑃) 𝑥(𝑡) =
𝑓(𝑡, 𝑥), 𝑥(0) = 𝑥

0
are obtained.

1. Introduction

The Cauchy problems for fuzzy differential equations have
been studied by several authors [1–6] on the metric space
(𝐸𝑛, 𝐷) of normal fuzzy convex set with the distance𝐷 given
by the maximum of the Hausdorff distance between the
corresponding level sets. In [4], Nieto proved the Cauchy
problems which have a unique solution if 𝑓 is continuous
and bounded. For a general reference to fuzzy differential
equations, see a recent book by Lakshmikantham andMoha-
patra [7] and references therein. In particular, Wu and Song
[8–10] changed the initial value problem of fuzzy differential
equations into abstract differential equations on a closed
convex cone in a Banach space by the operator 𝑗 that is
the isometric embedding from (𝐸

𝑛
, 𝐷) onto its range in the

Banach space 𝑋. They established the relationships between
a solution and its approximate solutions to fuzzy differential
equations. Furthermore, they obtained the local existence
theorems under the compactness-type and the dissipative-
type conditions. Park and Han [11] showed the global exis-
tence and uniqueness of fuzzy solutions of fuzzy differential
equation using the properties of Hasegawa’s function and
successive approximation. Song et al. [12] pointed out a
variety of results which assure global existence of solutions

to fuzzy differential equations. Song et al. [13] studied the
asymptotic equilibrium for fuzzy differential equations:

𝑥

= 𝑓 (𝑡, 𝑥) , 𝑥 (𝑡

0
) = 𝑥
0
, (𝐶𝑃)

where 𝑥
0
∈ 𝐸𝑛 and 𝑓 is a continuous. Since we are only

interested in local solutions to (𝐶𝑃), we assume 𝑓 : 𝐽 × 𝐵 →

𝐸
𝑛 and𝐷(𝑓, 0̃) ≤ 𝑀 on 𝐽×𝐵 for some𝑀, where 𝐽 = [0, 𝑎] and
𝐵 = 𝐵(𝑥

0
, 𝑟) = {𝑥 ∈ 𝐸𝑛 : 𝐷(𝑥, 𝑥

0
) ≤ 𝑟}. The methods used by

them are as follows:𝑓 satisfied not only the compactness-type
conditions but the uniformly continuity condition. Hence, it
is of significance to lessen the growth conditions of 𝑓.

Based on those preceding works, in this paper, we firstly
give the existence theorems for (𝐶𝑃) without a uniform
continuity assumption on 𝑓. In addition, the more general
systems than (𝐶𝑃) are considered:

𝑥

= (

𝑥

𝑦
) = (

𝑓
1
(𝑡, 𝑥, 𝑦)

𝑓
2
(𝑡, 𝑥, 𝑦)

) = 𝑓 (𝑡, 𝑧) , (𝐺𝐶𝑃)

where 𝑧 = (
𝑥

𝑦 ), 𝑓 ∈ 𝐶[[𝑡
0
, +∞) × 𝐸𝑛, 𝐸𝑛], 𝑓 = (

𝑓
1

𝑓
2

) ,

and 𝐸𝑛
1
and 𝐸𝑛

2
are the fuzzy number space, respectively.

𝑓
𝑖
∈ 𝐶[[𝑡

0
, +∞) × 𝐸𝑛, 𝐸𝑛

𝑖
] (𝑖 = 1, 2), 𝑓

1
(𝑡, 𝑥, 𝑦) satisfies

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 768457, 8 pages
http://dx.doi.org/10.1155/2014/768457

http://dx.doi.org/10.1155/2014/768457


2 Journal of Applied Mathematics

the compactness-type, and 𝑓
2
(𝑡, 𝑥, 𝑦) satisfies the dissipative-

type conditions. In particular, when 𝐸𝑛 = 𝐸𝑛
1
and 𝑓

2
= 0,

we obtain that Corollary 24 is the promotion of the results of
[13].When𝐸𝑛 = 𝐸𝑛

2
and𝑓
1
= 0, we obtain that Corollary 26 is

the asymptotic equilibrium of fuzzy differential system (𝐶𝑃)

under the dissipative-type conditions.
As preliminaries we recall some basic results on fuzzy

number space (𝐸𝑛, 𝐷) and list several comparison theorems
on classical ordinary differential equations. In Section 3, we
will proof the existence theorems for (𝐶𝑃)without a uniform
continuity assumption on 𝑓. In Section 4, we will show
that the asymptotic equilibrium for fuzzy differential system
(𝐺𝐶𝑃). Finally, in Section 5, we present some concluding
remarks.

2. Preliminaries

Let𝑃
𝑘
(𝑅𝑛) denote the family of all nonempty compact convex

subsets of 𝑅𝑛 and define the addition and scalar multipli-
cation in 𝑃

𝑘
(𝑅𝑛) as usual. Let 𝐴 and 𝐵 be two nonempty

bounded subsets of 𝑅𝑛. The distance between 𝐴 and 𝐵 is
defined by the Hausdorff metric:

𝑑
𝐻
(𝐴, 𝐵) = max{sup

𝑎∈𝐴

inf
𝑏∈𝐵

‖𝑎 − 𝑏‖ , sup
𝑏∈𝐵

inf
𝑎∈𝐴

‖𝑏 − 𝑎‖} . (1)

Denote 𝐸𝑛 = {𝑢 : 𝑅𝑛 → [0, 1] | 𝑢 satisfies (1)–(4) below}
is a fuzzy number space, where

(1) 𝑢 is normal; that is, there exists an 𝑥
0
∈ 𝑅𝑛 such that

𝑢(𝑥
0
) = 1;

(2) 𝑢 is fuzzy convex; that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min {𝑢(𝑥), 𝑢(𝑦)} for any 𝑥, 𝑦 ∈ 𝑅𝑛 and 0 ≤ 𝜆 ≤ 1;
(3) 𝑢 is upper semicontinuous;

(4) [𝑢]0 = cl{𝑥 ∈ 𝑅𝑛 | 𝑢(𝑥) > 0} is compact.

For 0 < 𝛼 ≤ 1, denote [𝑢]𝛼 = {𝑥 ∈ 𝑅𝑛 | 𝑢(𝑥) ≥ 𝛼}.
Then from above (1)–(4), it follows that the 𝛼-level set [𝑢]𝛼 ∈
𝑃
𝑘
(𝑅𝑛) for all 0 ≤ 𝛼 < 1. According to Zadeh’s extension

principle, we have addition and scalar multiplication in fuzzy
number space 𝐸𝑛 as follows:

[𝑢 + V]𝛼 = [𝑢]𝛼 + [V]𝛼, [𝑘𝑢]
𝛼
= 𝑘[𝑢]

𝛼
, (2)

where 𝑢, V ∈ 𝐸𝑛 and 0 ≤ 𝛼 ≤ 1.
Define𝐷 : 𝐸𝑛 × 𝐸𝑛 → [0,∞):

𝐷 (𝑢, V) = sup {𝑑
𝐻
([𝑢]
𝛼
, [V]𝛼) : 𝛼 ∈ [0, 1]} , (3)

where 𝑑 is the Hausdorff metric defined in 𝑃
𝑘
(𝑅𝑛). Then it

is easy to see that 𝐷 is a metric in 𝐸𝑛. Using the results in
[14, 15], we know that (𝐸𝑛, 𝐷) is a complete metric space. It
is well known that application of fuzzy set theory very often
involves the metric space (𝐸𝑛, 𝐷) of normal fuzzy convex set
over 𝑅𝑛, where 𝐷 is the supremum of the Hausdoff distance
between corresponding level sets.Thismetric has been found
very convenient in studying of fuzzy differential equations
(see [7]).

Definition 1 (see [16, 17]). Let 𝑆𝑛−1 be the unit sphere of 𝑅𝑛;
that is, 𝑆𝑛−1 = {𝑥 ∈ 𝑅 | ‖𝑥‖ = 1}, ⟨⋅, ⋅⟩ is the inner product
in 𝑅𝑛; that is, ⟨𝑥, 𝑦⟩ = ∑𝑛

𝑖=1
𝑥
𝑖
𝑦
𝑖
, where 𝑥 = ⟨𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
⟩,

𝑦 = ⟨𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
⟩ ∈ 𝑅𝑛. Suppose 𝑢 ∈ 𝐸𝑛, 𝑥 ∈ 𝑆𝑛−1, and 𝑟 ∈

[0, 1]; then the support function of 𝑢 is defined by 𝑢∗(𝑟, 𝑥) =
sup
𝛼∈[𝑢]

𝛼⟨𝛼, 𝑥⟩ for all (𝑟, 𝑥) ∈ 𝐼 × 𝑆𝑛−1.

The properties of the support functions can be referred to
in [17] for details.

Theorem 2 (see [16, 17]). Let 𝑆𝑛−1 be the unit sphere of 𝑅𝑛 and
⟨⋅, ⋅⟩ the inner product in 𝑅𝑛. Suppose 𝑢 ∈ 𝐸𝑛, 𝑢∗(𝑟, 𝑥) is the
support function of 𝑢; then

(1) 𝑢∗(𝑟, 𝑥) ≤ sup
𝑎∈[𝑢]

𝑟‖𝑎‖; that is, 𝑢∗(𝑟, 𝑥) is bounded on
𝑆𝑛−1, for each fixed 𝑟 ∈ [𝑢]𝑟;

(2) 𝑢∗(𝑟, 𝑥) is nonincreasing and left continuous in 𝑟 ∈
(0, 1] and right continuous at 𝑟 = 0, for each fixed
𝑥 ∈ 𝑆𝑛−1;

(3) 𝑢∗(𝑟, 𝑥) is Lipschitz continuous in 𝑥 and

𝑢
∗

(𝑟, 𝑥) − 𝑢
∗
(𝑟, 𝑦)

 ≤ ( sup
𝑎∈[𝑢]

𝑟

‖𝑎‖)
𝑥 − 𝑦

 ; (4)

(4) if 𝑢, V ∈ 𝐸𝑛, 𝑟 ∈ [0, 1], then 𝑑([𝑢]𝑟, [V]𝑟) = sup
𝑥∈𝑆
𝑛−1

|𝑢∗(𝑟, 𝑥) − V∗(𝑟, 𝑥)|.

Theorem 3 (see [16, 17]). Define an operator 𝑗 on 𝐸𝑛 as
𝑗(𝑢)(𝑟, 𝑥) = 𝑢∗(𝑟, 𝑥) for any 𝑢 ∈ 𝐸𝑛; then one has

(1) 𝑗(𝑢) ∈ 𝐶(𝐼, 𝐶(𝑆𝑛−1)),
(2) 𝑗(𝑠𝑢 + 𝑡V) = 𝑠𝑗(𝑢) + 𝑡𝑗(V), 𝑠, 𝑡 ≥ 0,
(3) ‖𝑗(𝑢) − 𝑗(V)‖ = 𝐷(𝑢, V),
(4) 𝑗(𝐸𝑛) is closed in 𝐶(𝐼, 𝐶(𝑆𝑛−1)).

In the sequel we will recall some integrability and
differentiability properties in [18–20] for fuzzy set-valued
mappings.

Let 𝑇 = [𝑡
0
, 𝑡
0
+ 𝑝] ⊂ 𝑅 (𝑝 > 0) be compact interval.

The fuzzy mapping 𝐹 : 𝑇 → 𝐸𝑛 is called strong measurable
if for all 𝛼 ∈ [0, 1] the set-valued mapping 𝐹

𝛼
: 𝑇 →

𝑃
𝑘
(𝑅
𝑛
) defined by 𝐹

𝛼
(𝑡) = [𝐹(𝑡)]

𝛼 is Lebesgue measurable,
where 𝑃

𝑘
(𝑅
𝑛
) is endowed with the topology generated by the

Hausdorff metric 𝑑. A mapping 𝐹
𝛼
: 𝑇 → 𝐸𝑛 is called

integrable bounded if there exists an integrable function ℎ
such that ‖𝑥‖ ≤ ℎ(𝑡) for all 𝑥 ∈ 𝐹

0
(𝑡).

Definition 4. Let 𝐹 : 𝑇 → 𝐸𝑛. The integral of 𝐹 over 𝑇,
denoted by ∫

𝑇
𝐹(𝑡)𝑑𝑡, is defined level-wise by the equation

(see [18]):

[∫
𝑇

𝐹 (𝑡) 𝑑𝑡]
𝛼

= ∫
𝑇

𝐹
𝛼
(𝑡) 𝑑𝑡

= {∫
𝑇

𝑓 (𝑡) 𝑑𝑡 | 𝑓 : 𝑇 → 𝑅
𝑛

is a measurable selection for 𝐹
𝛼
} .

(5)
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A strongly measurable and integrable mapping 𝐹
𝛼
: 𝑇 →

𝐸𝑛 is said to be integrable over 𝑇 if ∫
𝑇
𝐹(𝑡)𝑑𝑡 ∈ 𝐸𝑛. From

[20], we know that if 𝐹
𝛼
: 𝑇 → 𝐸𝑛 is continuous, then it

is integrable.
Let 𝑥, 𝑦 ∈ 𝐸𝑛. If there exists a fuzzy number 𝑧 ∈ 𝐸𝑛 such

that 𝑥 = 𝑦 + 𝑧, 𝑧 is called the 𝐻-difference of 𝑥 and 𝑦 that
is denoted by 𝑥−

𝐻
𝑦. For brevity, we always assume that it

satisfies the𝐻-difference when dealing with the operation of
subtraction of fuzzy numbers throughout this paper.

Definition 5 (see [20]). A mapping 𝐹 : 𝑇 → 𝐸𝑛 is
differentiable at 𝑡

0
∈ 𝑇 if there exists a 𝐹(𝑡

0
) ∈ 𝐸𝑛, such that

the limits

lim
ℎ→0

+

𝐹 (𝑡
0
+ ℎ) −

𝐻
𝐹 (𝑡
0
)

ℎ
, lim

ℎ→0
+

𝐹 (𝑡
0
) −
𝐻
𝐹 (𝑡
0
+ ℎ)

ℎ
(6)

exist and are equal to 𝐹(𝑡
0
).

Here the limits are taken in the metric space (𝐸𝑛, 𝐷).
At the endpoint of 𝑇, we consider only one-side fuzzy
derivatives. If 𝐹 : 𝑇 → 𝐸

𝑛 is differentiable at 𝑡
0
∈ 𝑇, then

we say that 𝐹(𝑡
0
) is the fuzzy derivative of 𝐹(𝑡) at the point

𝑡
0
.
We note that this definition is fairly strong, because the

family of fuzzy-number-valued functions 𝐻-differentiable
is very restrictive. For example, the fuzzy-number-valued
function𝑓 : [𝑎, 𝑏] → 𝑅F defined by𝑓(𝑥) = 𝐶⋅𝑔(𝑥), where𝐶
is a fuzzy number, ⋅ is the scalar multiplication (in the fuzzy
context), and 𝑔 : [𝑎, 𝑏] → 𝑅

+, with 𝑔(𝑡
0
) < 0, is not 𝐻-

differentiable in 𝑡
0
(see [19, 21]). To avoid the above difficulty,

in this paper we consider a more general definition of a
derivative for fuzzy-number-valued functions enlarging the
class of differentiable fuzzy-number-valued functions, which
has been introduced in [19].

Definition 6 (see [19]). Let 𝑓 : (𝑎, 𝑏) → 𝐸
𝑛 and 𝑥

0
∈ (𝑎, 𝑏).

One says that𝑓 is differentiable at 𝑥
0
if there exists an element

𝑓(𝑡
0
) ∈ 𝐸𝑛, such that,

(1) for all ℎ > 0 sufficiently small, there exist 𝑓(𝑥
0
+

ℎ)−
𝐻
𝑓(𝑥
0
), 𝑓(𝑥

0
)−
𝐻
𝑓(𝑥
0
− ℎ) and the limits (in the

metric𝐷)

lim
ℎ→0

𝑓 (𝑥
0
+ ℎ) −

𝐻
𝑓 (𝑥
0
)

ℎ

= lim
ℎ→0

𝑓 (𝑥
0
) −
𝐻
𝑓 (𝑥
0
− ℎ)

ℎ
= 𝑓

(𝑥
0
)

(7)

(2) for all ℎ > 0 sufficiently small, there exist 𝑓(𝑥
0
)−
𝐻

𝑓(𝑥
0
+ ℎ), 𝑓(𝑥

0
− ℎ)−

𝐻
𝑓(𝑥
0
) and the limits

lim
ℎ→0

𝑓 (𝑥
0
) −
𝐻
𝑓 (𝑥
0
+ ℎ)

−ℎ

= lim
ℎ→0

𝑓 (𝑥
0
− ℎ) −

𝐻
𝑓 (𝑥
0
)

−ℎ
= 𝑓

(𝑥
0
)

(8)

(3) for all ℎ > 0 sufficiently small, there exist 𝑓(𝑥
0
+

ℎ)−
𝐻
𝑓(𝑥
0
), 𝑓(𝑥

0
− ℎ)−

𝐻
𝑓(𝑥
0
) and the limits

lim
ℎ→0

𝑓 (𝑥
0
+ ℎ) −

𝐻
𝑓 (𝑥
0
)

ℎ

= lim
ℎ→0

𝑓 (𝑥
0
− ℎ) −

𝐻
𝑓 (𝑥
0
)

−ℎ
= 𝑓

(𝑥
0
)

(9)

(4) for all ℎ > 0 sufficiently small, there exist 𝑓(𝑥
0
)−
𝐻

𝑓(𝑥
0
+ ℎ), 𝑓(𝑥

0
)−
𝐻
𝑓(𝑥
0
− ℎ) and the limits

lim
ℎ→0

𝑓 (𝑥
0
) −
𝐻
𝑓 (𝑥
0
+ ℎ)

−ℎ

= lim
ℎ→0

𝑓 (𝑥
0
) −
𝐻
𝑓 (𝑥
0
− ℎ)

ℎ
= 𝑓

(𝑥
0
)

(10)

(ℎ and −ℎ at denominators mean 1/ℎ and −1/ℎ, resp.).

In addition, we define a continuous fuzzy-valued function
𝑓 : 𝑇 × Ω → 𝐸𝑛 by 𝑓 ∈ 𝐶[𝑇 × Ω, 𝐸𝑛], where Ω ⊂ 𝐸𝑛 is an
open set.

Theorem 7 (see [19]). Assume that 𝑓 ∈ 𝐶[𝑇 × Ω, 𝐸𝑛]. A
function 𝑥 : 𝑇 → Ω is a solution to the problem 𝑥 = 𝑓(𝑡, 𝑥),
𝑥(𝑡
0
) = 𝑥
0
if and only if it is continuous and satisfies the integral

equation

𝑥 (𝑡) = 𝑥
0
+ ∫
𝑡

𝑡
0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (11)

or

𝑥 (𝑡) = 𝑥
0
+ (−1) ⋅ ∫

𝑡

𝑡
0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (12)

for all 𝑡 ∈ 𝑇.

Theorem 8 (see [22]). Let 𝐺 ⊂ 𝑅
2 be an open set, 𝑔 ∈

𝐶[𝐺, 𝑅1], (𝑡
0
, 𝑢
0
) ∈ 𝐺. Suppose that the maximum solution

of initial value problem 𝑢(𝑡) = 𝑔(𝑡, 𝑢), 𝑢(𝑡
0
) = 𝑢
0
is 𝑟(𝑡) and

its largest interval of existence of right solution is [𝑡
0
, 𝑡
0
+ 𝑎).

If 𝑚(𝑡) ∈ 𝐶[[𝑡
0
, 𝑡
0
+ 𝑎), 𝑅1] satisfies (𝑡, 𝑚(𝑡)) ∈ 𝐺, for all

𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎),𝑚(𝑡

0
) ≤ 𝑢
0
and

𝐷𝑚(𝑡) ≤ 𝑔 (𝑡, 𝑚 (𝑡)) , ∀𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎) \ Γ, (13)

where 𝐷 is one of the four Dini derivatives and Γ at most is a
countable set on [𝑡

0
, 𝑡
0
+ 𝑎). Then one has 𝑚(𝑡) ≤ 𝑟(𝑡), for all

𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎).

Theorem 9 (see [22], (Ascoli-Arzela)). A set 𝐻 ⊂ 𝐶(𝑇,𝑋) is
a relative compact set if and only if 𝐻 is equicontinuous and,
for any 𝑡 ∈ 𝑇,𝐻(𝑡) is relative compact set in𝑋.
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3. On the Cauchy Problem for Fuzzy
Differential Equations

Let 𝛾 be Kuratowski’s measure of noncompactness (see [22]
for details).

Lemma 10. Let 𝑆, 𝑇 are two bounded subsets of Banach
space 𝑋 and 𝑡 a real number; then Kuratowski’s measure of
noncompactness has following properties:

(1) 𝛾(𝑆) = 0 if and only if 𝑆 is a relatively compactness set,
(2) 𝑆 ⊂ 𝑇 ⇒ 𝛾(𝑆) ≤ 𝛾(𝑇),
(3) 𝛾(𝑡𝑆) = |𝑡| 𝛾(𝑆), where 𝑡𝑆 = {𝑡𝑥 : 𝑥 ∈ 𝑆},
(4) 𝛾(𝑆 + 𝑇) ≤ 𝛾(𝑆) + 𝛾(𝑇), where 𝑆 + 𝑇 = {𝑥 + 𝑦 : 𝑥 ∈

𝑆, 𝑦 ∈ 𝑇},
(5) 𝛾(𝑆×𝑇) = max {𝛾(𝑆), 𝛾(𝑇)}, where 𝑆×𝑇 is the bounded

subsets of Banach space 𝐸
1
× 𝐸
2
.

It is well known that continuity of 𝑓 is not sufficient for
the existence of local solution to (𝐶𝑃) (see [4]). The extra
conditions that have been imposed on 𝑓 are mainly estimates
which guarantee that a certain sequence of approximate
solutions has at least a uniformly convergent subsequence.
In this section, we would like to dispense with the uniform
continuity assumption of 𝑓.

Next, we describe a class of uniqueness functions. Let 𝐽 ⊂
𝑅 be an interval. A function 𝜔 : 𝐽 × 𝑅+ → 𝑅 is said to satisfy
Caratheodory’s condition on 𝐽×𝑅+ if 𝜔(𝑡, 𝑥) is measurable in
𝑡 for 𝑥 ∈ 𝑅+, continuous in 𝑥 for 𝑡 ∈ 𝐽 and such that to each
𝑥
0
> 0 and compact interval 𝐽

0
⊂ 𝐽 there exists a function

ℎ
0
∈ 𝐿
1
(𝐽
0
) with |𝜔(𝑡, 𝑥)| ≤ ℎ

0
(𝑡) in 𝐽

0
× [0, 𝑥

0
].

Definition 11 (see [23]). A function𝜔 : (0, 𝑎]×𝑅+ → 𝑅
+ with

𝜔 ∈ 𝐾((0, 𝑎] × 𝑅
+
) is said to be class 𝑈, denoted by 𝜔 ∈ 𝑈,

if 𝜙(𝑡) ≤ 𝜔(𝑡, 𝜙(𝑡)) a.e. on (0, 𝑎] and 𝜙(𝑡) = 𝑜(𝑡) for 𝑡 →
0+ imply 𝜙 ≡ 0 on [0, 𝑎] for each absolutely continuous 𝜙 :
[0, 𝑎] → 𝑅+.

We will consider a sequence of fuzzy-number-valued
functions behaving like the sequence of approximate solu-
tions that we will use in next section.

Theorem 12. Let 𝑥
𝑛
be a sequence of continuous fuzzy-

number-valued functions from 𝐽 = [𝑎, 𝑏] to 𝐸𝑛 such that there
is some function 𝜇 ∈ 𝐿1(𝑎, 𝑏) with 𝐷(𝑥

𝑛
(𝑡), 0̃) ≤ 𝜇(𝑡) on 𝐽. Let

𝜙(𝑡) = 𝛾(𝑗 ∘ {𝑥
𝑛
(𝑡) : 𝑛 ∈ 𝑁}). Then 𝜙(𝑡) is integrable on 𝐽 and

𝛾(𝑗 ∘ {∫
𝑏

𝑎

𝑥
𝑛
(𝜏) 𝑑𝜏 : 𝑛 ∈ 𝑁}) ≤ ∫

𝑏

𝑎

𝜙 (𝜏) 𝑑𝜏. (14)

Proof. Fix 𝑛,𝑚 ∈ 𝑁; we have

𝑑
𝐻
(

𝑘−1

∑
𝑖=0

𝑥
𝑛
(𝜉
𝑖
) (𝜏
𝑖+1
− 𝜏
𝑖
) , 𝐸
𝑛
)

≤

𝑘−1

∑
𝑖=0

𝑑
𝐻
(𝑥
𝑛
(𝜉
𝑖
) , 𝐸
𝑛
) (𝜏
𝑖+1
− 𝜏
𝑖
)

(15)

for every partition (𝜏
0
, 𝜏
1
, . . . , 𝜏

𝑘
) and every (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑘
)

with 𝜏
𝑖
≤ 𝜉
𝑖
≤ 𝜏
𝑖+1

for 𝑖 = 0, 1, 2, . . . , 𝑘−1. With the continuity
of 𝑥
𝑛
, we have

𝑑
𝐻
(∫
𝑏

𝑎

𝑥
𝑛
(𝜏) 𝑑𝜏, 𝐸

𝑛
) ≤ ∫

𝑏

𝑎

𝑑
𝐻
(𝑥
𝑛
(𝜏) , 𝐸

𝑛
) 𝑑𝜏. (16)

An application of Fatou’s Lemma gives

lim
𝑛→∞

𝑑
𝐻
(∫
𝑏

𝑎

𝑥
𝑛
(𝜏) 𝑑𝜏, 𝐸

𝑛
) ≤ ∫

𝑏

𝑎

lim
𝑛→∞

𝑑
𝐻
(𝑥
𝑛
(𝜏) , 𝐸

𝑛
) 𝑑𝜏

(17)

and with Lebesgue’s dominated convergence theorem; since
lim
𝑛→∞

𝑑
𝐻
(𝑥
𝑛
(𝑡), 𝐸𝑛) ≤ 𝜇(𝑡) for 𝑡 ∈ 𝐽,𝑚 ∈ 𝑁, we have

lim
𝑚→∞

lim
𝑛→∞

𝑑
𝐻
(∫
𝑏

𝑎

𝑥
𝑛
(𝜏) 𝑑𝜏, 𝐸

𝑛
)

≤ ∫
𝑏

𝑎

lim
𝑚→∞

lim
𝑛→∞

𝑑
𝐻
(𝑥
𝑛
(𝜏) , 𝐸

𝑛
) 𝑑𝜏.

(18)

Therefore, we get

𝛾(𝑗 ∘ {∫
𝑏

𝑎

𝑥
𝑛
(𝜏) 𝑑𝜏 : 𝑛 ∈ 𝑁}) ≤ ∫

𝑏

𝑎

𝜙 (𝜏) 𝑑𝜏. (19)

Theorem 13. Let 𝑥
𝑛
(𝑡) : [𝑎, 𝑏] → 𝐸𝑛 be a sequence of

continuously differentiable functions. Assume that there exists
𝑚(𝑡) ∈ 𝐿1[𝑎, 𝑏] such that

𝑗 ∘ 𝑥𝑛 (𝑡)
 ≤ 𝑚 (𝑡) ,


𝑗 ∘ 𝑥


𝑛
(𝑡)

≤ 𝑚 (𝑡) (20)

a.e. 𝑡 ∈ [𝑎, 𝑏], 𝑛 = 1, 2, . . .. Let ℎ(𝑡) = 𝛾(𝑗 ∘ {𝑥
𝑛
(𝑡) : 𝑛 ∈ 𝑁});

then ℎ(𝑡) is an absolutely continuous function and ℎ(𝑡) ≤ 𝛾(𝑗∘
{𝑥
𝑛
(𝑡) : 𝑛 ∈ 𝑁}) a.e. 𝑡 ∈ [𝑎, 𝑏].

Proof. The absolute continuity of ℎ follows from

‖ℎ (𝑡) − ℎ (𝑠)‖ ≤ 𝛾 ({𝑗 ∘ 𝑥
𝑛
(𝑡) − 𝑗 ∘ 𝑥

𝑛
(𝑠)})

= ℎ(𝑗 ∘ ∫
𝑡

𝑠

𝑥


𝑛
(𝜏) 𝑑𝜏)

≤ 2 ⋅ sup
𝑛∈𝑁


𝑗 ∘ ∫
𝑡

𝑠

𝑥


𝑛
(𝜏) 𝑑𝜏



≤ 2 ⋅ ∫
𝑡

𝑠

𝑚(𝜏) 𝑑𝜏.

(21)

We conclude byTheorem 12 that

𝛾 (𝑗 ∘ 𝑥
𝑛
(𝑡)) − 𝛾 (𝑗 ∘ 𝑥

𝑛
(𝑡 − 𝑙))

≤ 𝛾 (𝑗 ∘ ∫
𝑡

𝑡−𝑙

𝑥


𝑛
(𝜏) 𝑑𝜏)

≤ ∫
𝑡

𝑡−𝑙

𝛾 (𝑗 ∘ 𝑥


𝑛
(𝜏)) 𝑑𝜏.

(22)
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Dividing by 𝑙 > 0 and letting 𝑙 → 0+ give

ℎ


(𝑡) ≤ 𝛾 (𝑗 ∘ {𝑥
𝑛
(𝑡) : 𝑛 ∈ 𝑁}) . (23)

Theorem 14. Let 𝐵 = 𝐵(𝑥
0
, 𝑟) = {𝑥 ∈ 𝐸𝑛 : 𝐷(𝑥, 𝑥

0
) ≤ 𝑟} and

𝑓 : [0, 𝑎] × 𝐵 → 𝐸𝑛 continuous with 𝐷(𝑓(𝑡, 𝑥), 0̃) ≤ 𝜇(𝑡) on
[0, 𝑎]×𝐵 for some 𝜇 ∈ 𝐿1[0, 𝑎]. Let 𝑏 < 𝑎 such that∫𝑎

0
𝜇(𝜏)𝑑𝜏 <

𝑟 and 𝐽 = [0, 𝑏]. One assumes

𝛾 (𝑗 ∘ 𝑓 (𝑡, 𝐵)) ≤ 𝜔 (𝑡, 𝛾 (𝑗 ∘ 𝐵

))

𝑓𝑜𝑟 𝑡 ∈ [0, 𝑎] , 𝐵

⊂ 𝐵,

(24)

where 𝜔 ∈ 𝑈. Then (𝐶𝑃) has a solution.

Proof. There is a sequence {𝑥
𝑛
(𝑡)} of approximate solutions to

(𝐶𝑃) satisfying

𝑥


𝑛
(𝑡) = 𝑓 (𝑡, 𝑥

𝑛
(𝑡)) + 𝑦

𝑛
(𝑡) , 𝑥

𝑛
(𝑡) = 𝑥

0
, 𝑦
𝑛
(𝑡) ≤

1

𝑛
.

(25)

Let ℎ(𝑡) = 𝛾(𝑗 ∘ {𝑥
𝑛
(𝑡) : 𝑛 ∈ 𝑁}). We have byTheorem 13 that

ℎ(𝑡) ≤ 𝛾(𝑗 ∘ {𝑥
𝑛
(𝑡) : 𝑛 ∈ 𝑁}) a.e. on 𝑡 ∈ [𝑎, 𝑏]. Moreover, by

the properties of 𝛾, we have

𝛾 (𝑗 ∘ {𝑥


𝑛
(𝑡)})

≤ 𝛾 (𝑗 ∘ {𝑓 (𝑡, 𝑥
𝑛
(𝑡))}) + 𝛾 ({𝑗 ∘ 𝑦

𝑛
(𝑡)})

≤ 𝜔 (𝑡, 𝛾 (𝑗 ∘ {𝑥
𝑛
(𝑡)})) .

(26)

We claim that ℎ(𝑡) is 𝑜(𝑡) for 𝑡 → 0+. By the continuity of 𝑓
and the equicontinuity of the 𝑥

𝑛
(𝑡), we have

𝑥
𝑛
(𝑡) = 𝑥

0
+ ∫
𝑡

0

(𝑓 (𝜏, 𝑥
𝑛
(𝜏)) − 𝑓 (0, 𝑥

0
)) 𝑑𝜏

+ 𝑡𝑓 (0, 𝑥
0
) + ∫
𝑡

0

𝑦
𝑛
(𝜏) 𝑑𝜏

= 𝑥
0
+ 𝑡𝑓 (0, 𝑥

0
) + 𝑧
𝑛
(𝑡)

(27)

with 𝑧
𝑛
(𝑡) = 𝑜(𝑡) for 𝑡 → 0+ uniformly in 𝑛. Since

𝜔 ∈ 𝑈, we get ℎ(𝑡) = 0 on [𝑎, 𝑏]. Arzala-Ascoli’s theorem
gives a uniformly convergent subsequence of 𝑥

𝑛
(𝑡) and a

standard argument shows that the limit of this subsequence
is a solution to (𝐶𝑃) on [𝑎, 𝑏].

Next, consider the terminal value problem

𝑥

= 𝑓 (𝑡, 𝑥) , 𝑥 (∞) = 𝑥

0
, (𝐶𝑃)



where 𝑓 : [𝑎,∞) × 𝐸𝑛 → 𝐸𝑛 is continuous, 𝑎 > 0, and 𝑥
0
∈

𝐸
𝑛. This problem is equivalent to the following initial value

problem:

𝑢

= −𝑡
−2
𝑓 (𝑡
−1
, 𝑢) , 𝑢 (0) = 𝑥

0
, (28)

by means of the transformation 𝑡 → 𝑡−1 on (0, 𝑎−1].

Definition 15 (see [23]). A function𝜔 : (0, 𝑎]×𝑅+ → 𝑅+ with
𝜔 ∈ 𝐾((0, 𝑎] × 𝑅+) is said to be of class 𝑈, denoted by 𝜔 ∈ 𝑈,
if 𝜙(𝑡) ≤ 𝜔(𝑡, 𝜙(𝑡)) a.e. on (0, 𝑎] and 𝜙(𝑡) = 𝑜(1) for 𝑡 → 𝑡−1

imply 𝜙(𝑡) = 0 on [0, 𝑎] for each absolutely continuous 𝜙 :
[0, 𝑎] → 𝑅+.

Theorem 16. Let 𝐸𝑛 be a fuzzy number space. 𝐵(𝑥
0
, 𝑟) = {𝑥 ∈

𝐸
𝑛
: 𝐷(𝑥, 𝑥

0
) ≤ 𝑟} and 𝑓 : [𝑎,∞) × 𝐵 → 𝐸

𝑛 are continuous.
Suppose that 𝑓 satisfies

(1) 𝜇(𝑡) = sup {𝐷(𝑓, 0̃) : 𝑥 ∈ 𝐵(𝑥
0
, 𝑟)},

(2) 𝛾(𝑗 ∘ 𝑓(𝑡, 𝐵)) ≤ 𝜔(𝑡, 𝛾(𝑗 ∘ 𝐵)) for 𝑡 ≥ 𝑎,

where 𝜔 : (0, 𝑎] × 𝑅+ → 𝑅+ is such that 𝑡−2𝜔(𝑡−1, ) ∈ 𝑈.
Then there exists 𝑏 ≥ 𝑎 such that the terminal value problem
(𝐶𝑃)
 has a solution in [𝑏,∞).

Proof. Consider the following problem:

𝑢

= −𝑡
−2
𝑓 (𝑡
−1
, 𝑢) , 𝑢 (𝑛

−1
) = 𝑥
0
. (29)

By Theorem 14 and condition (1), the problem (29) has a
solution 𝑢

𝑛
. Let 𝑢

𝑛
= 𝑥
0
for 𝑡 ∈ [0, 𝑛−1]. As a consequence

ofTheorem 13 and the choice of 𝜔, we conclude similar to the
proof of Theorem 14 that (𝐶𝑃) has a solution.

4. On the Asymptotic Equilibrium for
Fuzzy Differential Equations

In this section, wewill consider that the system (𝐺𝐶𝑃) has the
asymptotic equilibrium.

Let the functions [⋅, ⋅]
+
and [⋅, ⋅]

−
be defined as follows (see

[11]):

[𝑢, V]
+
= lim
ℎ→0

1

ℎ
(
𝑗 ∘ 𝑢 + ℎ𝑗 ∘ V

 −
𝑗 ∘ 𝑢

) ,

[𝑢, V]
−
=
1

2
([𝑢, V]

+
− [𝑢, −V]

+
)

(30)

for 𝑢, V ∈ 𝐸𝑛, where 𝑗 is the embedding operator in
Theorem 3.

Theorem17. For all𝑢, V, 𝑤 ∈ 𝐸𝑛, define ⟨𝑢, V⟩
±
= ‖𝑗∘𝑢‖[𝑢, V]

±

and satisfy the following properties:

(1) ⟨𝑢, V⟩
±
≤ ‖𝑗 ∘ 𝑢‖ ⋅ ‖𝑗 ∘ V‖,

(2) ⟨𝑢 + V, 𝑤⟩
−
≤ ⟨𝑢, 𝑤⟩

−
+ ‖𝑗 ∘ V‖ ⋅ ‖𝑗𝑤‖,

(3) if 𝐼 is an open interval in 𝑅 and 𝑥 : 𝐼 → 𝐸𝑛 is a
differential function on 𝑡 ∈ 𝐼, then

𝑗 ∘ 𝑥 (𝑡)
 ⋅ 𝐷
− 𝑗 ∘ 𝑥 (𝑡)

 ≤ ⟨𝑥


(𝑡) , 𝑥 (𝑡)⟩
−
. (31)

Proof. (1) and (2) are easy consequences of the definition and
(3) follows from Lemma 3.6 in [11].

Definition 18. Assume that 𝜑 : [𝑡∗,∞) → 𝑅 is a real
continuous function, 𝜑(𝑡∗) = 0, 𝜑(𝑡) > 0, 𝑡 ∈ (𝑡∗,∞),
𝜑(𝑡) is differentiable, and 𝜑(𝑡) ̸= 0 for any 𝑡 > 𝑡∗. If 𝜔(𝑡, 𝑢)
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is a continuous and 𝜔(𝑡, 0) ≡ 0, the initial value problem
𝑢 = 𝜔(𝑡, 𝑢) has only solution 𝑢 ≡ 0 and satisfies

lim
𝑡→ 𝑡
∗
+0

𝑢 (𝑡) = lim
𝑡→ 𝑡
∗
+0

𝑢 (𝑡)

𝜑 (𝑡)
= 0. (32)

Then 𝜔 : (𝑡∗,∞) × 𝑅+ → 𝑅+ is called a function of 𝑈
1
kind.

Definition 19. Assume that 𝜔(𝑡, 𝑢) is a continuous and
𝜔(𝑡, 0) ≡ 0; the initial value problem 𝑢 = 𝜔(𝑡, 𝑢) has only
solution 𝑢 ≡ 0 and satisfies

lim
𝑡→ 𝑡
∗
+0

𝑢 (𝑡) = 0 (33)

for any 𝑡 > 𝑡∗. Then 𝜔 : (𝑡∗,∞) × 𝑅+ → 𝑅+ is called a
function of 𝑈

2
kind.

Definition 20 (see [13]). One says that fuzzy equation (𝐶𝑃)
has asymptotic equilibrium if every solution of (𝐶𝑃), such
that (𝑡

0
, 𝑥
0
) ∈ 𝑅
+
× 𝐸𝑛, exists on [𝑡

0
,∞) and tends to a limit

V ∈ 𝐸𝑛 as 𝑡 → ∞, and, conversely, to every given vector
V ∈ 𝐸𝑛 there exists a solution for fuzzy system (𝐶𝑃) which
tends to V as 𝑡 → ∞.

Lemma 21 (see [12]). Assume that

(1) 𝑓(𝑡, 𝑥) is locally Lipschitzian in 𝑥 for (𝑡, 𝑥) ∈ 𝐽 × 𝐸𝑛,

(2) 𝐷(𝑓(𝑡, 𝑥), 0̂) ≤ 𝑔(𝑡, 𝐷(𝑥, 0̂)), for all (𝑡, 𝑥) ∈ 𝐽 × 𝐸𝑛,
(3) 𝑔 ∈ 𝐶[𝐽 × [0,∞), [0,∞)], 𝑔(𝑡, 𝑢) is nondecreasing in

𝑢 ≥ 0 for each 𝑡 ∈ 𝐽, andmaximal solution 𝑟(𝑡, 𝑡
0
, 𝑢
0
) of

the scalar initial value problem 𝑢 = 𝑔(𝑡, 𝑢), 𝑢(𝑡
0
) = 𝑢
0

exists throughout 𝐽.

Then the largest interval of any solution 𝑟(𝑡, 𝑡
0
, 𝑢
0
) of (1)

with𝐷(𝑥, 0̂) ≤ 𝑢
0
is 𝐽. In addition, if 𝑟(𝑡, 𝑡

0
, 𝑢
0
) is bounded on

𝐽, then lim
𝑡→∞

𝑥(𝑡, 𝑡
0
, 𝑥
0
) exists in (𝐸𝑛, 𝐷).

Lemma 22 (see [13]). Under the assumptions of Lemma 21,
given V ∈ 𝐸𝑛, there exist a 𝑇 ∈ [𝑡

0
,∞) and a sequence

{𝑥
𝑛
(𝑡)}
∞

𝑛=1
defined on [𝑇,∞), such that

(1) {𝑥
𝑛
(𝑡)}
∞

𝑛=1
is equicontinuous on [𝑇,∞);

(2) {𝑥
𝑛
(𝑡)}
∞

𝑛=1
is uniformly bounded on [𝑇,∞); that is,

there exists 𝑀 ∈ 𝑅
+
, such that 𝐷(𝑥

𝑛
(𝑡), 0̂) ≤ 𝑀 for

all 𝑡 ∈ [𝑇,∞) and for all 𝑛;
(3) for each 𝑛, 𝑥

𝑛
(𝑡) is a solution of 𝑥 = 𝑓(𝑡, 𝑥), 𝑥(𝑇+𝑛) =

V.

In the following, we give the main result of this paper.

Theorem 23. Under the assumptions of Lemma 21, 𝑧
𝑛
(𝑡) =

{𝑥
𝑛
(𝑡), 𝑦
𝑛
(𝑡)} is satisfied Lemma 22, and there exists 𝑡∗ ∈

[𝑇
0
,∞) such that {𝑧

𝑛
(𝑡∗)}
∞

𝑛=1
is relatively compact in 𝐸𝑛 and

satisfies the following.

(1) Let 𝐴 ⊂ 𝐸𝑛 is a bounded set; one has 𝛾(𝑗 ∘ 𝑓
1
(𝑡, 𝐴)) ≤

𝑔
1
(𝑡, 𝛾(𝑗 ∘𝐴)) for all 𝑡 ∈ [𝑡,∞), where𝐴 = {𝑥 : there

exists 𝑦 ∈ 𝐸𝑛
2
such that (𝑥, 𝑦) ∈ 𝐴} and 𝑔

1
∈ 𝑈
2
1.

(2) For all 𝜀 > 0, 𝑡 ∈ 𝑅
+, and 𝑟 > 0 there exists 𝛿 =

𝛿(𝑡, 𝑟) > 0 such that 𝐷(𝑓
2
(𝑡, 𝑥
1
, 𝑦), 𝑓
2
(𝑡, 𝑥
2
, 𝑦)) < 𝜀

with respect to 𝐷(𝑦, 0̂) ≤ 𝑟 when 𝐷(𝑥
1
, 𝑥
2
) < 𝛿; we

have 𝑗 ∘ 𝑓
2
(𝑡, 𝑥, 𝑦) = ℎ(𝑡) + 𝑜[𝜑(𝑡)] when (𝑡, 𝑥, 𝑦) →

(𝑡∗, 𝑥
0
, 𝑦
0
), where ℎ(𝑡) is a continuous function and

𝜑(𝑡) ∈ 𝑈
2
.

(3) For (𝑡, 𝑥, 𝑦
1
), (𝑡, 𝑥, 𝑦

2
) ∈ [𝑡∗,∞) × 𝐸𝑛

1
× 𝐸𝑛
2
, such that

⟨𝑓
2
(𝑡, 𝑥, 𝑦

1
) − 𝑓 (𝑡, 𝑥, 𝑦

2
) , 𝑦
1
− 𝑦
2
⟩
−

≤ 𝜔 (𝑡, 𝐷 (𝑦
1
, 𝑦
2
)) ⋅ 𝐷 (𝑦

1
, 𝑦
2
) ,

(34)

where 𝜔 ∈ 𝑈
1
and (𝑥

0
, 𝑦
0
) is the limit point of {𝑥

𝑛
(𝑡∗), 𝑦

𝑛
(𝑡∗)}.

Then the fuzzy differential system (𝐺𝐶𝑃) has asymptotic
equilibrium.

Proof. Since 𝑧
𝑛
(𝑡) = (𝑥

𝑛
(𝑡), 𝑦
𝑛
(𝑡)) is satisfied, 𝑥

𝑛
=

𝑓
1
(𝑡, 𝑥
𝑛
(𝑡), 𝑦
𝑛
(𝑡)) and 𝑦

𝑛
= 𝑓
2
(𝑡, 𝑥
𝑛
(𝑡), 𝑦
𝑛
(𝑡)), according to

Lemma 10 and Theorem 13, and the following fact: {𝑥
𝑛
(𝑡) :

𝑛 ∈ 𝑁, 𝑡 ∈ [𝑡∗,∞)} can produce a subspace of 𝐸𝑛
1
; we let

𝑙(𝑡) = 𝛾(𝑗 ∘ {𝑥
𝑛
(𝑡)}); then we have

𝑙


(𝑡) ≤ 𝛾 (𝑗 ∘ {𝑥


𝑛
(𝑡) : 𝑛 ∈ 𝑁})

= 𝛾 (𝑗 ∘ {𝑓
1
(𝑡, 𝑥
𝑛
(𝑡) , 𝑦
𝑛
(𝑡))}
∞

𝑛=1
)

≤ 𝑔
1
(𝑡, 𝑙 (𝑡)) .

(35)

From the assumption and 𝑙(𝑡∗) = 0, we obtain 𝑙(𝑡) = 0

on [𝑡∗,∞). Since {𝑥
𝑛
(𝑡)}
∞

𝑛=1
is equicontinuous and uniformly

bounded, from Ascoli-Arzelar’s theorem, then there exists a
subsequence of {𝑥

𝑛
(𝑡)}
∞

𝑛=1
which uniformly converges to 𝑥(𝑡)

on any finite closed subset of [𝑡∗,∞). Without any loss of
generality, let {𝑥

𝑛
(𝑡)}
∞

𝑛=1
uniformly converge to 𝑥(𝑡) on any

finite closed subset of [𝑡∗,∞) and let {𝑧
𝑛
(𝑡
∗
)}
∞

𝑛=1
converge

too.
Now, we consider the initial problem

𝑦


(𝑡) = 𝑓
2
(𝑡, 𝑥 (𝑡) , 𝑦) ,

𝑦 (𝑡
∗
) = 𝑦
0
.

(36)

Next, we will prove that {𝑦
𝑛
(𝑡)}
∞

𝑛=1
converges uniformly

to 𝑦(𝑡) on any finite closed subset of [𝑡∗,∞). Let 𝑎
𝑛𝑚

=

𝐷(𝑦
𝑛
(𝑡∗), 𝑦

𝑚
(𝑡∗)) = ‖𝑗 ∘ 𝑦

𝑛
(𝑡∗) − 𝑗 ∘ 𝑦

𝑚
(𝑡∗)‖; then

lim
𝑛,𝑚→∞

𝑎
𝑛𝑚

= 0. And let Δ
𝑛𝑚
(𝑡) = 𝐷(𝑦

𝑛
(𝑡), 𝑦
𝑚
(𝑡)) =

‖𝑗 ∘ 𝑦
𝑛
(𝑡) − 𝑗 ∘ 𝑦

𝑚
(𝑡)‖, according toTheorem 17; we have

Δ
𝑛𝑚
𝐷
−
Δ
𝑛𝑚

≤ ⟨𝑦


𝑛
(𝑡) − 𝑦



𝑚
(𝑡) , 𝑦
𝑛
(𝑡) − 𝑦

𝑚
(𝑡)⟩
−

= ⟨𝑓
2
(𝑡, 𝑥
𝑛
(𝑡) , 𝑦
𝑛
(𝑡))

− 𝑓
2
(𝑡, 𝑥
𝑚
(𝑡) , 𝑦
𝑚
(𝑡)) , 𝑦

𝑛
(𝑡) − 𝑦

𝑚
(𝑡)⟩
−

≤⟨𝑓
2
(𝑡, 𝑥 (𝑡) , 𝑦

𝑛
(𝑡))−𝑓

2
(𝑡, 𝑥 (𝑡) , 𝑦

𝑚
(𝑡)) , 𝑦

𝑛
(𝑡)−𝑦

𝑚
(𝑡)⟩
−

+ [
𝑗 ∘ 𝑓2 (𝑡, 𝑥𝑛 (𝑡) , 𝑦𝑚 (𝑡)) − 𝑗 ∘ 𝑓2 (𝑡, 𝑥 (𝑡) , 𝑦𝑛 (𝑡))



+
𝑗 ∘𝑓2 (𝑡, 𝑥𝑚 (𝑡) , 𝑦𝑚 (𝑡))−𝑗∘𝑓2(𝑡, 𝑥 (𝑡) , 𝑦𝑚 (𝑡))

] Δ 𝑛𝑚.

(37)
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Let {𝑥
𝑛
(𝑡)} converge uniformly to 𝑥(𝑡) on [𝑡∗, 𝑎] (𝑎 > 𝑡∗) and

combine to condition (2); we have

Δ
𝑛𝑚
𝐷
−
Δ
𝑛𝑚

≤ ⟨𝑓
2
(𝑡, 𝑥 (𝑡) , 𝑦

𝑛
(𝑡))

− 𝑓
2
(𝑡, 𝑥 (𝑡) , 𝑦

𝑚
(𝑡)) , 𝑦

𝑛
(𝑡) − 𝑦

𝑚
(𝑡) ⟩
−
+ 𝜀
𝑛𝑚
Δ
𝑛𝑚
,

(38)

where lim
𝑛,𝑚→∞

= 0, 𝑡 ∈ [𝑡∗, 𝑎]. Then we have

𝐷
−
Δ
𝑛𝑚
≤ 𝜔 (𝑡, Δ

𝑛𝑚
(𝑡)) + 𝜀

𝑛𝑚
(𝑡 ∈ [𝑡

∗
, 𝑎]) (39)

and Δ
𝑛𝑚
(𝑡∗) → 0 when 𝑛,𝑚 → ∞. Let Δ

𝑛
= sup

𝑚>𝑛
Δ
𝑛𝑚
;

then lim
𝑛→∞

Δ
𝑛
(𝑡∗) = 0. According to the definition of Δ

𝑛
,

we easily know that {Δ
𝑛
} satisfies the following: there exists

𝑀 > 0 such that |Δ
𝑛
− Δ
𝑠
| ≤ 2𝑀|𝑠 − 𝑡| and 𝐷−Δ

𝑛
(𝑡) ≤

𝜔(𝑡, Δ
𝑛
(𝑡)) + 𝜀

𝑛
(𝑠, 𝑡 ∈ [𝑡∗, 𝑎]), lim

𝑛→∞
𝜀
𝑛
= 0. From above,

we get that {Δ
𝑛
(𝑡)} is equicontinuous and uniformly bounded

on [𝑡∗, 𝑎], so there exists a subsequence converging uniformly
to Δ(𝑡). Since 𝐷−Δ(𝑡) ≤ 𝜔(𝑡, Δ(𝑡)) and Δ(𝑡∗) = 0, from
the hypotheses of the theorem, fixed 𝜀 > 0, there exist 𝑡 ∈
[𝑡∗, 𝑎],𝑁 > 0 such that

𝐷
−
Δ
𝑛𝑚
(𝑡) ≤ 𝜀𝜑



(𝑡) , (40)

when 𝑛,𝑚 > 𝑁, 𝑡 ∈ [𝑡∗, 𝑡], which means that

0 ≤ Δ
𝑛𝑚
(𝑡) ≤ 𝜀 ⋅ 𝜑 (𝑡) , 𝑡 ∈ (𝑡

∗
, 𝑡

) , (41)

implies

lim
𝑡→ 𝑡
∗

Δ (𝑡)

𝜑 (𝑡)
= 0. (42)

Because 𝜔 ∈ 𝑈
1
, we have Δ(𝑡) ≡ 0. Hence {Δ

𝑛
(𝑡)} converge

uniformly to Δ(𝑡); that is, {Δ
𝑛
(𝑡)} converge uniformly to 0.

From above, we can get that {𝑦
𝑛
(𝑡)} converge uniformly to

𝑦(𝑡) on [𝑡∗, 𝑎]. Again, from the arbitrariness of 𝑎, it is easy to
know 𝑧(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) = lim

𝑛→∞
(𝑥
𝑛
(𝑡), 𝑦
𝑛
(𝑡)), 𝑡 ∈ [𝑡∗,∞)

and

𝑥
𝑛
(𝑡) = 𝑥

𝑛
(𝑡
∗
) + ∫
𝑡

𝑡
∗

𝑓
1
(𝑠, 𝑥
𝑛
(𝑠) , 𝑦
𝑛
(𝑠)) 𝑑𝑠,

𝑦
𝑛
(𝑡) = 𝑦

𝑛
(𝑡
∗
) + ∫
𝑡

𝑡
∗

𝑓
2
(𝑠, 𝑥
𝑛
(𝑠) , 𝑦
𝑛
(𝑠)) 𝑑𝑠.

(43)

Since 𝑧
𝑛
(𝑡) = (𝑥

𝑛
(𝑡), 𝑦
𝑛
(𝑡)) converge uniformly on a compact

set of [𝑡∗,∞), we have

𝑥 (𝑡) = 𝑥 (𝑡
∗
) + ∫
𝑡

𝑡
∗

𝑓
1
(𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠,

𝑦 (𝑡) = 𝑦 (𝑡
∗
) + ∫
𝑡

𝑡
∗

𝑓
2
(𝑠, 𝑥 (𝑠) , (𝑠)) 𝑑𝑠

(44)

which means that 𝑧(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is a solution of fuzzy
system 𝑧 = 𝑓(𝑡, 𝑧), 𝑧(𝑡∗) = (𝑥(𝑡∗), 𝑦∗(𝑡)).

Next, we will show lim
𝑡→∞

𝑧(𝑡) = V. Applying Lemma 22,
let 𝑢(𝑡, 𝑡

0
, 𝜆) be the largest solution of 𝑢 = 𝑔(𝑡, 𝑢), 𝑢(𝑡

0
) = 𝜆

for 𝜆 ∈ 𝑅+. According to 𝑔(𝑡, 𝑢) ≥ 0, we have lim
𝑡→∞

𝑢(𝑡) =

𝑢(∞) and

𝜆 = 𝑢 (𝑡
0
) ≤ 𝑢 (𝑡) ≤ 𝑢 (∞) < ∞. (45)

Since 𝑔(𝑡, 𝑢) is nondecreasing in 𝑢 for every 𝑡 ∈ [𝑡
0
,∞), we

have

∞ > 𝑢 (∞) − 𝑢 (𝑡
0
) = ∫
∞

𝑡
0

𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 ≥ ∫
∞

𝑡
0

𝑔 (𝑠, 𝜆) 𝑑𝑠.

(46)

So, there exists an integer 𝑆 > 𝑡∗ which satisfies

∫
∞

𝑠

𝑔 (𝑡,𝑀) 𝑑𝑡 ≤
𝜀

2
, (47)

where 𝑀 = sup
𝑛∈𝑁

{𝐷(𝑧
𝑛
(𝑠), 0̂), 𝑠 ∈ [𝑡∗,∞)} < ∞. In

addition, there exists𝑁; when 𝑛 > 𝑁, we have

𝐷(𝑧
𝑛
(𝑡

) , 𝑧 (𝑡


)) =


𝑗 ∘ 𝑧
𝑛
(𝑡

) − 𝑗 ∘ 𝑧 (𝑡


)

<
𝜀

2
. (48)

Hence,

𝑗 ∘ 𝑧 (𝑡


) − 𝑗 ∘ V



=

𝑗 ∘ 𝑧 (𝑡


) − 𝑗 ∘ 𝑧

𝑁+𝑆
(𝑇 + 𝑁 + 𝑆)



≤

𝑗 ∘ 𝑧 (𝑡


) − 𝑗 ∘ 𝑧

𝑁+𝑆
(𝑡

)


+

𝑗 ∘ 𝑧
𝑁+𝑆

(𝑡

) − 𝑗 ∘ 𝑧

𝑁+𝑆
(𝑇 + 𝑁 + 𝑆)



≤
𝜀

2
+ 𝐷(∫

𝑇+𝑁+𝑆

𝑡


𝑓 (𝑡, 𝑧
𝑁+𝑆

(𝑡) 𝑑𝑡) , 0̂)

≤
𝜀

2
+


∫
𝑇+𝑁+𝑆

𝑡


𝑔 (𝑡, 𝐷 (𝑧
𝑁+𝑆

, 0̂)) 𝑑𝑡



≤
𝜀

2
+ ∫
∞

𝑠

𝑔 (𝑡,𝑀) 𝑑𝑡 < 𝜀.

(49)

Hence, we have lim
𝑡→∞

𝑧(𝑡) = V.

When 𝐸𝑛 = 𝐸𝑛
1
and 𝑓

2
= 0, we have the following.

Corollary 24. Under the assumptions of Lemma 21, {𝑥
𝑛
(𝑡)}
∞

𝑛=1

is satisfied Lemma 22, and there exists 𝑡∗ ∈ [𝑇
0
,∞) such that

{𝑥
𝑛
(𝑡∗)}
∞

𝑛=1
is relatively compact in 𝐸𝑛 and satisfies condition

(1) in Theorem 23. Then the fuzzy differential system (𝐶𝑃) has
asymptotic equilibrium.

Remark 25. Compared with Theorem 3.4 in [13], the uni-
formly continuous conditions are removed.

When 𝐸𝑛 = 𝐸𝑛
2
and 𝑓

1
= 0, we have the following.

Corollary 26. Under the assumptions of Lemma 21, {𝑥
𝑛
(𝑡)}
∞

𝑛=1

is satisfied Lemma 22, and there exists 𝑡∗ ∈ [𝑇
0
,∞) such that

{𝑥
𝑛
(𝑡∗)}
∞

𝑛=1
is relatively compact in 𝐸𝑛 and satisfies

⟨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) , 𝑥 − 𝑦⟩
−
≤ 𝜔 (𝑡, 𝐷 (𝑥, 𝑦)) ⋅ 𝐷 (𝑥, 𝑦) ,

(50)

where 𝑡 ∈ [𝑇,∞), 𝑥, 𝑦 ∈ 𝐸𝑛, 𝜔 ∈ 𝑈
2
. Then the fuzzy

differential system (𝐶𝑃) has asymptotic equilibrium.
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5. Conclusion

In this paper, some global existence and asymptotic equi-
librium results for fuzzy differential equations under Bede’s
derivative for fuzzy-number-valued functions are proved.We
apply our main result to the terminal value problem for
ordinary differential equations in fuzzy number spaces, a
particular situation where we would like to dispense with
the uniform continuity assumption of 𝑓. Our results improve
the results given in [8–10, 12, 13] (where uniform continuity
was required), as well as those referred to therein. For
future research, we extend the asymptotic stability and global
attractivity results for the so-called (𝐺𝐶𝑃) fuzzy systems in
our paper.
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