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We propose the variational iteration transform method in the sense of local fractional derivative, which is derived from the
coupling method of local fractional variational iteration method and differential transform method. The method reduces the
integral calculation of the usual variational iteration computations tomore easily handled differential operation. And the technique
is more orderly and easier to analyze computing result as compared with the local fractional variational iteration method. Some
examples are illustrated to show the feature of the presented technique.

1. Introduction

Fractional differential equation has been considered with
great importance due to its demonstrated applications in
various areas such as electrical networks, fluid flow, biology,
and dynamical systems [1–8]. And many classical differential
equations possess a fractional analogy. As a result, a substan-
tial number of methods for solving the fractional differential
equations are developed to solve fractional differential equa-
tions [9–25].

Recently, local fractional derivative and calculus theory
has been introduced by the researcher in [18, 19], which is
set up on fractal geometry and which is the best method
for describing the nondifferential function defined on Cantor
sets.Thephysical explanation of the local fractional derivative
can be seen in [26, 27]. A great deal of research work has
been directed for the nondifferentiable phenomena in fractal
domain concerning local fractional derivative, for example,
[11, 12, 15, 18–25].

Motivated by the ongoing research method of local frac-
tional differential equation, we present variational iteration
transform method, which is the coupling method of local
fractional variational iteration method and differential trans-
form method. It is worth mentioning that since the method
makes the complex iteration calculation more orderly, it may

be considered as an efficient modification of variational iter-
ationmethod.The rest of the paper is organized as follows. In
Section 2, the basicmathematical fundamentals are presented
briefly. In Section 3, the local fractional function differential
transform method for solving the differential equations with
local fractional derivative is investigated. In Section 4, several
examples are illustrated. Finally, in Section 5, the conclusion
is given.

2. Mathematical Fundamentals

In this section, we introduce the basic notions of local frac-
tional derivative, local fractional integral, and local fractional
differential transform method.

2.1. Local Fractional Derivatives and Integrals. The local frac-
tional derivative of𝑢(𝑥) of order𝛼 (0 < 𝛼 ≤ 1) at𝑥

0
is defined

by [18, 19]

𝑢
(𝛼)

(𝑥
0
) = lim
𝑥→𝑥0

Δ
𝛼
(𝑢 (𝑥) − 𝑢 (𝑥

0
))

(𝑥 − 𝑥
0
)
𝛼

= 𝐷
𝑥

(𝛼)
𝑢 (𝑥
0
) =

𝑑
𝛼
𝑢 (𝑥)

𝑑𝑥
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥0

,

(1)

where Δ𝛼(𝑢(𝑥) − 𝑢(𝑥
0
)) ≅ Γ(1 + 𝛼)(𝑢(𝑥) − 𝑢(𝑥

0
)).
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In the interval [𝑎, 𝑏], local fractional integral of 𝑢(𝑥) of
order 𝛼 is given by [18, 19]

𝑎
𝐼
𝑏

(𝛼)
𝑢 (𝑥) =

1

Γ (1 + 𝛼)

lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑢 (𝑡
𝑗
) (Δ𝑡
𝑗
)

𝛼

=

1

Γ (1 + 𝛼)

∫

𝑏

𝑎

𝑢 (𝑡) (𝑑𝑡)
𝛼
,

(2)

where Δ𝑡
𝑗

= 𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .} and

[𝑡
𝑗
, 𝑡
𝑗+1

], 𝑗 = 0, . . . , 𝑁 − 1, and 𝑡
0
= 𝑎, 𝑡

𝑁
= 𝑏 is a partition of

the interval [𝑎, 𝑏].

2.2. Local Fractional Differential Transform Method. Sim-
ilarly in [28–34], the local fractional different transform
𝑈(𝑥, 𝑡) (or 𝑢(𝑥), resp.) of the function 𝑢(𝑥, 𝑡) (or 𝑢(𝑥), resp.)
is defined by the following formula:

𝑈 (𝑥, 𝑘) =

1

Γ (1 + 𝑘𝛼)

[

𝜕
𝑘𝛼

𝜕𝑡
𝑘𝛼

𝑢 (𝑥, 𝑡)]

𝑡=0

(or 𝑈 (𝑘) =

1

Γ (1 + 𝑘𝛼)

[

𝑑
𝑘𝛼
𝑢 (𝑡)

𝑑𝑡
𝑘𝛼

]

𝑡=0

, resp.) .

(3)

Obviously

𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

{𝑈 (𝑥, 𝑘) 𝑡
𝑘𝛼
}

(or 𝑢 (𝑡) =

∞

∑

𝑘=0

{𝑈 (𝑘) 𝑡
𝑘𝛼
} , resp.) .

(4)

If we let

𝑈 (𝑥, 𝑘) = 𝐷𝑇
𝑘 {

𝑢 (𝑥, 𝑡)}

(or 𝑈 (𝑘) = 𝐷𝑇
𝑘
{𝑢 (𝑡)} , resp.)

(5)

and let

𝐷𝑇
−1

𝑘
{𝑈 (𝑥, 𝑘)} =

𝑢
(𝑘𝛼)

(𝑥, 0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

(or 𝐷𝑇
−1

𝑘
{𝑈 (𝑘)} =

𝑢
(𝑘𝛼)

(0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

, resp.)

(6)

then we have

𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝐷𝑇
−1

𝑘
{𝑈 (𝑥, 𝑘)}

(or 𝑢 (𝑡) =

∞

∑

𝑘=0

𝐷𝑇
−1

𝑘
{𝑈 (𝑘)} , resp.) .

(7)

In Table 1, we list a few operations concerning local
fractional differential transform, where 𝑚 is a nonnegative
integer.

Table 1

Original function Transformed function

𝑓 (𝑥) = 𝑥
𝑚𝛼

𝐹 (𝑘) =

{

{

{

1, 𝑘 = 𝑚

0, 𝑘 ̸=𝑚

𝑢 (𝑥) V (𝑥)
𝑘

∑

𝑟=0

{𝑈 (𝑟) 𝑉 (𝑘 − 𝑟)}

𝑢
(𝑚𝛼)

(𝑥)

Γ [1 + (𝑘 + 𝑚) 𝛼]

Γ (1 + 𝑘𝛼)

𝑈 (𝑘 + 𝑚) ; 𝑘 ≥ −𝑚 + 1

𝑓 (𝑥) =
0
𝐼
𝛼

𝑥
⋅ ⋅ ⋅
0
𝐼
𝛼

𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑢 (𝜏) 𝐹 (𝑘) =

Γ (1 + (𝑘 − 𝑘
0
) 𝛼)

Γ (1 + 𝑘𝛼)

𝑈 (𝑘 − 𝑘
0
)

3. Local Fractional Variational Iteration
Transform Method

To introduce the basic ideas of the variational iteration
transform method, we consider the following nonlinear
fractional differential equation in the sense of local fractional
derivative:

𝜕
𝑘𝑜𝛼

𝜕𝑡
𝑘0

𝑇 (𝑥, 𝑡) + 𝐿
𝛼
𝑇 (𝑥, 𝑡) + 𝑅

𝛼
𝑇 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , (8)

where 𝐿
𝛼
is the linear local fractional operator of order less

than 𝑘
0
(𝑘
0
≥ 2), 𝑅

𝛼
is the nonlinear local fractional operator

of order less than 𝑘
0
, and 𝑔(𝑥, 𝑡) is a source term of the

nondifferential function.
According to the local fractional variational iteration

method [20, 35], we can construct local fractional variational
iteration algorithm:

𝑇
𝑛+1

(𝑥, 𝑡) = 𝑇
𝑛
(𝑥, 𝑡) +

0
𝐼
𝑡

((𝑘𝑜−1)𝛼)

× {

𝜆
𝛼
(𝜏)

Γ (1 + 𝛼)

(

𝜕
𝑘𝑜𝛼

𝜕𝑡
𝑘0

𝑇
𝑛
(𝑥, 𝜏) + 𝐿

𝛼
𝑇
𝑛
(𝑥, 𝜏)

+𝑅
𝛼
̃
𝑇
𝑛
(𝑥, 𝜏) − 𝑔 (𝑥, 𝜏) )} ,

(9)

where 𝜆𝛼(𝜏)/Γ(1 + 𝛼) is a fractal Lagrange multiplier.
Suppose 𝛿

𝛼 ̃
𝑇
𝑛
(𝑥, 𝜏) is a restricted local fractional varia-

tion; that is, 𝛿𝛼 ̃𝑇
𝑛
(𝑥, 𝜏) = 0 [20, 35]; we get [21]

𝜆
𝛼
(𝜏)

Γ (1 + 𝛼)

=

(𝜏 − 𝑡)
(𝑘0−1)𝛼

Γ [1 + (𝑘
0
− 1) 𝛼]

. (10)

Substituting (10) into (9), a fractional iteration procedure is
constructed as follows:

𝑇
𝑛+1

(𝑥, 𝑡) = 𝑇
𝑛
(𝑥, 𝑡) +

0
𝐼
𝑡

((𝑘𝑜−1)𝛼)

× {

(𝑥 − 𝑡)
(𝑘0−1)𝛼

Γ [1 + (𝑘
0
− 1) 𝛼]
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× {

𝜕
𝑘𝑜𝛼

𝜕𝑡
𝑘0

𝑇
𝑛 (

𝑥, 𝜏)

+𝐿
𝛼
𝑇
𝑛(
𝑥, 𝜏)+ 𝑅

𝛼
𝑇
𝑛 (

𝑥, 𝜏)− 𝑔 (𝑥, 𝜏) }} .

(11)

Applying local fractional differential transform with
respect to 𝑡 on both sides of (11) and using local fractional
derivative algorithm [18], we obtain

𝐷𝑇
𝑘
(𝑇
𝑛+1

(𝑥, 𝑡)) = 𝐷𝑇
𝑘
(𝑇
0
(𝑥, 𝑡)) , (0 ≤ 𝑘 ≤ 𝑘

0
− 1)

(12)

and also
𝐷𝑇
𝑘
{𝑇
𝑛+1

(𝑥, 𝑡)}

= −𝐷𝑇
𝑘
{
0
𝐼
𝑡

(𝑘𝛼)
(𝐿
𝛼
𝑇
𝑛
(𝑥, 𝜏) + 𝑅

𝛼
𝑇
𝑛
(𝑥, 𝜏) − 𝑔 (𝑥, 𝜏))} ,

(𝑘 ≥ 𝑘
0
) ,

(13)

where 𝑇
0
(𝑥, 𝑡) is an initial value.

By virtue of (5), (12), (13), and the operation displayed in
Table 1, we can yield

𝑇
𝑛+1

(𝑥, 𝑡)

= −

∞

∑

𝑘=𝑘0

𝐷𝑇
−1

𝑘
[

Γ (1 + (𝑘 − 𝑘
0
) 𝛼)

Γ (1 + 𝑘𝛼)

𝑊
𝑛
(𝑥, 𝑘 − 𝑘

0
)]

+

𝑘0−1

∑

𝑘=0

𝐷𝑇
−1

𝑘
{𝐷𝑇
𝑘
(𝑇
0
(𝑥, 𝑘))}

= −

∞

∑

𝑘=𝑘0

𝐷𝑇
−1

𝑘
[

Γ (1 + (𝑘 − 𝑘
0
) 𝛼)

Γ (1 + 𝑘𝛼)

𝑊
𝑛
(𝑥, 𝑘 − 𝑘

0
)]

+

𝑘0−1

∑

𝑘=0

𝑇
(𝑘𝛼)

0
(𝑥, 0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

,

(14)

where

𝑊
𝑛
(𝑥, 𝑘) = 𝐷𝑇

−1

𝑘
(𝑤
𝑛
(𝑥, 𝑡)) (15)

and where

𝑤
𝑛
(𝑥, 𝑡) = 𝐿

𝛼
𝑇
𝑛
(𝑥, 𝑡) + 𝑅

𝛼
𝑇
𝑛
(𝑥, 𝑡) − 𝑔 (𝑥, 𝑡) . (16)

So, we have the exact solution of (8) in the form:
𝑇 (𝑥, 𝑡) = lim

𝑛→∞
𝑇
𝑛+1

(𝑥, 𝑡)

= lim
𝑛→∞

{

{

{

−

∞

∑

𝑘=𝑘0

𝐷𝑇
−1

𝑘

× [

Γ (1 + (𝑘 − 𝑘
0
) 𝛼)

Γ (1 + 𝑘𝛼)

𝑊
𝑛
(𝑥, 𝑘 − 𝑘

0
)]

+

𝑘0−1

∑

𝑘=0

𝑇
(𝑘𝛼)

0
(𝑥, 0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

}

}

}

.

(17)

Now we discuss the solution of the following quadratic
linear fractional differential equations which is the simple
example of (8):

𝜕
2𝛼
𝑇 (𝑥, 𝑡)

𝜕𝑡
2𝛼

+ 𝑝
1

𝜕
2𝛼
𝑇 (𝑥, 𝑡)

𝜕𝑥
2𝛼

+ 𝑝
2

𝜕
𝛼
𝑇 (𝑥, 𝑡)

𝜕𝑡
𝛼

+ 𝑝
3

𝜕
𝛼
𝑇 (𝑥, 𝑡)

𝜕𝑥
𝛼

+ 𝑝
4
𝑇 (𝑥, 𝑡) = 0,

(18)

where 𝑝
1
, 𝑝
2
, 𝑝
3
, and 𝑝

4
are all constant numbers.

According to (9), the correction iteration algorithm is
given as follows:

𝑇
𝑛+1

(𝑥, 𝑡) = 𝑇
𝑛
(𝑥, 𝑡) +

0
𝐼
𝛼

𝑡

× {

(𝜏 − 𝑡)
(𝛼)

Γ (1 + 𝛼)

{𝐿
(2𝛼)

𝑡𝑡
𝑇
𝑛
+ 𝑝
1
𝐿
(2𝛼)

𝑥𝑥
𝑇
𝑛
+ 𝑝
2
𝐿
(𝛼)

𝑡
𝑇
𝑛

+𝑝
3
𝐿
(𝛼)

𝑥
𝑇
𝑛
+ 𝑝
4
𝑇
𝑛
} } .

(19)

Taking local fractional differential transform with respect to
𝑡 on (19), we deduce

𝐷𝑇
𝑘
(𝑇
𝑛+1 (

𝑥))

= −𝐷𝑇
𝑘−2

(𝑝
1
𝐿
(2𝛼)

𝑥𝑥
𝑇
𝑛
+ 𝑝
2
𝐿
(𝛼)

𝑡
𝑇
𝑛
+ 𝑝
3
𝐿
(𝛼)

𝑥
𝑇
𝑛
+ 𝑝
4
𝑇
𝑛
) ,

(𝑘 ≥ 2)

𝐷𝑇
𝑘
(𝑇
𝑛+1

(𝑥)) = 𝐷𝑇
𝑘
(𝑇
0
(𝑥)) , (𝑘 = 0, 1) ,

(20)

where

𝑇
𝑛
(𝑥, 𝑡) = 𝑢

𝑛
(𝑡) 𝑓
𝑛
(𝑥) (21)

and where

𝑈
𝑛
(𝑘) = 𝐷𝑇

𝑘
(𝑢
𝑛
(𝑡)) . (22)

By using (20), (21), (22), and the results included in Table 1,
we obtain

𝑈
𝑛+1

(𝑘) 𝑓
𝑛+1

(𝑥)

= − (𝑝
1
𝑓
(2𝛼)

𝑛
(𝑥) + 𝑝

3
𝑓
(𝛼)

𝑛
(𝑥) + 𝑝

4
𝑓
𝑛
(𝑥))

× 𝐷𝑇
𝑘
{
0
𝐼
(2𝛼)

𝑡
(𝑢
𝑛
)} − 𝑝

2
𝑓
𝑛 (

𝑥)𝐷𝑇
𝑘
{
0
𝐼
(𝛼)

𝑡
(𝑢
𝑛
)}

= − (𝑝
1
𝑓
(2𝛼)

𝑛
(𝑥) + 𝑝

3
𝑓
(𝛼)

𝑛
(𝑥) + 𝑝

4
𝑓
𝑛
(𝑥))

𝑈 (𝑘 − 2)

𝑘𝛼 (𝑘 − 1) 𝛼

− 𝑝
2
𝑓
𝑛
(𝑥)

𝑈 (𝑘 − 1)

𝑘𝛼

, (𝑘 ≥ 2)

(23)

and also

𝑈
𝑛+1

(𝑘) 𝑓
𝑛+1

(𝑥) = 𝑈
0
(𝑘) 𝑓
𝑛+1

(𝑥) , (0 ≤ 𝑘 ≤ 1) . (24)
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If we let

𝑝
1
𝑓
(2𝛼)

0
(𝑥) + 𝑝

3
𝑓
(𝛼)

0
(𝑥) + 𝑝

4
𝑓
0
(𝑥) = 𝑝

5
𝑓
0
(𝑥) , (25)

then

𝑓
𝑛
(𝑥) = 𝑓

0
(𝑥) . (26)

By (23), (24), and (26), we have

𝑈
𝑛+1

(𝑘) = −𝑝
5

𝑈
𝑛
(𝑘 − 2)

𝑘𝛼 (𝑘 − 1) 𝛼

− 𝑝
2

𝑈
𝑛
(𝑘 − 1)

𝑘𝛼

, (𝑘 ≥ 2)

𝑈
𝑛+1

(𝑘) = 𝑈
0
(𝑘) , (𝑘 = 0, 1) .

(27)

According to (14) and (27), we get

𝑢
𝑛+1

(𝑡) =

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
[−𝑝
5

𝑈
𝑛
(𝑘 − 2)

𝑘𝛼 (𝑘 − 1) 𝛼

− 𝑝
2

𝑈
𝑛
(𝑘 − 1)

𝑘𝛼

]

+

1

∑

𝑘=0

𝑢
(𝑘𝛼)

0
(0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

.

(28)

Taking the limit, we arrive at

𝑢 (𝑡) = lim
𝑛→∞

𝑢
𝑛+1

(𝑡)

= lim
𝑛→∞

{

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
[−𝑝
5

𝑈
𝑛
(𝑘 − 2)

𝑘𝛼 (𝑘 − 1) 𝛼

− 𝑝
2

𝑈
𝑛
(𝑘 − 1)

𝑘𝛼

]

+

1

∑

𝑘=0

𝑢
(𝑘𝛼)

0
(0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

} .

(29)

Hence, under the condition equation (25), the exact
solution of (18) reads as follows:

𝑇 (𝑥, 𝑡) = 𝑢 (𝑡) 𝑓
0
(𝑥) . (30)

4. Illustrative Examples

In porous media, there are fractals [35]. In fractal media,
there are lots of mathematical physical models by the local
differential fractional equation, for example, [36, 37]. In this
section, we will present the solution of several equations
or system of equations to assess the validity of variational
iteration transform method.

Case 1. Consider the following nonlinear local fractional
wave-like differential equation with variable coefficients:

𝜕
2𝛼
𝑇

𝜕𝑡
2𝛼

−

𝑥
2𝛼

Γ (1 + 2𝛼)

𝜕
𝛼
(𝐷
𝑥

(𝛼)
(𝑇)𝐷

𝑥

(2𝛼)
(𝑇))

𝜕𝑥
𝛼

+

𝑥
2𝛼

Γ (1 + 2𝛼)

(

𝜕
2𝛼
𝑇

𝜕𝑥
2𝛼

)

2

+ 𝑇 = 0,

(𝑡 > 0, 0 < 𝑥 < 1) ,

(31)

where

𝑇 = 𝑇 (𝑥, 𝑡) , (32)

subject to the initial conditions

𝑇 (𝑥, 0) = 0,

𝜕
𝛼

𝜕𝑡
𝛼
𝑇 (𝑥, 0) =

𝑥
2𝛼

Γ (1 + 2𝛼)

. (33)

From (33) we take the initial value, which reads

𝑇
0 (

𝑥, 𝑡) =

𝑥
2𝛼

Γ (1 + 2𝛼)

𝑡
𝛼

Γ (1 + 𝛼)

. (34)

By using (31), we structure a local fractional iteration proce-
dure as follows:

𝑇
𝑛+1

= 𝑇
𝑛
+
0
𝐼
𝑡

(𝛼)

× {

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)

(

𝜕
2𝛼
𝑇
𝑛

𝜕𝑡
2𝛼

−

𝑥
2𝛼

Γ (1 + 2𝛼)

×

𝜕
𝛼
(𝐷
𝑥

(𝛼)
(𝑇
𝑛
)𝐷
𝑥

(2𝛼)
(𝑇
𝑛
))

𝜕𝑥
𝛼

+

𝑥
𝛼

Γ (1 + 𝛼)

(

𝜕
2𝛼
𝑇
𝑛

𝜕𝑥
2𝛼

)

2

+ 𝑇
𝑛
)} ,

(35)

where

𝑇
𝑛
= 𝑇
𝑛
(𝑥, 𝑡) . (36)

Let

𝑤
𝑛
(𝑥, 𝜏) = −

𝑥
2𝛼

Γ (1 + 2𝛼)

𝜕
𝛼
(𝐷
𝑥

(𝛼)
(𝑇
𝑛
)𝐷
𝑥

(2𝛼)
(𝑇
𝑛
))

𝜕𝑥
𝛼

+

𝑥
𝛼

Γ (1 + 𝛼)

(

𝜕
2𝛼
𝑇
𝑛

𝜕𝑥
2𝛼

)

2

+ 𝑇
𝑛
.

(37)

According to (14), we can derive

𝑇
1
(𝑥, 𝑡) =

1

∑

𝑘=0

𝑇
(𝑘𝛼)

0
(𝑥, 0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

−

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
[

1

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

𝑊
0
(𝑥, 𝑘 − 2)]

= 𝑇
0
(𝑥, 𝑡) −

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
{

1

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

𝑊
0
(𝑥, 𝑘 − 2)}

= 𝑇
0
(𝑥, 𝑡) − 𝐷𝑇

−1

2
(

𝑊
0
(𝑥, 1)

Γ (1 + 3𝛼)

)

=

𝑥
2𝛼

Γ (1 + 2𝛼)

(

𝑡
𝛼

Γ (1 + 𝛼)

−

𝑡
3𝛼

Γ (1 + 3𝛼)

) ;
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𝑇
2 (

𝑥, 𝑡) =

1

∑

𝑘=0

𝑇
(𝑘𝛼)

0
(𝑥, 0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

−

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
[

1

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

𝑊
1 (

𝑥, 𝑘 − 2)]

= 𝑇
1 (

𝑥, 𝑡) − 𝐷𝑇
−1

4
{

1

5𝛼 ⋅ 4𝛼

𝑊
1 (

𝑥, 3)}

=

𝑥
2𝛼

Γ (1 + 2𝛼)

(

𝑡
𝛼

Γ (1 + 𝛼)

−

𝑡
3𝛼

Γ (1 + 3𝛼)

+

𝑡
5𝛼

Γ (1 + 5𝛼)

) ;

...
(38)

Proceeding in this manner, we get

𝑇
𝑛
(𝑥, 𝑡) =

𝑥
2𝛼

Γ (1 + 2𝛼)

(

𝑡
𝛼

Γ (1 + 𝛼)

−

𝑡
3𝛼

Γ (1 + 3𝛼)

+

𝑡
5𝛼

Γ (1 + 5𝛼)

− ⋅ ⋅ ⋅ + (−1)
𝑛+1 𝑡

(2𝑛−1)𝛼

Γ (1 + (2𝑛 − 1) 𝛼)

) .

(39)

Thus, the exact solution of (31) is given in the form:

𝑇 (𝑥, 𝑡) = lim
𝑛→∞

𝑇
𝑛
(𝑥, 𝑡) =

𝑥
2𝛼

Γ (1 + 2𝛼)

× (

𝑡
𝛼

Γ (1 + 𝛼)

−

𝑡
3𝛼

Γ (1 + 3𝛼)

+

𝑡
5𝛼

Γ (1 + 5𝛼)

− ⋅ ⋅ ⋅ + (−1)
𝑛+1 𝑡

(2𝑛−1)𝛼

Γ (1 + (2𝑛 − 1) 𝛼)

+ ⋅ ⋅ ⋅ ) .

=

𝑥
2𝛼

Γ (1 + 2𝛼)

sin
𝛼
(𝑡
𝛼
) .

(40)

Case 2. Consider the following local fractional equation:

𝜕
2𝛼
𝑇 (𝑥, 𝑡)

𝜕𝑡
2𝛼

+ 2
𝛼 𝜕
2𝛼
𝑇 (𝑥, 𝑡)

𝜕𝑥
2𝛼

+ 9
𝛼
𝑇 (𝑥, 𝑡) = 0 (41)

subject to the initial conditions

𝑇 (𝑥, 0) = sin
𝛼
(2𝑥
𝛼
) ,

𝜕
𝛼

𝜕𝑡
𝛼
𝑇 (𝑥, 0) = 0. (42)

According to (41), we structure the following iteration
formula:

𝑇
𝑛+1

(𝑥, 𝑡) = 𝑇
𝑛
(𝑥, 𝑡) +

0
𝐼
𝑡

(𝛼)

× {

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)

(

𝜕
2𝛼
𝑇 (𝑥, 𝜏)

𝜕𝑡
2𝛼

+ 2
𝛼 𝜕
2𝛼
𝑇 (𝑥, 𝜏)

𝜕𝑥
2𝛼

+9
𝛼
𝑇 (𝑥, 𝜏) )} .

(43)

By using (25) and (42), we take an initial value as

𝑇
0
(𝑥, 𝑡) = sin

𝛼
(2𝑥
𝛼
) . (44)

According to (23) and (43), we can get

𝑈
𝑛+1

(𝑘) = −

𝑈
𝑛
(𝑘 − 2)

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

, (𝑘 ≥ 2) (45)

and moreover

𝑇
𝑛+1 (

𝑥, 𝑡) = sin
𝛼
(2𝑥
𝛼
)

1

∑

𝑘=0

𝑢
(𝑘𝛼)

0
(𝑥, 0)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

+ sin
𝛼
(2𝑥
𝛼
)

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

−𝑈
𝑛 (

𝑘 − 2)

(𝑘 − 1) 𝛼 ⋅ 𝑘𝛼

)

= 𝑇
0
(𝑥, 𝑡) + sin

𝛼
(2𝑥
𝛼
)

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

−𝑈
𝑛
(𝑘 − 2)

(𝑘 − 1) 𝛼 ⋅ 𝑘𝛼

) .

(46)

Thus we have

𝑇
1 (

𝑥, 𝑡) = 𝑇
0 (

𝑥, 𝑡) + sin
𝛼
(2𝑥
𝛼
)

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

−𝑈
0 (

𝑘 − 2)

(𝑘 − 1) 𝛼 ⋅ 𝑘𝛼

)

= sin
𝛼
(2𝑥
𝛼
) − sin

𝛼
(2𝑥
𝛼
)𝐷𝑇
−1

2
(

𝑈
0
(0)

𝛼 ⋅ 2𝛼

)

= sin
𝛼
(2𝑥
𝛼
) (1
𝛼
−

𝑡
2𝛼

Γ (1 + 2𝛼)

) ;

𝑇
2 (

𝑥, 𝑡) = 𝑇
0 (

𝑥, 𝑡) + sin
𝛼
(2𝑥
𝛼
)

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

−𝑈
1
(𝑘 − 2)

(𝑘 − 1) 𝛼 ⋅ 𝑘𝛼

)

= sin
𝛼
(2𝑥
𝛼
) (1
𝛼
−

𝑡
2𝛼

Γ (1 + 2𝛼)

)

− 𝐷𝑇
−1

4
(𝐸
𝛼
(𝑥
𝛼
)

𝑈
1
(2)

4𝛼 ⋅ 3𝛼

)

= sin
𝛼
(2𝑥
𝛼
) (1
𝛼
−

𝑡
2𝛼

Γ (1 + 2𝛼)

+

𝑡
4𝛼

Γ (1 + 4𝛼)

) ;

𝑇
3
(𝑥, 𝑡) = sin

𝛼
(2𝑥
𝛼
)

× (1
𝛼
−

𝑡
2𝛼

Γ (1 + 2𝛼)

+

𝑡
4𝛼

Γ (1 + 4𝛼)

−

𝑡
6𝛼

Γ (1 + 6𝛼)

) ;

...
(47)

Continuing in this manner, we obtain

𝑇
𝑛
(𝑥, 𝑡) = sin

𝛼
(2𝑥
𝛼
)(

∞

∑

𝑘=0

(−1)
𝑘
𝑡
2𝑘𝛼

Γ (1 + 2𝑘𝛼)

) . (48)
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Thus, the expression of the exact solution of (41) is given by

𝑇 (𝑥, 𝑡) = lim
𝑛→∞

𝑇
𝑛
(𝑥, 𝑡)

= sin
𝛼
(2𝑥
𝛼
)(

∞

∑

𝑘=0

(−1)
𝑘
𝑡
2𝑘𝛼

Γ (1 + 2𝑘𝛼)

)

= sin
𝛼
(2𝑥
𝛼
) cos
𝛼
(−𝑡
𝛼
) .

(49)

According to the ideas of local fractional variational
iteration transform method, we can also deal with fractional
differential equation system with a similar method.

Case 3. Consider the system of local fractional coupled
Helmholtz equations

𝜕
2𝛼
𝑢
1
(𝑥, 𝑡)

𝜕𝑡
2𝛼

+

𝜕
2𝛼
𝑢
2
(𝑥, 𝑡)

𝜕𝑥
2𝛼

− 𝑢
1
(𝑥, 𝑡) = 0,

𝜕
2𝛼
𝑢
2
(𝑥, 𝑡)

𝜕𝑡
2𝛼

+

𝜕
2𝛼
𝑢
1
(𝑥, 𝑡)

𝜕𝑥
2𝛼

− 𝑢
2
(𝑥, 𝑡) = 0

(50)

with the initial conditions

𝜕
𝛼

𝜕𝑡
𝛼
𝑢
1 (

𝑥, 0) = 𝐸
𝛼
(𝑥
𝛼
) , 𝑢

1 (
𝑥, 0) = 0. (51)

Nowwe can structure the similar local fractional iteration
procedure.

Using (51), we take an initial value as

𝑢
1,0

(𝑥, 𝑡) =

𝑡
𝛼
𝐸
𝛼
(𝑥
𝛼
)

Γ (1 + 𝛼)

. (52)

According to variational iteration method [38], we can
similarly construct local fractional variational iteration for-
mula

𝑢
1,𝑛+1

(𝑥, 𝑡) = 𝑢
1,𝑛

(𝑥, 𝑡)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)

(

𝜕
2𝛼
𝑢
1,𝑛 (

𝑥, 𝜏)

𝜕𝜏
2𝛼

+

𝜕
2𝛼
𝑢
2,𝑛

(𝑥, 𝜏)

𝜕𝑥
2𝛼

− 𝑢
1,𝑛

)} ,

𝑢
2,𝑛+1

(𝑥, 𝑡) = 𝑢
2,𝑛

(𝑥, 𝑡)

+
0
𝐼
𝑡

(𝛼)
{

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)

(

𝜕
2𝛼
𝑢
2,𝑛

(𝑥, 𝜏)

𝜕𝜏
2𝛼

+

𝜕
2𝛼
𝑢
1,𝑛 (

𝑥, 𝜏)

𝜕𝑥
2𝛼

− 𝑢
2,𝑛

)} .

(53)

Applying local fractional differential transform and inte-
gral transformation on (53), we can easily get

𝐷𝑇
𝑘
{𝑢
1,𝑛+1

(𝑥, 𝑡)}

= −𝐷𝑇
𝑘
{
0
𝐼
𝑡

(𝛼)

0
𝐼
𝑡

(𝛼)
{

𝜕
2𝛼
𝑢
2,𝑛

(𝑥, 𝜏)

𝜕𝑥
2𝛼

− 𝑢
1,𝑛

(𝑥, 𝜏)}} ,

𝐷𝑇
𝑘
{𝑢
2,𝑛+1

(𝑥, 𝑡)}

= −𝐷𝑇
𝑘
{
0
𝐼
𝑡

(𝛼)

0
𝐼
𝑡

(𝛼)
{

𝜕
2𝛼
𝑢
1,𝑛

(𝑥, 𝜏)

𝜕𝑥
2𝛼

− 𝑢
2,𝑛

(𝑥, 𝜏)}} ,

(𝑘 ≥ 2) .

(54)

Analyzing (52) and (54), we can deduce

𝐷𝑇
𝑘
{𝑢
1,𝑛+1 (

𝑥, 𝑡)} = −𝐷𝑇
𝑘
{𝑢
2,𝑛+1 (

𝑥, 𝑡)} ,

𝐷𝑇
𝑘
{𝑢
2,𝑛+1 (

𝑥, 𝑡)} = 2𝐷𝑇
𝑘
{
0
𝐼
𝑡

(𝛼)

0
𝐼
𝑡

(𝛼)
(𝑢
2,𝑛 (

𝑥, 𝑡))} .

(55)

According to (54) and (55), we have

𝑈
𝑛+1

(𝑥, 𝑘) = 2

𝑈
𝑛
(𝑥, 𝑘 − 2)

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

, (𝑘 ≥ 2) . (56)

From (52), we can deduce

𝑈
𝑛+1 (

𝑥, 𝑘)= 2

𝑈
𝑛(
𝑥, 𝑘 − 2)

𝑘𝛼 ⋅(𝑘 − 1) 𝛼

(𝑘 ≥ 2, 𝑘 = 2𝑘
󸀠
− 1, 𝑘

󸀠
∈ 𝑁) ,

𝑈
𝑛+1

(𝑥, 𝑘) = 0, (𝑘 ≥ 2, 𝑘 = 2𝑘
󸀠
, 𝑘
󸀠
∈ 𝑁) .

(57)

Then we get

𝑢
1,𝑛+1

(𝑥, 𝑡) =

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

2𝑈
1,𝑛

(𝑥, 𝑘 − 2)

𝑘𝛼 (𝑘 − 1) 𝛼

)

+

1

∑

𝑘=0

𝑢
(𝑘𝛼)

1,0
(𝑥, 𝑘)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

.

(58)

By virtue of (58), we have

𝑢
1,1

(𝑥, 𝑡)

=

1

∑

𝑘=0

𝑢
(𝑘𝛼)

1,0
(𝑥, 𝑘)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

+

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

2𝑈
1,0 (

𝑥, 𝑘 − 2)

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

)

=

𝑡
𝛼
𝐸
𝛼
(𝑥
𝛼
)

Γ (1 + 𝛼)

+ 𝐷𝑇
−1

3
(

2𝑈
1,0

(𝑥, 1)

3𝛼 ⋅ 2𝛼

)

= 𝐸
𝛼
(𝑥
𝛼
) (

𝑡
𝛼

Γ (1 + 𝛼)

+

2𝑡
3𝛼

Γ (1 + 3𝛼)

) ;

𝑢
1,2

(𝑥, 𝑡)

=

1

∑

𝑘=0

𝑢
(𝑘𝛼)

1,0
(𝑥, 𝑘)

Γ (1 + 𝑘𝛼)

𝑡
𝑘𝛼

Γ (1 + 𝑘𝛼)

+

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

2𝑈
1,1

(𝑥, 𝑘 − 2)

𝑘𝛼 (𝑘 − 1) 𝛼

)
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= 𝐸
𝛼
(𝑥
𝛼
) (

𝑡
𝛼

Γ (1 + 𝛼)

+

2𝑡
3𝛼

Γ (1 + 3𝛼)

)

+ 𝐷𝑇
−1

5
(

2𝑈
1,1

(𝑥, 3)

4𝛼 ⋅ 5𝛼

)

= 𝐸
𝛼
(𝑥
𝛼
) (

𝑡
𝛼

Γ (1 + 𝛼)

+

2𝑡
3𝛼

Γ (1 + 3𝛼)

+

4𝑡
5𝛼

Γ (1 + 5𝛼)

) ;

𝑢
1,3 (

𝑥, 𝑡)

= 𝐸
𝛼
(𝑥
𝛼
) (

𝑡
𝛼

Γ (1 + 𝛼)

+

2𝑡
3𝛼

Γ (1 + 3𝛼)

+

4𝑡
5𝛼

Γ (1 + 5𝛼)

+

8𝑡
7𝛼

Γ (1 + 7𝛼)

) ;

...
(59)

Then we derive the following result:

𝑢
1,𝑛

(𝑥, 𝑡) = 𝐸
𝛼
(𝑥
𝛼
)(

𝑛

∑

𝑘=0

2
𝑘
𝑡
(2𝑘+1)𝛼

Γ (1 + (2𝑘 + 1) 𝛼)

) . (60)

Obviously

𝑢
2,𝑛

(𝑥, 𝑡) = −𝑢
1,𝑛

(𝑥, 𝑡) = −𝐸
𝛼
(𝑥
𝛼
)(

𝑛

∑

𝑘=0

2
𝑘
𝑡
(2𝑘+1)𝛼

Γ (1 + (2𝑘 + 1) 𝛼)

) .

(61)

Thus, the expression of the final solution of (50) reads as
follows:

𝑢
1 (

𝑥, 𝑡) = lim
𝑛→∞

𝑢
1,𝑛 (

𝑥, 𝑡) = 𝐸
𝛼
(𝑥
𝛼
)

sinh
𝛼
(√2𝑡)

𝛼

√2

,

𝑢
2 (

𝑥, 𝑡) = lim
𝑛→∞

𝑢
2,𝑛 (

𝑥, 𝑡) = −𝐸
𝛼
(𝑥
𝛼
)

sinh
𝛼
(√2𝑡)

𝛼

√2

.

(62)

Case 4. Consider the system of local fractional coupled
Burger’s equations

𝜕
𝛼
𝑢
1 (

𝑥, 𝑡)

𝜕𝑡
𝛼

+

𝜕
2𝛼
𝑢
1 (

𝑥, 𝑡)

𝜕𝑥
2𝛼

− 2

𝜕
𝛼
𝑢
1 (

𝑥, 𝑡)

𝜕𝑥
𝛼

𝑢
1
(𝑥, 𝑡)

+

𝜕
𝛼
[𝑢
1
(𝑥, 𝑡) 𝑢

2
(𝑥, 𝑡)]

𝜕𝑥
𝛼

= 0,

𝜕
𝛼
𝑢
2
(𝑥, 𝑡)

𝜕𝑡
𝛼

+

𝜕
2𝛼
𝑢
2
(𝑥, 𝑡)

𝜕𝑥
2𝛼

− 2

𝜕
𝛼
𝑢
2
(𝑥, 𝑡)

𝜕𝑥
𝛼

𝑢
2 (

𝑥, 𝑡)

+

𝜕
𝛼
[𝑢
1
(𝑥, 𝑡) 𝑢

2
(𝑥, 𝑡)]

𝜕𝑥
𝛼

= 0

(63)

with the initial conditions

𝑢
1
(𝑥, 0) = 𝑢

2
(𝑥, 0) = 𝐸

𝛼
(𝑥
𝛼
) ,

𝑢
1
(𝑥, 0) = 𝑢

1
(𝑥, 0) = 𝐸

𝛼
(𝑥
𝛼
) .

(64)

Nowwe can structure the similar local fractional iteration
procedure.

Using (64), we take an initial value as

𝑢
1,0

(𝑥, 𝑡) = 𝑢
2,0

(𝑥, 𝑡) = 𝐸
𝛼
(𝑡
𝛼
) . (65)

According to variational iteration method [38], we can
similarly construct local fractional variational iteration for-
mula
𝑢
1,𝑛+1

(𝑥, 𝑡)

= 𝑢
1,𝑛

(𝑥, 𝑡)

+
0
𝐼
𝑥

(𝛼)
{

(𝜏 − 𝑥)
𝛼

Γ (1 + 𝛼)

(

𝜕
𝛼
𝑢
1,𝑛

𝜕𝑡
𝛼

+

𝜕
2𝛼
𝑢
1,𝑛

𝜕𝑥
2𝛼

−2

𝜕
𝛼
𝑢
1,𝑛

𝜕𝑥
𝛼

𝑢
1,𝑛

+

𝜕
𝛼
(𝑢
1,𝑛

𝑢
2,𝑛

)

𝜕𝑥
𝛼

)} ,

𝑢
2,𝑛+1

(𝑥, 𝑡)

= 𝑢
2,𝑛 (

𝑥, 𝑡)

+
0
𝐼
𝑥

(𝛼)
{

(𝜏 − 𝑥)
𝛼

Γ (1 + 𝛼)

(

𝜕
𝛼
𝑢
2,𝑛

𝜕𝑡
𝛼

+

𝜕
2𝛼
𝑢
2,𝑛

𝜕𝑥
2𝛼

−2

𝜕
𝛼
𝑢
2,𝑛

𝜕𝑥
𝛼

𝑢
2,𝑛

+

𝜕
𝛼
(𝑢
1,𝑛

𝑢
2,𝑛

)

𝜕𝑥
𝛼

)} .

(66)

Applying local fractional differential transform and inte-
gral transformation on (66), we can easily get

𝐷𝑇
𝑘
{𝑢
1,𝑛+1

(𝑥, 𝑡)}

= −𝐷𝑇
𝑘
{
0
𝐼
𝑥

(𝛼)

0
𝐼
𝑥

(𝛼)

×{

𝜕
𝛼
𝑢
1,𝑛

𝜕𝑡
𝛼

− 2

𝜕
𝛼
𝑢
1,𝑛

𝜕𝑥
𝛼

𝑢
1,𝑛

+

𝜕
𝛼
(𝑢
1,𝑛

𝑢
2,𝑛

)

𝜕𝑥
𝛼

}} ,

𝐷𝑇
𝑘
{𝑢
2,𝑛+1

(𝑥, 𝑡)}

= −𝐷𝑇
𝑘
{
0
𝐼
𝑥

(𝛼)

0
𝐼
𝑥

(𝛼)

×{

𝜕
𝛼
𝑢
2,𝑛

𝜕𝑡
𝛼

− 2

𝜕
𝛼
𝑢
2,𝑛

𝜕𝑥
𝛼

𝑢
2,𝑛

+

𝜕
𝛼
(𝑢
1,𝑛

𝑢
2,𝑛

)

𝜕𝑥
𝛼

}} ,

(𝑘 ≥ 2) .

(67)

Analyzing (64) and (67), we can deduce

𝐷𝑇
𝑘
{𝑢
1,𝑛+1

(𝑥, 𝑡)} = 𝐷𝑇
𝑘
{𝑢
2,𝑛+1

(𝑥, 𝑡)} ,

𝐷𝑇
𝑘
{𝑢
2,𝑛+1

(𝑥, 𝑡)} = −𝐷𝑇
𝑘
{
0
𝐼
𝑥

(𝛼)

0
𝐼
𝑥

(𝛼)
(𝑢
2,𝑛

(𝑥, 𝑡))} .

(68)

According to (67) and (68), we have

𝑈
1,𝑛+1 (

𝑘, 𝑡) = −

𝑈
1,𝑛 (

𝑘 − 2, 𝑡)

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

, (𝑘 ≥ 2) . (69)
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From (64), we can deduce

𝑈
1,𝑛+1

(𝑘, 𝑡) = −

𝑈
1,𝑛 (

𝑘 − 2, 𝑡)

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

(𝑘 ≥ 2, 𝑘 = 2𝑘
󸀠
, 𝑘
󸀠
∈ 𝑁) ,

𝑈
𝑛+1

(𝑘, 𝑡) = 0, (𝑘 ≥ 2, 𝑘 = 2𝑘
󸀠
− 1, 𝑘

󸀠
∈ 𝑁) .

(70)

Then we get

𝑢
1,𝑛+1

(𝑥, 𝑡) =

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

−𝑈
1,𝑛

(𝑘 − 2, 𝑡)

𝑘𝛼 (𝑘 − 1) 𝛼

)

+

1

∑

𝑘=0

𝑢
(𝑘𝛼)

1,0
(𝑘, 𝑡)

Γ (1 + 𝑘𝛼)

𝑥
𝑘𝛼

Γ (1 + 𝑘𝛼)

.

(71)

By virtue of (71), we have

𝑢
1,1

(𝑥, 𝑡)

=

1

∑

𝑘=0

𝑢
(𝑘𝛼)

1,0
(𝑘, 𝑡)

Γ (1 + 𝑘𝛼)

𝑥
𝑘𝛼

Γ (1 + 𝑘𝛼)

+

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

−𝑈
1,0

(𝑘 − 2, 𝑡)

𝑘𝛼 ⋅ (𝑘 − 1) 𝛼

)

= 𝐸
𝛼
(𝑡
𝛼
) + 𝐷𝑇

−1

2
(

−𝑈
1,0

(0, 𝑡)

2𝛼 ⋅ 𝛼

)

= 𝐸
𝛼
(𝑡
𝛼
) (1
𝛼
−

𝑥
2𝛼

Γ (1 + 2𝛼)

) ;

𝑢
1,2

(𝑥, 𝑡)

=

1

∑

𝑘=0

𝑢
(𝑘𝛼)

1,0
(𝑘, 𝑡)

Γ (1 + 𝑘𝛼)

𝑥
𝑘𝛼

Γ (1 + 𝑘𝛼)

+

∞

∑

𝑘=2

𝐷𝑇
−1

𝑘
(

−𝑈
1,1

(𝑘 − 2, 𝑡)

𝑘𝛼 (𝑘 − 1) 𝛼

)

= 𝐸
𝛼
(𝑡
𝛼
) (1
𝛼
−

𝑥
2𝛼

Γ (1 + 2𝛼)

) + 𝐷𝑇
−1

4
(

−𝑈
1,1 (

2, 𝑡)

4𝛼 ⋅ 3𝛼

)

= 𝐸
𝛼
(𝑡
𝛼
) (1
𝛼
−

𝑥
2𝛼

Γ (1 + 2𝛼)

+

𝑥
4𝛼

Γ (1 + 4𝛼)

) ;

𝑢
1,3 (

𝑥, 𝑡)

= 𝐸
𝛼
(𝑡
𝛼
) (1
𝛼
−

𝑥
2𝛼

Γ (1 + 2𝛼)

+

𝑥
4𝛼

Γ (1 + 4𝛼)

−

𝑥
6𝛼

Γ (1 + 6𝛼)

) ;

...
(72)

Then we derive the following result:

𝑢
1,𝑛

(𝑥, 𝑡) = 𝐸
𝛼
(𝑡
𝛼
)(

𝑛

∑

𝑘=0

(−1)
𝑘 𝑥

2𝑘𝛼

Γ (1 + 2𝑘𝛼)

) . (73)

Obviously

𝑢
2,𝑛

(𝑥, 𝑡) = 𝑢
1,𝑛

(𝑥, 𝑡) = 𝐸
𝛼
(𝑡
𝛼
)(

𝑛

∑

𝑘=0

(−1)
𝑘 𝑥

2𝑘𝛼

Γ (1 + 2𝑘𝛼)

) .

(74)

Thus, the expression of the final solution of (63) reads as
follows:

𝑢
1
(𝑥, 𝑡) = lim

𝑛→∞
𝑢
1,𝑛

(𝑥, 𝑡) = 𝐸
𝛼
(𝑡
𝛼
) cos
𝛼
(𝑥
𝛼
) ,

𝑢
2 (

𝑥, 𝑡) = lim
𝑛→∞

𝑢
2,𝑛 (

𝑥, 𝑡) = 𝐸
𝛼
(𝑡
𝛼
) cos
𝛼
(𝑥
𝛼
) .

(75)

5. Conclusions

In this work, we proposed the local fractional iteration
transform method. The applications of the methods for
solving fractional differential equations with local fractional
derivative are discussed in several cases.Themethod provides
the variational iteration formula in the form of polynomial
or Maclaurin’s series, which is more easily to deal with
convergence and approximate problem. Of course, the new
problems are beyond the scope of the present work.
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