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Training of an artificial neural network (ANN) adjusts the internal weights of the network in order to minimize a predefined
error measure. This error measure is given by an error function. Several different error functions are suggested in the literature.
However, the far most common measure for regression is the mean square error. This paper looks into the possibility of improving
the performance of neural networks by selecting or defining error functions that are tailor-made for a specific objective. A neural
network trained to simulate tension forces in an anchor chain on a floating offshore platform is designed and tested. The purpose
of setting up the network is to reduce calculation time in a fatigue life analysis. Therefore, the networks trained on different error
functions are compared with respect to accuracy of rain flow counts of stress cycles over a number of time series simulations. It is
shown that adjusting the error function to perform significantly better on a specific problem is possible. On the other hand. it is
also shown that weighted error functions actually can impair the performance of an ANN.

1. Introduction

Over the years, oil and gas exploration has moved towards
more and more harsh environments. In deep and ultra-deep
water installations the reliability of flexible risers and anchor
lines is of paramount importance. Therefore, the design and
analysis of these structures draw an increasing amount of
attention.

Flexible risers and mooring line systems exhibit large
deflections in service. Analysis of this behavior requires
large nonlinear numerical models and long time-domain
simulations [1, 2]. Thus, reliable analysis of these types of
structures is computationally expensive.Over the last decades
an extensive variety of techniques and methods to reduce
this computational cost have been suggested. A review of
the most common concepts of analysis is given in [3]. One
method that has shown promising preliminary results is a
hybrid method which combines the finite element method
(FEM) and artificial neural network (ANN) [4]. The ANN

is a pattern recognition tool that based on sufficient training
can perform nonlinear mapping between a given input and a
corresponding output. The reader may consult, for example,
Warner and Misra [5] for a fast thorough introduction to
neural networks and their features. The idea with the hybrid
method is to first perform a response analysis for a structure
using a FEM model and then subsequently to use these
results to train an ANN to recognize and predict the response
for future loads. As demonstrated by Ordaz-Hernandez et
al. [6] an ANN can be trained to predict the deformation
of a nonlinear cantilevered beam. A similar approach was
used by Hosseini and Abbas [7] when they predicted the
deflection of clamped beams struck by a mass. In connection
with analysis of marine structures Guarize et al. [8] have
shown that a well-trained ANN with very high accuracy
can reduce dynamic simulation time for analysis of flexible
risers by a factor of about 20. However, a problem with this
method is that an ANN can only make accurate predictions
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based on sufficiently known input patterns. This means that
a network trained on one type of load pattern will have
difficulties in predicting the response when the structure is
exposed to different types of loading conditions. Recently,
a novel strategy for arranging the training data has been
proposed by Christiansen et al. [9], where the idea is to
select small samples of simulated data for different sea states
and collect these in one training sequence. With a proper
selection of data an ANN can be trained to predict tension
forces in a mooring line on a floating offshore platform for
a large range of sea states two orders of magnitude faster
than the corresponding direct time integration scheme. It
has been shown how computation time, when conducting
the simulations associated with a full fatigue analysis on a
mooring line system on a floating offshore platform, can be
reduced from about 10 hours to less than 2 minutes.

Training of an ANN corresponds to minimizing a pre-
defined error function. Several studies on the efficiency of
using different objective functions for ANN training have
been conducted over the last decades. Accelerated learning in
neural networks has been obtained by Solla et al. [10] using
relative entropy as the error measure and Hampshire and
Waibel [11] presented an objective function called classifica-
tion figure of merit (CFM) to improve phoneme recognition
in neural networks. A comparative study performed by
Altincay and Demirekler [12] showed that the CFM objective
function also improved the performance of neural networks
trained as classifiers for speaker identification. However,
these references all consider networks used for classification
whereas the one used in this paper is trained to perform
regression between time-continuous variables. Hence, the
problem studied in this paper calls for different cost functions
from those used for neural classifiers.

This study evaluates and compares four different error
functions with respect to ANN performance on the fatigue
life analysis of the same floating offshore platform as used
in [9]. A numerical model of a mooring line system on a
floating platform subject to current, wind, and wave forces
is established. The model is used to generate several 3-hour
time domain simulations at seven different sea states with
2m, 4m, . . ., and 14m significant wave height, respectively.
The generated data is then divided into a training set and a
validation set.The training set consists of series of simulations
at only the sea states with 2m, 8m, and 14m wave height.
The remaining part is then left for validation of the trained
ANN. The full numerical time integration analysis is carried
out by the two tailor-made programs SIMO [13] and RIFLEX
[14], while the neural network simulations are conducted by
a small MATLAB toolbox.

2. Artificial Neural Network

The artificial neural network is a pattern recognition tool
that replicates the ability of the human brain to recognize
and predict various kinds of patterns. In the following an
ANNwill be trained to recognize and predict the relationship
between the motion of a floating platform and the resulting
tension forces in a specific anchor chain.

2.1. Setting Up the ANN. The architecture of a typical one
layer artificial neural network is shown in Figure 1. The ANN
consists of an input layer, where each input neuron represents
a measured time discrete state of the system. In the present
case in Figure 1 the neurons of the input layer represent the
sixmotion components (𝑥, 𝑦, . . .) of the floating platform and
the previous time discrete anchor chain tension force (𝑇past).
The input layer is connected to a single hidden layer, which is
then connected to the output layer representing the tension
force (𝑇). Two neurons in neighboring layers are connected
and each of these connections has a weight.The training of an
ANN corresponds to an optimization of these weights with
respect to a particular data training set. The accuracy and
efficiency of the network depend on the network architecture,
the optimization of the individual weights, and the choice of
error function used in the applied optimization procedure.

The design and architecture of the ANN and the sub-
sequent training procedure follow the approach outlined in
[15]. Assume that the vectors x, y, and z contain the neuron
variables of the input layer, output layer, and hidden layer,
respectively. The output layer and hidden layer values can be
calculated by the expressions

y = W⊤
𝑂
z, z = tanh (W⊤

𝐼
x) , 𝑥

0
≡ 𝑧

0
≡ 1, (1)

whereW
𝐼
andW

𝑂
are arrays that contain the neuron connec-

tion weights between the input and the hidden layer and the
hidden and the output layer, respectively. By setting 𝑥

0
and 𝑧
0

permanently to one, biases in the data can be absorbed into
the input and hidden layer. The tangent hyperbolic function
is used as an activation function between the input and the
hidden layer. A nonlinear activation function is needed in
order to introduce nonlinearities into the neural network.
The tangent hyperbolic is often used in networks of this type,
which represent a monotonic mapping between continuous
variables, because it provides fast convergence in the network
training procedure; see [16].

The optimal weight components of the arrays W
𝐼
and

W
𝑂
are found by an iterative procedure, where the weights

are modified to give a minimum with respect to a certain
error function. The updating of the weight components is
performed by a classic gradient decent technique, which
adjusts the weights in the opposite direction of the gradient
of the error function [17]. For the ANN this gradient decent
updating can be written as

Wnew = Wold + ΔW, ΔW = −𝜂

𝜕𝐸 (W)

𝜕W
,

(2)

where 𝐸 is a predefined error function and 𝜂 is the learning
step size parameter. This parameter can either be constant or
updated during the training of the ANN. For the applications
in the present paper the learning step size parameter is
dynamic and will be adjusted for each iteration so that it
is increased if the training error is decreased compared to
previous iteration steps and reduced if the error increases.

2.2. Error Functions. As mentioned above in Section 2.1 the
training of anANNcorresponds tominimizing the associated
measure of error represented by the predefined error function



Journal of Applied Mathematics 3

Surge (x)

Sway (y)

Heave (z)

Roll (𝛼)

Pitch (𝛽)

Yaw (𝛾)

T

WI

WO

Bias
Bias

Input

Hidden

Output

Tpast

Figure 1: Sketch of artificial neural network for predicting top tension force in mooring line.

𝐸. The literature suggests many choices of error functions
[16].

The simplest and most commonly used error function
in neural networks used for regression is the mean square
error (MSE). However, the purpose of the present ANN is to
significantly reduce the calculation time for a fatigue analysis
of the marine type structure. And since the large amplitude
stresses contribute far the most to the accumulated damage
of the mooring lines it is of interest to investigate how a
different choice of error measure will affect the accuracy
and efficiency of the fatigue life calculations. Four different
error functions are therefore tested and compared to the full
numerical solution obtained by time simulations using the
RIFLEX code.

The comparison is based on the so-called Minkowski-R
error:
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where 𝑦 is the scalar ANN output and 𝑡 is the target value.
The classic MSE is seen to be a special case of the Minkowski
error with 𝑅 = 2. In many situations the performance and
accuracy of the ANN are equally important regardless of
the magnitude of the actual output. However, when dealing
with analysis of structures this is not always the case. For
example, the purpose of the ANN in the present paper is
to simulate the top tension force time history in a mooring
line, which is subsequently used to evaluate the fatigue life of
the line. And since by far the most damage in the mooring
line is introduced by large amplitude stress cycles, the ANN
inaccuracy on large stresses is much more expensive than
errors on small and basically unimportant amplitudes. One
way to specifically emphasize large amplitudes is to increase
the 𝑅-value in (3). Another and more direct way to place
additional focus on the importance of large stress amplitudes
is by multiplying each term in (3) by the absolute value of

the target values. This yields the following weighted error
function:
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The performance of a trained ANN is usually measured
in terms of the so-called validation error, which is calculated
in the same way as the training error but on entirely new
data set that has not been part of the network training. This
means that when comparing networks that have been trained
using different error functions the validation error is the
commonmeasure to assess performance in terms of accuracy
and computational effort. Obviously the various networks
considered in the following could be tested and compared
against any of the error functions that the networks have
been trained by. But that would definitely favor the particular
ANN that has been trained by the specific error function that
is chosen as the validation measure. And since the ultimate
objective of the ANN is to predict the fatigue life of the
mooring line it is appropriate to calculate and compare the
accumulated damage in the mooring line caused by all seven
sea state realizations previously mentioned in Section 1.

2.3. Network Training. In (2) the steepest decent correction
of the weight vector for the training of the network requires
the first derivative of the error function 𝐸 with respect to the
weight arrays W. Differentiation of (3) with respect to the
components of the two weight matricesW
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These gradients are now inserted into (2) and thereby
govern the correction of the weights for each iteration step in



4 Journal of Applied Mathematics

the training procedure. Similar differentiation of theweighted
error function (4) yields
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The above equations are implemented into the training
algorithm and tested for the two power values 𝑅 = 2 and 𝑅 =

4. This gives a total of four different error functions, which in
the following will be denoted as

(i) 𝐸

2
: unweighted error function with 𝑅 = 2;

(ii) 𝐸𝑤
2
: weighted error function with 𝑅 = 2;

(iii) 𝐸
4
: unweighted error function with 𝑅 = 4;

(iv) 𝐸𝑤
4
: weighted error function with 𝑅 = 4.

It should be noted that the first case 𝐸
2
represents the classic

MSE function.

3. Application to Structural Model

The structure used as the basis for the comparison of the
different error functions is shown in Figure 2. It consists of
a floating offshore platform located at 105m water depth,
which is anchored by 18 mooring lines assembled in four
main clusters. The external forces acting on the structure are
induced by waves, current, and wind.

3.1. Structural Model. In principal the dynamic analysis of
the platform-mooring system corresponds to solving the
equation of motion:

M (r) ̈r + C (r) ̇r + K (r) r = f (𝑡) . (7)

In this nonlinear equation r contains the degrees of
freedom of the structural model, and f includes all external
forces acting on the structure from, for example, gravity,
buoyancy, and hydrodynamic effects, while the nonconstant
matricesM, C, and K represent the system inertia, damping,
and stiffness, respectively. The system inertia matrixM takes
into account both the structural inertia and the response
dependent hydrodynamic added mass. Linear and nonlinear
energy dissipation fromboth internal structural damping and
hydrodynamic damping are accounted for by the damping
matrix C. Finally, the stiffness matrix contains contributions
from both the elastic stiffness and the response dependent
geometric stiffness.

The nonlinear equations of motion in (7) couple the
structural response of the floating platform and the response
of themooring lines. However, the system is effectively solved
by separating the solution procedure into the following steps.

First the motion of the floating platform is computed by
the program SIMO [13], assuming a quasistatic catenary
mooring line model with geometric nonlinearities. The plat-
form response from this initial analysis is subsequently used
as excitation in terms of prescribed platform motion in a
detailed nonlinear finite element analysis for the specific
mooring line with highest tension stresses. The location of
the mooring line with largest stresses is indicated in Figure 3.
For this specific line the hot-spot with respect to fatigue is
located close to the platform and is in the following referred
to as the top tension force. From the detailed fully nonlinear
analysis performed by RIFLEX the time history of the top
tension force at this hot-spot is extracted.

Based on the simulated time histories for both the
platformmotion and the top tension force an ANN is trained
to predict the top tension force in the selected mooring line
with the platform response variables as network input. This
is considered next in Section 3.2. In [9] a multilayer ANN
was trained to simulate the top tension force two orders of
magnitude faster than a corresponding numericalmodel.The
training data was set up and arranged so that a single ANN
with a single hidden layer could simulate all fatigue relevant
sea states and thereby provide a significant reduction in the
computational effort associated with a fatigue life evaluation.
For clarity the ANN used in this example covers only a few
sea states, with different significant wave heights and constant
peak period. This gives a compact neural network that is
conveniently used to illustrate the influence of changing the
error function in the training of the network.

3.2. Selection of Training Data. The ultimate purpose of the
ANN is to completely bypass the computationally expensive
numerical time integration procedure, which in this case is
conducted by the RIFLEX model. This means that the input
to the neural network must be identical to the input used for
the RIFLEX calculations. In this case the input is therefore the
platform motion, represented by the six degrees of freedom
denoted in Figure 1 and illustrated in Figure 2. In principle
the number of neural network output variables can be chosen
freely, and in fact all degrees of freedom from the numerical
finite element analysis can be included as output variables in
the corresponding ANN. However, the strength of the ANN
in this context is that it may provide only the output variable
that drives the design of the structure, which in this case is
the maximum top tension forces in the particular mooring
line. This leads to a very fast simulation procedure, which for
a well-trained network provides sufficiently accurate results.
Thus, the ANN is in the present case designed and trained to
predict the top tension of the mooring line, and the platform
motion (six motion components; surge, sway, heave, roll,
pitch, and yaw) is, together with the top tension of previous
time steps, used as input to the ANN; see Figure 1. This
means that the input vector x

𝑛
at time increment 𝑛 can be

constructed as

x
𝑛
= [ [𝑥

𝑡
𝑥
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(8)
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where 𝑡 = 𝑛ℎ denotes current time, ℎ is the time increment,
and 𝑑 is the number of previous time steps included in the
input, that is, the model memory. The corresponding ANN
output is the value of the top tension force 𝑇

𝑡
in the mooring

line:

𝑦

𝑛
= 𝑇

𝑡
. (9)

Since there is only one network output 𝑦 is a scalar
and not a vector as in (1). For the training of the ANN
nonlinear simulations in RIFLEX are conducted for sea states
with a significant wave height of 𝐻

𝑠
= 2m, 8m, and

14m, respectively. While neural networks are very good at
interpolatingwithin the training range, they are typically only
able to perform limited extrapolation outside the training
range. Thus, the selected training set must contain both the
minimum wave height (2m), the maximum wave height
(14m), and in this case a moderate wave height (8m) to
provide sufficient training data over the full range of interest.
With these wave heights included in the training data the
ANN is expected to be able to provide accurate time histories
for the top tension force for all intermediate wave heights.
The seven 3-hour simulation records generated by RIFLEX

are divided into a training set and a validation set. The data
that is used for training of the ANN is shown in Figures 4
and 5. Figure 4 shows the time histories for the six motion
degrees of freedom of the platform calculated by the initial
analysis in SIMO and used as input to both the full numerical
analysis in RIFLEX and the ANN training and simulation.
Figure 5 shows corresponding time histories for top tension
force determined by RIFLEX. The full time histories shown
in Figures 4 and 5 are constructed of time series for the
three significant wave heights. The first 830 seconds of the
training set represent 2m significant wave height, the next
830 seconds are for 8m wave height, and the remaining part
is then for 14m wave height.

The SIMO simulations are conductedwith a time step size
of 0.5 s. In the subsequent RIFLEX simulations the time step
must be sufficiently small as to keep the associated Newton-
Raphson iteration algorithm stable. In these simulations a
time step size of 0.1 s is therefore chosen, which means
that the additional input parameters are obtained by linear
interpolation between the simulation values from SIMO.
For the ANN the time step size ℎ must be chosen so that
the network is able to grasp the dynamic behavior of the
structure. Therefore, in many cases the ANN is capable of
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Figure 4: Platform motion used as ANN training input data.
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handling fairly large time step increments compared to the
corresponding numerical models. When using a larger time
step in the ANN simulations, for example, by omitting a
number of in-between data points, it is possible to reduce
the size of the training data set and thereby reduce the
computational time used for ANN training and eventually
also for the ANN simulation. In the example of this paper a
time step size of ℎ = 2.0 s is found to yield a good balance
between accuracy and computational efficiency, and this time
step ℎ is therefore used for the ANN simulations.

3.3. Design of ANN Architecture. In the design of the ANN
architecture three variables are investigated: (1) number of
neurons in the hidden layer, (2) size of the model memory
𝑑, and (3) required amount of training data. When the
ANN has been trained and ready for use the network size
has no significant influence on the total simulation time
and computational effort. The main time consumer is the
training part, and time used for training of the network highly
depends on network size and the size of the training data set.
Hence, it is of great interest to design an ANN architecture
that is as compact and effective as possible.

Figure 6 shows a plot of the test error measure 𝐸test
relative to the number of neurons in the hidden layer of the
ANN. In this section, where the three basic ANN variables
are chosen the errormeasure is themean square error (MSE),
corresponding to the 𝐸

2
error measure in Section 2.3. The

curve in Figure 6 furthermore represents the mean value of
the error based on five simulations, while the vertical bars
indicate the standard deviation. It is seen from this curve that
the performance and the scatter in performance of the trained
ANN is lowest when the hidden layer contains four neurons.
Therefore, an effective and fairly accurate ANN performance
is expected when four neurons in the hidden layer are used
in the following simulations.

Figure 7 shows the test error relative to the model
memory 𝑑, which represents the number of previous time
steps used as network input. First of all it is found that
including memory in the model significantly reduces the
error. However, it is also seen from the figure that an
increase of the memory beyond four previous steps implies
no significant improvement in the ANN performance. Thus,
a four-step memory, that is, 𝑑 = 4, is used in the following
numerical analyses.

For the training of any ANN it is always crucial to
have a sufficient amount of training data in order to cover
the full range of the network and secure applicability with
sufficient statistical significance. Figure 8 shows the test error
as function of the length of the training data set. As for the
parameter studies in Figures 6 and 7 the present curve shows
the mean results based on five simulation records. To make
sure that a sufficient amount of data is used for the training of
the ANN a total simulated record of 2500 s is included, which
corresponds to approximately a length of 14 minutes for each
of the three sea states. It is seen in Figure 8 that this length of
the simulation record is more than sufficient to secure a low
error.

The trained ANN is able to generate nonlinear output
without equilibrium iterations and hence at an often sig-
nificantly higher computational pace compared to classic
integration procedures with embedded iteration schemes.
Figure 9 shows the simulation of the top tension force in
the mooring line calculated by the finite element method
in RIFLEX and by the trained ANN. The four subfigures
in Figure 9 represent the four wave heights that were not
part of the ANN training, that is, 𝐻

𝑠
= 4m, 6m, 10m,

and 12m. For these particular simulation records the trained
ANN calculates a factor of about 600 times faster than the
FEM calculations by RIFLEX.

3.4. Comparison of Error Measures. In the design of the
ANN architecture presented above the results are obtained
for an ANN trained with the MSE as objective function or
error measure. It is in the following conveniently assumed
that this ANN architecture is valid regardless of the specific
choice of error function. Thus, the various error measures
presented in Section 2.3 are in this section compared for the
ANN with four neurons in the hidden layer, four memory
input variables, and a training length of 2500 s.

As mentioned earlier some of the pregenerated data are
saved for performance validation of the trained ANN. These
data are used to calculate a validation error 𝐸test which
is the measure for the accuracy of the trained network.
Figure 10 shows the development in the validation error
during the network training with all four different error
functions present in Section 2.3. It is clearly seen that all four
error measures are minimized during training, whereas it is
difficult to compare the detailed performance and efficiency
of the four different networks based on these curves.

Figure 11(a) summarizes the development of the valida-
tion error for the four ANN, but this time the validation error
is calculated using the same MSE error measure (𝐸

2
) to give

a consistent basis for comparison. Thus, the four networks
have been trained with four error measures, respectively,
while in Figure 11(a) they are compared by the MSE. Even
though the networks here are compared on common ground
it is still difficult to evaluate how well they will perform
individually on a full fatigue analysis. Figure 11(b) illustrates
the accuracy of the four networks by showing a close up
of a local maximum in the top tension force time history.
It is seen that the two unweighted error functions, 𝐸

2
and

𝐸

4
, perform superiorly compared to the weighted functions.

Also the unweighted error measures provide a smaller MSE
error in Figure 11(a).This indicates that weighting of the error
functions implies no improvement of the performance and
accuracy of the ANN.

3.5. Rain FlowCount. Themagnitude of the various test error
measures is difficult to relate directly to the performance of
theANNcompared to the performance of theRIFLEXmodel.
Since these long time-domain simulations are often used in
fatigue life calculations an appropriate way to evaluate the
accuracy of the ANN is to compare the accumulated rain
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Figure 8: Validation error as function of amount of training data.

flow counts of the tension force cycles for each significant
wave height. In these fatigue analyses the RIFLEX results
are considered as the exact solution. For these calculations
the full 3-hour simulations are used and Figure 12 shows the
results of the rain flow count of accumulated tension force
cycles for each of the significant wave heights. Deviations
between RIFLEX and ANN simulations are listed in Table 1.
It should be noted that the deviations for the individual seven
sea states do not add up to give the total deviation because the
individual sea states do not contribute equally to the overall
damage. It is seen that the various networks perform verywell
on all individual sea states and that the best networks thereby
obtain a deviation of less than 2% for the accumulated tension
force cycles when summing up the contributions from all
sea states. This deviation is a robust estimate and is likely to
also represent the accuracy of a full subsequent fatigue life
evaluation.

It is seen from the rain flow counting results in Figure 12
and Table 1 that the neural networks trained with unweighted

Table 1: Deviations on accumulated tension force cycles.

𝐻

𝑆
𝐸

2
𝐸

𝑤

2
𝐸

4
𝐸

𝑤

4

2 −3.6% −16.3% 7.3% 65.8%
4 −6.9% −13.0% 4.8% 32.0%
6 −4.4% −8.0% 2.6% 14.9%
8 −2.7% −4.8% −1.5% 8.6%
10 −2.0% −3.5% −1.6% 6.9%
12 −1.4% −3.1% −1.7% 5.3%
14 −0.8% −0.3% 2.1% 3.1%
Total −1.7% −3.8% 1.6% 6.4%

error function in general perform slightly better than those
trained with weighted error functions.Thus, placing a weight
on the error function does not seem to have the desired effect
in this application concerning the analysis of a mooring line
system for a floating platform.
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4. Conclusion

It has been shown how a relatively small and compact
artificial neural network can be trained to performhigh speed
dynamic simulation of tension forces in a mooring line on
a floating platform. Furthermore, it has been shown that a
proper selection of training data enables the ANN to cover
a wide range of different sea states, even for sea states that
are not included directly in the training data. In the example
presented in this paper it is clear that weighting the error
function used to train an ANN in order to emphasize peak
response does not improve the network performance with
respect to accuracy of fatigue calculations. In fact, the ANN
appears to perform worse when trained with the weighted
error function. On the other hand it appears that increasing
the power of the error function from two to four provides a
slight improvement to the performance of the trained ANN.

However, the idea of a weighted error function seems to
reduce the ANN performance. So apparently focusing on
the high amplitudes seems to deteriorate the low amplitude
response more than it improves the response with large
amplitudes.

As a conclusion the Minkowski error with 𝑅 = 4 is inter-
esting for the mooring line example in more than one aspect.
It provides more focus on the large amplitudes and improves
the ANN slightly. Furthermore, the second derivative of the
𝐸

4
is fairly easy to determine, which makes this objective

function suitable for several network optimizing schemes,
such as Optimal Brain Damage (OBD) and Optimal Brain
Surgeon (OBS), that are based on the second derivative of
the error function. Network optimization is, however, not
considered further in this paper but will be subject of future
work.
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