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We prove that a continuous 𝑔-supermartingale with uniformly continuous coeffcient 𝑔 on finite or infinite horizon, is a 𝑔-
supersolution of the corresponding backward stochastic differential equation. It is a new nonlinear Doob-Meyer decomposition
theorem for the 𝑔-supermartingale with continuous trajectory.

1. Introduction

In 1990, Pardoux-Peng [1] proposed the following nonlinear
backward stochastic differential equation (BSDE) driven by a
Brownian motion:

𝑦
𝑡

= 𝜉 + ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
𝑑𝐵
𝑠
, 𝑡 ∈ [0, 𝑇] , (1)

where the positive real number 𝑇, the random variable 𝜉,
and the function 𝑔 are called the time horizon, the terminal
data, and the generator, respectively, and the pair of adapted
processes (𝑦

𝑡
, 𝑧
𝑡
)
𝑡∈[0,𝑇]

to be known is called the solution of
the BSDE (1). In this paper, we study amore generalizedBSDE
with a given increasing process (𝑉

𝑡
)
𝑡∈[0,𝑇]

with 𝑉
0

= 0:

𝑦
𝑡

= 𝜉 + ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠

𝑑𝐵
𝑠

+ 𝑉
𝑇

− 𝑉
𝑡
,

𝑡 ∈ [0, 𝑇] .

(2)

If (𝑉
𝑡
)
𝑡∈[0,𝑇]

≡ 0, the first component (𝑦
𝑡
)
𝑡∈[0,𝑇]

of solution
of (2) is called the 𝑔-solution of (1); otherwise, it is called
the 𝑔-supersolution. Subsequently, Peng [2] introduced the
nonlinear expectation and nonlinear martingale theories
via BSDEs. In [3], Peng first obtained the monotonic limit
theorem; that is, under some mild conditions, the limit of
a monotonically increasing sequence of 𝑔-supersolutions is
also a 𝑔-supersolution. And applying this result, he proved

that a càdlàg 𝑔-martingale, which is right continuous with
left limits, had a nonlinear decomposition of Doob-Meyer’s
type, corresponding to the classical martingale theory. Later,
Lin [4, 5] extended Peng’s result and got this decomposition
for the 𝑔-supermartingale with respect to a general continu-
ous filtration and that with jumps, respectively. It should be
pointed out that, in Peng [3] and Lin [4, 5], the monotonic
limit theorem for BSDEs plays a key role, and it is also
useful in other problems. For example, in [6], Peng-Xu put
forward a generalized version of monotonic limit theorem
and proved that solving the reflected BSDEwith a given lower
barrier process was equivalent to finding the smallest 𝑔-
supermartingale dominating the barrier. And Peng-Xu [7]
used this technique to treat the problems of the BSDE
with generalized constraints and solve the American option
pricing problem in an incompletemarket. On the other hand,
motivated by the theories of the classical martingale and
the nonlinear martingale, Chen-Wang [8] showed that the
BSDEs on infinite time horizon were solvable, under the
Lipschitz assumption on 𝑔, whose Lipschitzian coefficient is a
function depending on 𝑡, and they obtained the convergence
theorem of the nonlinear 𝑔-martingale. Afterward, Fan et
al. [9] explored the BSDEs on finite or infinite horizon,
without the Lipschitz assumption, and got an existence and
uniqueness result and a comparison theorem.

Based on these results, a natural question is, under
the generalized uniformly continuous assumption on the
coefficient 𝑔, does the 𝑔-martingale still have a nonlinear
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decomposition of Doob-Meyer’s type? Our answer is yes. We
prove that if a 𝑔-supermartingale has a continuous trajectory
on finite or infinite time interval, then it is a 𝑔-supersolution
of the corresponding BSDE; that is, it has a nonlinear Doob-
Meyer decomposition. It should be noted that our results are
based on the conditions without the Lipschitz assumption
on the coefficient 𝑔. And our results do not depend on the
infinite time version of the monotonic limit but only on the
penalization method.

The outline of this paper is as follows. Section 2 pro-
vides some assumptions, definitions, and the existence and
uniqueness theorem and comparison theorem for a gener-
alized BSDE with generalized uniformly continuous gener-
ator 𝑔. Then, Section 3 devotes to the main result a new
version of nonlinear Doob-Meyer’s decomposition theorem
for the continuous 𝑔-supermartingale with the generalized
uniformly continuous coefficient.

2. Preliminaries

Let 𝑇 be a finite or infinite nonnegative extended real num-
ber, and let (𝐵

𝑡
)
𝑡≥0

be a standard 𝑑-dimensional Brownian
motion defined on a complete probability space (Ω,F,

𝑃) endowedwith a filtration (F
𝑡
)
𝑡≥0

generated by this Brow-
nian motion:

F
𝑡

≜ 𝜎 {𝐵
𝑠

: 0 ≤ 𝑠 ≤ 𝑡} ∨ N, F
∞

= ⋁

𝑡≥0

F
𝑡
, (3)

whereN is the set of all 𝑃-null subsets.
For simplicity of presentation, we use |𝑥| to denote the

Euclidean normof 𝑥 inR or R𝑑, and let 𝐿
2
(Ω,F

𝑡
, 𝑃) be the

space of all the F
𝑡
measurable square integrable real valued

random variables, and define the adapted process spaces as
follows:

H2(0, 𝜏;R𝑑) := {(𝜙
𝑡
)
𝑡∈[0,𝜏]

is a R𝑑-valued process
such that E[∫

𝜏

0
|𝜙
𝑡
|
2
𝑑𝑡] < +∞};

S2(0, 𝜏;R) := {(𝜙
𝑡
)
𝑡∈[0,𝜏]

is a càdlàgR- valued process
such that E[sup

0≤𝑡≤𝜏
|𝜙
𝑡
|
2
] < +∞};

A2(0, 𝜏;R) := {(𝜙
𝑡
)
𝑡∈[0,𝜏]

is an increasing process in
S2(0, 𝜏;R) with 𝜙(0) = 0}.

Clearly, all the above spaces of stochastic processes are
completed Banach spaces.

Furthermore, we denote the set of linear increasing
functions 𝜙(⋅) : R

+
→ R
+
with 𝜙(0) = 0 by X. Here the

linear increasing means that, for any element 𝜙 ∈ X, there
exists a pair of positive real numbers (𝑎, 𝑏) depending on 𝜙

such that, for all 𝑥 ∈ R
+
, 𝜙(𝑥) ≤ 𝑎𝑥 + 𝑏.

The generator 𝑔(𝑡, 𝜔, 𝑦, 𝑧) : [0, 𝑇] × Ω × R × R𝑑 → R

is a random function which is a progressively measurable
stochastic process for any (𝑦, 𝑧). We assume that it satisfies
the following two assumptions, where (H2) is a generalized
uniformly continuous condition; that is, its modulus of
continuity may depend on 𝑡:

(H1) E[(∫
𝑇

0
|𝑔(𝑡, 0, 0)|𝑑𝑡)

2

] < ∞;

(H2) |𝑔(𝑡, 𝑦, 𝑧) − 𝑔(𝑡, 𝑦

, 𝑧

)| ≤ 𝑢(𝑡)𝜑(|𝑦 − 𝑦


|) + V(𝑡)𝜓 (|𝑧 −

𝑧

|), where 𝑢(⋅) and V(⋅) are two positive functions

mapping from R+ to R+, such that ∫
𝑇

0
[𝑢(𝑡) + V2(𝑡)]

𝑑𝑡 < ∞; the functions 𝜑 and 𝜓 belong toX and
𝜑(⋅) is a concave function, with ∫

0
+

𝜑(𝑡) 𝑑𝑡 = +∞.
And in addition, we assume that ∫

𝑇

0
V(𝑡) 𝑑𝑡 < ∞,

if 𝜓 cannot be dominated by a linear function; that is,
we cannot find a real number 𝑎, such that 𝜙(𝑥) ≤ 𝑎𝑥.

Remark 1. In (H2), 𝜑(⋅) is a concave function which means
that 𝜑(𝜆𝑡

1
+ (1 − 𝜆)𝑡

2
) ≥ 𝜆𝜑(𝑡

1
) + (1 − 𝜆)𝜑(𝑡

2
), for 𝜆 ∈ [0, 1]

and 𝑡
1
, 𝑡
2

∈ [0, 𝑇]. And the equality ∫
0
+

𝜑(𝑡) 𝑑𝑡 = ∞ means
that the value of the integration ∫

𝛿

0
𝜑(𝑡) 𝑑𝑡 will be infinite

on any interval [0, 𝛿] with 𝛿 > 0. For simplicity, we also
use 𝑢
𝑠
and V

𝑠
to denote 𝑢(𝑠) and V(𝑠), respectively, in the re-

maining of this paper.

Now, we consider the following problem. Suppose that
the time horizon 𝑇, generator 𝑔, terminal data 𝑦

𝑇
, and the

increasing càdlàg process (𝑉
𝑡
)
𝑡∈[0,𝑇]

∈ S2(0, 𝑇;R) are given
in advance; let us find a pair of processes (𝑦

𝑡
, 𝑧
𝑡
)
𝑡∈[0,𝑇]

∈

S2(0, 𝑇;R) × H2(0, 𝑇;R𝑑) satisfying

𝑦
𝑡

= 𝑦
𝑇

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
𝑑𝐵
𝑠

+ 𝑉
𝑇

− 𝑉
𝑡
,

𝑡 ∈ [0, 𝑇] .

(4)

If 𝑉
𝑡

≡ 0, the above equation (4) will be a classical BSDE
on finite or infinite horizon; the existence and uniqueness
result is already obtained, which is stated by Theorem 3 in
Fan et al. [9]. Otherwise we can set 𝑦

𝑡
:= 𝑦
𝑡
+ 𝑉
𝑡
and treat the

following BSDE as

𝑦
𝑡

= 𝑦
𝑇

+ 𝑉
𝑇

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠

− 𝑉
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
𝑑𝐵
𝑠
. (5)

It is a classical BSDE with the terminal data 𝜉 := 𝑦
𝑇

+ 𝑉
𝑇
and

the generator 𝑔 := 𝑔(𝑡, 𝑦 − 𝑉
𝑡
, 𝑧). Since the assumptions

(H1) and (H2) hold for generator 𝑔, it is easy to verify
that 𝑔 still satisfies the two conditions. Sowe have the follow-
ing existence and uniqueness theorem.

Lemma 2 (existence and uniqueness). One assumes that the
generator 𝑔 of the BSDE (4) satisfies the conditions (H1) and
(H2). Then, for any random variable 𝑦

𝑇
∈ 𝐿
2
(Ω,F

𝑇
, 𝑃), and

a process (𝑉
𝑡
)
𝑡∈[0,𝑇]

∈ S2(0, 𝑇;R), there exists a unique pair of
processes (𝑦

𝑡
, 𝑧
𝑡
)
𝑡∈[0,𝑇]

∈ S2(0, 𝑇;R)×H2(0, 𝑇;R𝑑), which is a
solution of the BSDE (4), such that (𝑦

𝑡
+𝑉
𝑡
)
𝑡∈[0,𝑇]

is continuous
and

E[ sup
0≤𝑡≤𝑇

𝑦𝑡

2

] < ∞. (6)

We can also have the following comparison theorem,
which will be used in the latter part of this section and the
next one.
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Proposition 3 (comparison). Suppose that the assumptions
in Lemma 2 hold. Let (𝑦

𝑡
, 𝑧
𝑡
)
𝑡∈[0,𝑇]

be the solution of another
BSDE:

𝑦
𝑡

= 𝑦
𝑇

+ ∫

𝑇

𝑡

𝑔
𝑠
𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
𝑑𝐵
𝑠

+ 𝑉
𝑇

− 𝑉
𝑡
, 𝑡 ∈ [0, 𝑇] , (7)

where (𝑉
𝑡
)
𝑡∈[0,𝑇]

∈ S2(0, 𝑇;R), 𝑦
𝑇

∈ 𝐿
2
(Ω,F

𝑇
, 𝑃), and

(𝑔
𝑡
)
𝑡∈[0,𝑇]

are given such that

(1) 𝑦
𝑇

:= 𝑦
𝑇

− 𝑦
𝑇

≥ 0;
(2) 𝑔
𝑡

:= 𝑔(𝑡, 𝑦
𝑡
, 𝑧
𝑡
) − 𝑔
𝑡

≥ 0, 𝑑𝑃 × 𝑑𝑡-a.e.;
(3) �̂�
𝑡

:= 𝑉
𝑡

− 𝑉
𝑡
is a càdlàg increasing process;

(4) E[(∫
𝑇

0
|𝑔
𝑡
|𝑑𝑡)
2

] < ∞.

Then we have, P-a.s.,

𝑦
𝑡

≥ 𝑦
𝑡
, ∀𝑡 ∈ [0, 𝑇] . (8)

Proof. We sketch the proof as follows. Set 𝑦
𝑡

= 𝑦
𝑡

− 𝑦
𝑡
and �̂�
𝑡

= 𝑧
𝑡

− 𝑧
𝑡
; applying Itô-Meyer’s formula to (𝑦

𝑡
− 𝑦
𝑡
)
+ leads to

𝑦
+

𝑡
≤ (𝑦
𝑇

− 𝑦
𝑇

)
+

+ ∫

𝑇

𝑡

1
{𝑦
𝑠
>0}

(𝑔
𝑠

− 𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
)) 𝑑𝑠

− ∫

𝑇

𝑡

1
{𝑦
𝑠
>0}

�̂�
𝑠
𝑑𝐵
𝑠

+ ∫

𝑇

𝑡

1
{𝑦
𝑠−
>0}

(𝑑𝑉
𝑠

− 𝑑𝑉
𝑠
) .

(9)

Since �̂�
𝑡
is an increasing process, we see that

∫

𝑇

𝑡

1
{𝑦
𝑠−
>0}

(𝑑𝑉
𝑠

− 𝑑𝑉
𝑠
) ≤ − ∫

𝑇

𝑡

1
{𝑦
𝑠−
>0}

𝑑�̂�
𝑠

≤ 0. (10)

Recalling that 𝑔
𝑡

:= 𝑔(𝑡, 𝑦
𝑡
, 𝑧
𝑡
) − 𝑔
𝑡

≥ 0, 𝑑𝑃 × 𝑑𝑡-a.e., and
the assumption (H2), we can get

1
{𝑦
𝑠
>0}

(𝑔
𝑠

− 𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
))

= 1
{𝑦
𝑠
>0}

(𝑔
𝑠

− 𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) + 𝑔 (𝑠, 𝑦

𝑠
, 𝑧
𝑠
) − 𝑔 (𝑠, 𝑦

𝑠
, 𝑧
𝑠
))

≤ 𝑢
𝑠
𝜑 (𝑦
+

𝑠
) + 1
{𝑦
𝑠
>0}

V
𝑠
𝜓 (

�̂�𝑠
) .

(11)

Thus, it follows that

𝑦
+

𝑡
≤ ∫

𝑇

𝑡

𝑢
𝑠
𝜑 (𝑦
+

𝑠
) + 1
{𝑦
𝑠
>0}

V
𝑠
𝜓 (

�̂�𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

1
{𝑦
𝑠
>0}

�̂�
𝑠
𝑑𝐵
𝑠
.

(12)

Now we are in the same position withTheorem 2 in Fan et al.
[9]. Then we can prove that, for all 𝑡 ∈ [0, 𝑇], 𝑦

+

𝑡
≤ 0, P-a.s.

Therefore, for any 𝑡 ∈ [0, 𝑇], we have

𝑦
𝑡

≤ 𝑦
𝑡
, P-a.s. (13)

Observing that 𝑦
𝑡
and 𝑦

𝑡
are càdlàg processes, we can con-

clude that, P-a.s.,

𝑦
𝑡

≤ 𝑦
𝑡
, ∀𝑡 ∈ [0, 𝑇] . (14)

Remark 4. If we replace the deterministic terminal time 𝑇 by
a F
𝑡
-stopping time 𝜏 ≤ 𝑇, then, by Lemma 2, existence and

uniqueness theorem and the above comparison theorem still
hold true.

For a given stopping time 𝜏 ≤ 𝑇, we now consider the
following BSDE:

𝑦
𝑡

= 𝑦
𝜏

+ ∫

𝜏

𝑡∧𝜏

𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝜏

𝑡∧𝜏

𝑧
𝑠
𝑑𝐵
𝑠

+ 𝐴
𝜏

− 𝐴
𝑡∧𝜏

, (15)

where 𝑦
𝜏

∈ 𝐿
2
(Ω,F

𝜏
, 𝑃) and (𝐴

𝑡
)
𝑡∈[0,𝑇]

∈ A2(0, 𝜏;R) is a
given càdlàg increasing process with 𝐴

0
= 0.

Next, we introduce the conceptions of 𝑔-solution, 𝑔-
supersolution, 𝑔-martingale, and 𝑔-supermartingale closely
following Peng’s definitions in [3].

Definition 5. If a process (𝑦
𝑡
)
𝑡∈[0,𝜏]

can be written in the form
of the BSDE (15) with the generator 𝑔, then one call it a
g-supersolution on [0, 𝜏]. Particularly, if (𝐴

𝑡
)
𝑡∈[0,𝜏]

≡ 0 on
[0, 𝜏], then one call (𝑦

𝑡
)
𝑡∈[0,𝜏]

a 𝑔-solution on [0, 𝜏].

Definition 6. A F
𝑡
-progressively measurable real-valued

process (𝑌
𝑡
)
𝑡∈[0,𝜏]

is called a 𝑔-supermartingale (resp. 𝑔-
martingale), if for each stopping time 𝜏 ≤ 𝑇, E |𝑌

𝜏
|
2

< ∞,
and the 𝑔-solution (𝑦

𝑡
)
𝑡∈[0,𝜏]

with terminal condition 𝑦
𝜏

=

𝑌
𝜏
satisfies 𝑦

𝜎
≤ 𝑌
𝜎

(resp. 𝑦
𝜎

= 𝑌
𝜎
) for all stopping time 𝜎 ≤

𝜏. Indeed, a 𝑔-martingale on [0, 𝑇] is a 𝑔-solution on [0, 𝑇].

From Proposition 3, we know that a 𝑔-supersolution is
a 𝑔-supermartingale. Conversely, a meaningful and inter-
esting question follows immediately. Is a 𝑔-supermartingale
a 𝑔-supersolution? If so, does the 𝑔-supermartingale, or 𝑔-
supersolution, has a unique representation of the form (15)?

According to Proposition 1.6 in [3], we can assert that,
given a 𝑔-supersolution (𝑦

𝑡
)
𝑡∈[0,𝜏]

on [0, 𝜏], there is a unique
pair of processes (𝑧

𝑡
, 𝐴
𝑡
)
𝑡∈[0,𝜏]

∈ H2(0, 𝜏;R𝑑) × A2(0, 𝜏;R)

on [0, 𝜏] such that the triple (𝑦
𝑡
, 𝑧
𝑡
, 𝐴
𝑡
)
𝑡∈[0,𝜏]

satisfies the
BSDE (15). Now, we can propose the next conception as
follows.

Definition 7. Provided that the process (𝑦
𝑡
)
𝑡∈[0,𝑇]

is
a 𝑔-supersolution and the triple of processes (𝑦

𝑡
, 𝑧
𝑡
,

𝐴
𝑡
)
𝑡∈[0,𝜏]

satisfies the BSDE (15), one call (𝑧
𝑡
, 𝐴
𝑡
)
𝑡∈[0,𝜏]

the
unique decomposition of (𝑦

𝑡
)
𝑡∈[0,𝜏]

.

3. Nonlinear Doob-Meyer’s Decomposition
for 𝑔-Supermartingale with Uniformly
Continuous Coefficient

In this section, we provide and prove the main result of
this paper that a continuous 𝑔-supermartingale is a 𝑔-super-
solution; that is, it has a unique decomposition in the sense of
Definition 7.

Theorem 8. One assumes that 𝑔 satisfies the conditions
(𝐻1) and (𝐻2). Let (𝑌

𝑡
)
𝑡∈[0,𝑇]

be a continuous 𝑔-supermar-
tingale on [0, 𝑇] in S2(0, 𝑇;R). Then (𝑌

𝑡
)
𝑡∈[0,𝑇]

is a 𝑔-su-
persolution on [0, 𝑇] that is, there is a unique pair of
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processes (𝑧
𝑡
, 𝐴
𝑡
)
𝑡∈[0,𝑇]

in H2(0, 𝑇;R𝑑) × A2(0, 𝑇;R), such
that (𝑌

𝑡
)
𝑡∈[0,𝑇]

coincides with the first component (𝑦
𝑡
)
𝑡∈[0,𝑇]

of
the solution for the following BSDE:

𝑦
𝑡

= 𝑌
𝑇

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
𝑑𝐵
𝑠

+ 𝐴
𝑇

− 𝐴
𝑡
,

𝑡 ∈ [0, 𝑇] .

(16)

In order to prove this theorem, we consider the family of
penalization BSDEs parameterized by 𝑛 = 1, 2, 3, . . .,

𝑦
𝑛

𝑡
= 𝑌
𝑇

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑛

𝑠
𝑑𝐵
𝑠

+ 𝑛 ∫

𝑇

𝑡

V2
𝑠

(𝑌
𝑠

− 𝑦
𝑛

𝑠
) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] ,

(17)

and set

𝐴
𝑛

𝑡
:= 𝑛 ∫

𝑡

0

V2
𝑠

(𝑌
𝑠

− 𝑦
𝑛

𝑠
) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] . (18)

We first claim the next proposition.

Proposition 9. For each 𝑛 = 1, 2, . . ., one has, P-a.s.,

𝑌
𝑡

≥ 𝑦
𝑛

𝑡
, 𝑡 ∈ [0, 𝑇] . (19)

Proof. Using an argument similar to that in Lemma 3.4 in [3],
one can carry out the proof by contradiction. We sketch it as
follows.

Supposing that it is not the case, then there exist 𝛿 >

0 and a positive integer 𝑛 such that the measure of {(𝜔, 𝑡) |

𝑦
𝑛

𝑡
− 𝑌
𝑡

− 𝛿 ≥ 0} ⊂ Ω × [0, 𝑇] is nonzero; then we can define
the following stopping times:

𝜎 := min {𝑇, inf {𝑡 | 𝑦
𝑛

𝑡
≥ 𝑌
𝑡

+ 𝛿}} ,

𝜏 := inf {𝑡 ≥ 𝜎 | 𝑦
𝑛

𝑡
≤ 𝑌
𝑡
} .

(20)

It is observed, from the above definition and the continuous
of (𝑌
𝑡
)
𝑡∈[0,𝑇]

, that 𝜎 ≤ 𝜏 ≤ 𝑇 and 𝑃(𝜏 > 𝜎) > 0. And further-
more, we have, P-a.s.,

(i) 𝑦
𝑛

𝜎
≥ 𝑌
𝜎

+ 𝛿;

(ii) 𝑦
𝑛

𝜏
≤ 𝑌
𝜏
.

(21)

Now let (𝑦
𝑡
)
𝑡∈[0,𝜏]

(resp. (𝑦


𝑡
)
𝑡∈[0,𝜏]

) be the 𝑔-solution on
[0, 𝜏] with terminal condition 𝑦

𝜏
= 𝑦
𝑛

𝜏
(resp. 𝑦



𝜏
= 𝑌
𝜏
). By

Proposition 3, (21)-(ii) implies that 𝑦
𝑛

𝜎
≤ 𝑦
𝜎

≤ 𝑦


𝜎
. On the

other hand since (𝑌
𝑡
)
𝑡∈[0,𝑇]

is a 𝑔-supermartingale, thus we
can get

𝑌
𝜎

≥ 𝑦
𝑛

𝜎
, P-a.s. (22)

This is a contradiction to (21)-(i). Then by Fubini’s theorem,
we have, P-a.s.,

𝑌
𝑡

≥ 𝑦
𝑛

𝑡
, dt-a.e. (23)

And the conclusion follows from the continuity of (𝑌
𝑡
)
𝑡∈[0,𝑇]

(𝑦
𝑛

𝑡
)
𝑡∈[0,𝑇]

. The proof is completed.

Now, we can get the following result; the boundedness of
the triple of the processes (𝑦

𝑛

𝑡
, 𝑧
𝑛

𝑡
, 𝐴
𝑛

𝑡
)
𝑡∈[0,𝑇]

can be defined by
the penalization BSDEs.

Proposition 10. There exists a positive real number C such
that for any positive integer 𝑛

E[ sup
0≤𝑡≤𝑇

𝑦
𝑛

𝑡


2

+ ∫

𝑇

0

𝑧
𝑛

𝑡


2

𝑑𝑡 +
𝐴
𝑛

𝑇


2

] ≤ 𝐶. (24)

Proof. From BSDE (17), we have

𝐴
𝑛

𝑇
= 𝑦
𝑛

0
− 𝑌
𝑇

− ∫

𝑇

0

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) 𝑑𝑠 + ∫

𝑇

0

𝑧
𝑛

𝑠
𝑑𝐵
𝑠

≤
𝑦
𝑛

0

 +
𝑌𝑇

 + ∫

𝑇

0

[
𝑔 (𝑠, 0, 0)

 + 𝑢
𝑠
𝜑 (

𝑦
𝑛

𝑠

)

+V
𝑠
𝜓 (

𝑧
𝑛

s
)] 𝑑𝑠 +



∫

𝑇

0

𝑧
𝑛

𝑠
𝑑𝐵
𝑠



≤
𝑦
𝑛

0

 +
𝑌𝑇

 + ∫

𝑇

0

[
𝑔 (𝑠, 0, 0)

 + 𝑢
𝑠

(𝑎
𝜑

𝑦
𝑛

𝑠

 + 𝑏
𝜑

)

+V
𝑠

(𝑎
𝜓

𝑧
𝑛

𝑠

 + 𝑏
𝜙
)] 𝑑𝑠 +



∫

𝑇

0

𝑧
𝑛

𝑠
𝑑𝐵
𝑠



,

(25)

where the real numbers 𝑎
𝜑

, 𝑏
𝜑
and 𝑎

𝜓
, 𝑏
𝜓
depend on the

functions 𝜑 and 𝜓, respectively. From Proposition 9, we
see that 𝑦

𝑛

𝑡
is dominated by |𝑦

1

𝑡
| + |𝑌

𝑡
|. Thus there exists a

constant 𝐶
0
independent of 𝑛, such that

E[ sup
0≤𝑡≤𝑇

|𝑦
𝑛

𝑡
|
2

] ≤ 𝐶
0
. (26)

Now, noticing the boundedness of (𝑦
𝑛

𝑡
)
𝑡∈[0,𝑇]

in the above
sense, from the basic algebraic inequality, Jensen’s inequality
and Hölder’s inequality, we can get that there exists another
constant 𝐶

1
such that

E
𝐴
𝑛

𝑇


2

≤ 8E[
𝑦
𝑛

0


2

+
𝑌𝑇


2

+ (∫

𝑇

0

𝑔 (𝑠, 0, 0)
 𝑑𝑠)

2

+ 𝑎
2

𝜑
(∫

𝑇

0

𝑢
𝑠
𝑑𝑠)

2

sup
0≤𝑡≤𝑇

𝑦
𝑛

𝑡


2

+ 𝑏
2

𝜑
(∫

𝑇

0

𝑢
𝑠
𝑑𝑠)

2

+ 𝑎
2

𝜓
∫

𝑇

0

V2
𝑠
𝑑𝑠 ∫

𝑇

0

𝑧
𝑛

𝑠


2

𝑑𝑠

+ 𝑏
2

𝜓
(∫

𝑇

0

V
𝑠
𝑑𝑠)

2

+ ∫

𝑇

0

𝑧
𝑛

𝑠


2

𝑑𝑠]

≤ 𝐶
1

+ 𝐶
1
E∫

𝑇

0

𝑧
𝑛

𝑠


2

𝑑𝑠.

(27)
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On the other hand, in the light of (H2), applying Itô’s
formula to |𝑦

𝑛

𝑡
|
2 on [0, 𝑇] will lead to

𝑦
𝑛

0


2

+ E∫

𝑇

0

𝑧
𝑛

𝑠


2

𝑑𝑠

= E
𝑌𝑇


2

+ 2E∫

𝑇

0

𝑦
𝑛

𝑠
𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
) 𝑑𝑠 + 2E∫

𝑇

0

𝑦
𝑛

𝑠
𝑑𝐴
𝑛

𝑠

≤ E
𝑌𝑇


2

+ 2E∫

𝑇

0

[
𝑦
𝑛

𝑠

 (
𝑔 (𝑠, 0, 0)



+𝑢
𝑠
𝜑 (

𝑦
𝑛

𝑠

) + V
𝑠
𝜓 (

𝑧
𝑛

𝑠

)) ] 𝑑𝑠

+ 2E∫

𝑇

0

𝑦
𝑛

𝑠
𝑑𝐴
𝑛

𝑠
.

(28)

Then, the Hölder inequality and the inequality 𝑎𝑏 ≤ 𝜖𝑎
2

+

1/𝜖𝑏
2, for all 𝑎, 𝑏, 𝜖 > 0, imply that

𝑦
𝑛

0


2

+ E∫

𝑇

0

𝑧
𝑛

𝑠


2

𝑑𝑠

≤ E
𝑌𝑇


2

+ (1 + 𝑏
𝜑

+ 𝑏
𝜓

+ 2𝑎
𝜑

∫

𝑇

0

𝑢
𝑠
𝑑𝑠

+2𝑎
2

𝜓
∫

𝑇

0

V2
𝑠
𝑑𝑠)E[ sup

0≤𝑡≤𝑇

𝑦
𝑛

𝑠


2

]

+ E[(∫

𝑇

0

𝑔 (𝑠, 0, 0)
 𝑑𝑠)

2

] + 𝑏
𝜑

(∫

𝑇

0

𝑢
𝑠
𝑑𝑠)

2

+ 𝑏
𝜓

(∫

𝑇

0

V
𝑠
𝑑𝑠)

2

+
1

2
E∫

𝑇

0

𝑧
𝑛

𝑠


2

𝑑𝑠

+
1

4𝐶
1

E [
𝐴
𝑛

𝑇


2

] + 4𝐶
1
E[ sup
0≤𝑡≤𝑇

𝑦
𝑛

𝑠


2

] .

(29)

Thus, we can choose a constant 𝐶
2
satisfying

E∫

𝑇

0

𝑧
𝑛

𝑠


2

𝑑𝑠 ≤ 𝐶
2

+
1

2𝐶
1

E
𝐴
𝑛

𝑇


2

. (30)

Combining the inequalities (27) and (30), we can conclude
that E|𝐴

𝑛

𝑇
|
2

≤ 2𝐶
1
(1 + 𝐶

2
) and E∫

𝑇

0
|𝑧
𝑛

𝑠
|
2

𝑑𝑠 ≤ 1 + 2𝐶
2
. The

proof is completed.

Then, we give a proposition which plays a key role in the
procedure to prove the main theorem.

Proposition 11.

lim
𝑛→∞

E[ sup
0≤𝑡≤𝑇

(𝑌
𝑡

− 𝑦
𝑛

𝑡
)
2

] = 0. (31)

Proof. Since the family of the processes (𝑦
𝑛

𝑡
)
𝑡∈[0,𝑇]

is increas-
ing in 𝑛 and dominated by the process (𝑌

𝑡
)
𝑡∈[0,𝑇]

from the
above, we can define a process (𝑦

𝑡
)
𝑡∈[0,𝑇]

pointwise by the
limit of the processes sequence. Then we have, P-a.s.,

𝑦
𝑡

:= lim
𝑛→∞

𝑦
𝑛

𝑡
, ∀𝑡 ∈ [0, 𝑇] . (32)

And according to Lemma 2, for any integer 𝑛, the follow-
ing BSDE has a unique solution, denoted by (𝑦

𝑛

𝑡
, �̃�
𝑛

𝑡
)
𝑡∈[0,𝑇]

:

𝑦
𝑛

𝑡
= 𝑌
𝑇

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑦
𝑛

𝑠
) 𝑑𝑠

− ∫

𝑇

𝑡

�̃�
𝑛

𝑠
𝑑𝐵
𝑠

+ 𝑛 ∫

𝑇

𝑡

V2
𝑠

(𝑌
𝑠

− 𝑦
𝑛

𝑠
) 𝑑𝑠.

(33)

Let 𝜏 be a stopping time such that 0 ≤ 𝜏 ≤ 𝑇; then we have

𝑦
𝑛

𝜏
= E

F
𝜏 [𝑒
−𝑛∫
𝑇

𝜏
V2
𝑟
𝑑𝑟

𝑌
𝑇

+ 𝑛 ∫

𝑇

𝜏

V2
𝑠
𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟

𝑌
𝑠
𝑑𝑠

+ ∫

𝑇

𝜏

𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) 𝑑𝑠] .

(34)

For the first two terms within the bracket on the right-hand
side of (34), with the property of the vague convergence for
the distribution functions, it is easily seen that

𝑒
−𝑛∫
𝑇

𝜏
V2
𝑟
𝑑𝑟

𝑌
𝑇

+ 𝑛 ∫

𝑇

𝜏

V2
𝑠
𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟

𝑌
𝑠

𝑑𝑠 → 𝑌
𝜏
, P-a.s., (35)

and then, by dominated convergence, it converges in mean
square; that is,

E[(𝑒
−𝑛∫
𝑇

𝜏
V2
𝑟
𝑑𝑟

𝑌
𝑇

+ 𝑛 ∫

𝑇

𝜏

V2
𝑠
𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟

𝑌
𝑠

𝑑𝑠 − 𝑌
𝜏
)

2

] → 0.

(36)

Now, we come to treat the third term. From the assumption
(H2), we can deduce that

∫

𝑇

𝜏

𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟 𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
)
 𝑑𝑠

≤ 𝑎
𝜓

∫

𝑇

𝜏

𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟V
𝑠

𝑧
𝑛

𝑠

 𝑑𝑠

+ ∫

𝑇

𝜏

𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟

(
𝑔 (𝑠, 0, 0)

 + 𝑎
𝜑

𝑢 (𝑠)
𝑦
𝑛

𝑠



+𝑏
𝜑

𝑢
𝑠

+ 𝑏
𝜓
V
𝑠
) 𝑑𝑠.

(37)

For the integrand of the second integration term on the right
hand of (37), it is dominated by

𝑃
𝑡

:=
𝑔 (𝑡, 0, 0)

 + 𝑎
𝜑

𝑢 (𝑡) (

𝑦
1

𝑡


+

𝑌𝑡
) + 𝑏
𝜑

𝑢
𝑡

+ 𝑏
𝜓
V
𝑡
. (38)

Combining the assumption (H1), and the fact that (𝑦
1

𝑡
)
𝑡∈[0,𝑇]

and (𝑌
𝑡
)
𝑡∈[0,𝑇]

belong to the space S2(0, 𝑇; 𝑅), we can obtain
that this term converges to zero almost surely with respect to
probability 𝑃, by dominated convergence theorem, and then

E[ (∫

𝑇

𝜏

𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟

(
𝑔 (𝑠, 0, 0)

 + 𝑎
𝜑

𝑢 (𝑠)
𝑦
𝑛

𝑠



+𝑏
𝜑

𝑢
𝑠

+ 𝑏
𝜓
V
𝑠
) 𝑑𝑠)

2

] → 0.

(39)
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Applying Hölder’s inequality to the first term on the right
hand of (37), we can get

∫

𝑇

𝜏

𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟V
𝑠

𝑧
𝑛

𝑠

 𝑑𝑠 ≤
1

√2𝑛
(∫

𝑇

𝜏

𝑧
𝑛

𝑠


2

𝑑𝑠)

1/2

. (40)

Thus, from Proposition 10, it is easy to obtain the following
convergence:

E[(∫

𝑇

𝜏

𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟V
𝑠

𝑧
𝑛

𝑠

 𝑑𝑠)

2

] ≤
1

2𝑛
𝐶 → 0, (41)

and then

E[(∫

𝑇

𝜏

𝑒
−𝑛∫
𝑠

𝜏
V2
𝑟
𝑑𝑟 𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
)
 𝑑𝑠)

2

] → 0. (42)

Consequently, using Jensen’s inequality and the property of
conditional expectation, we have E[(𝑦

𝑛

𝜏
− 𝑌
𝜏
)
2
] → 0.

According to the uniqueness of the solutions for BSDE
(17) and the definition (32), we can obtain 𝑦

𝑛

𝑡
= 𝑦
𝑛

𝑡
, for all

𝑡 ∈ [0, 𝑇],P-a.s., and 𝑦
𝜏

= 𝑌
𝜏
. By section theorem, we have,

P-a.s.,

𝑦
𝑡

= 𝑌
𝑡
, ∀𝑡 ∈ [0, 𝑇] . (43)

Therefore, if 𝑇 < ∞, that 𝑌
𝑡

− 𝑦
𝑛

𝑡
uniformly converges

to zero in 𝑡 almost surely with respect to probability 𝑃, is the
immediate result of Dini’s theorem. Otherwise 𝑇 = ∞, since
the increasing sequence of the continuous process (𝑌

𝑡
−

𝑦
𝑛

𝑡
)
𝑡∈[0,𝑇]

has the same value 0 at 𝑇; then almost surely, for
any 𝑛 and 𝜖 > 0, we can choose a real number 𝑀, whichmay
depend only on 𝜖 and 𝜔, such that if 𝑡 > 𝑀, then

𝑌𝑡 − 𝑦
𝑛

𝑡

 ≤

𝑌
𝑡

− 𝑦
1

𝑡


≤ 𝜖. (44)

On the other hand, by Dini’s theorem, (𝑌
𝑡

− 𝑦
𝑛

𝑡
)
𝑡∈[0,𝑇]

con-
verges uniformly to zero almost surely on the interval [0, 𝑀].
So we can choose a number 𝑁 depending only on 𝜖 and
𝜔 such that if 𝑛 > 𝑁, then

𝑌𝑡 − 𝑦
𝑛

𝑡

 ≤ 𝜖, ∀𝑡 ∈ [0, 𝑀] . (45)

Thus, (𝑌
𝑡

− 𝑦
𝑛

𝑡
)
𝑡∈[0,𝑇]

uniformly converges to zero on the
whole interval [0, 𝑇] almost surely with respect to prob-abil-
ity 𝑃. Noticing the fact that |𝑌

𝑡
− 𝑦
𝑛

𝑡
| ≤ |𝑌

𝑡
| + |𝑦

1

𝑡
|, we can

obtain the desired result by dominated convergence theorem.
The proof is completed.

After that, we can get the following proposition about the
two sequences of (𝑧

𝑛

𝑡
)
𝑡∈[0,𝑇]

and (𝐴
𝑛

𝑡
)
𝑡∈[0,𝑇]

parameterized
by 𝑛.

Proposition 12. The processes (𝑧
𝑛

𝑡
)
𝑡∈[0,𝑇]

and (𝐴
𝑛

𝑡
)
𝑡∈[0,𝑇]

, at
least their subsequences, are the Cauchy sequences in H2(0, 𝑇;

R𝑑) and S2(0, 𝑇;R), respectively.

Proof. Applying Itô’s formula to |𝑦
𝑛

𝑡
− 𝑦
𝑚

𝑡
|
2 on [0, 𝑇], we

can obtain

𝑦
𝑛

0
− 𝑦
𝑚

0


2

+ ∫

𝑇

0

𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠


2

𝑑𝑠

= 2 ∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) (𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑚

𝑠
, 𝑧
𝑚

𝑠
)) 𝑑𝑠

+ 2 ∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) 𝑑 (𝐴

𝑛

𝑠
− 𝐴
𝑚

𝑠
)

− 2 ∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) (𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠
) 𝑑𝐵
𝑠

≤ 2 ∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) (𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑚

𝑠
, 𝑧
𝑚

𝑠
)) 𝑑𝑠

+ 2 ∫

𝑇

0

(𝑌
𝑠

− 𝑦
𝑛

𝑠
) 𝑑𝐴
𝑚

𝑠

+ 2 ∫

𝑇

0

(𝑌
𝑠

− 𝑦
𝑚

𝑠
) 𝑑𝐴
𝑛

𝑠
− 2 ∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) (𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠
) 𝑑𝐵
𝑠
.

(46)

Due to the fact that the part of Itô integration is uniformly
integrable martingale, we have

E∫

𝑇

0

𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠


2

𝑑𝑠

≤ 2E∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) (𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑚

𝑠
, 𝑧
𝑚

𝑠
)) 𝑑𝑠

+ 2E∫

𝑇

0

(𝑌
𝑠

− 𝑦
𝑛

𝑠
) 𝑑𝐴
𝑚

𝑠
+ 2E∫

𝑇

0

(𝑌
𝑠

− 𝑦
𝑚

𝑠
) 𝑑𝐴
𝑛

𝑠
.

(47)

As for the last two terms of the above inequality, Propositions
10 and 11 lead to the fact that if 𝑚, 𝑛 → ∞, then

E∫

𝑇

0

(𝑌
𝑠

− 𝑦
𝑛

𝑠
) 𝑑𝐴
𝑚

𝑠
+ E∫

𝑇

0

(𝑌
𝑠

− 𝑦
𝑚

𝑠
) 𝑑𝐴
𝑛

𝑠
→ 0. (48)

Next, we will show that, as 𝑚, 𝑛 → ∞,

E∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) (𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑚

𝑠
, 𝑧
𝑚

𝑠
)) 𝑑𝑠 → 0.

(49)

Because the generator 𝑔 satisfies the assumption (H2), by
Hölder’s inequality, we have

E∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) (𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑚

𝑠
, 𝑧
𝑚

𝑠
))

 𝑑𝑠

≤ E∫

𝑇

0

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠

 (𝑎
𝜑

𝑢
𝑠

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠

 + 𝑏
𝜑

𝑢
𝑠

+𝑎
𝜓
V
𝑠

𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠

 + 𝑏
𝜓
V
𝑠
) 𝑑𝑠
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≤ 𝑎
𝜓

(E [∫

𝑇

0

𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠


2

𝑑𝑠])

1/2

× (E [∫

𝑇

0

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠


2V2
𝑠

𝑑𝑠])

1/2

+ 𝑏
𝜓
E∫

𝑇

0

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠

 V𝑠𝑑𝑠

+ 𝑎
𝜑
E[ sup
0≤𝑠≤𝑇

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠


2

] ∫

𝑇

0

𝑢
𝑠
𝑑𝑠

+ 𝑏
𝜑
E∫

𝑇

0

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠

 𝑢
𝑠
𝑑𝑠.

(50)

According to Proposition 10 and the algebraic inequality, we
can conclude

E∫

𝑇

0

(𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠
) (𝑔 (𝑠, 𝑦

𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑚

𝑠
, 𝑧
𝑚

𝑠
))

 𝑑𝑠

≤ 2𝐶
2
(E [∫

𝑇

0

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠


2V2
𝑠
𝑑𝑠])

1/2

+ 𝑏
𝜑
E∫

𝑇

0

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠

 𝑢
𝑠
𝑑𝑠

+ 𝑎
𝜑
E[ sup
0≤𝑠≤𝑇

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠


2

] ∫

𝑇

0

𝑢
𝑠
𝑑𝑠

+ 𝑏
𝜓
E∫

𝑇

0

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠

 V𝑠𝑑𝑠.

(51)

Now set 𝐺
𝑠

= |𝑦
1

𝑠
| + |𝑌
𝑠
|, 𝐻
𝑠

= 4𝐺
2

𝑠
V2
𝑠
, and 𝐹

𝑠
= 2𝐺
𝑠
𝑢
𝑠
; then,

for any 𝑚, 𝑛 ≥ 1, we have

V2
𝑠

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠


2

≤ 𝐻s, 𝑢
𝑠

𝑦
𝑛

𝑠
− 𝑦
𝑚

𝑠

 ≤ 𝐹
𝑠
, 𝑠 ∈ [0, 𝑇] ;

E [∫

𝑇

0

𝐻
𝑠
𝑑𝑠] ≤ 4E[ sup

0≤𝑠≤𝑇

𝐺𝑠

2

] ∫

𝑇

0

V2
𝑠
𝑑𝑠 < +∞;

E [∫

𝑇

0

𝐹
𝑠
𝑑𝑠] ≤ 2(E[ sup

0≤𝑠≤𝑇

𝐺𝑠

2

])

1/2

∫

𝑇

0

𝑢
𝑠
𝑑𝑠 < +∞.

(52)

The first two terms of the right-hand side of (51) converge to
zero by the Lebesgue dominated theorem.AndProposition 11
implies that (𝑦

𝑛

𝑡
)
𝑡∈[0,𝑇]

is a Cauchy sequence in S2(0, 𝑇;R);
then the third term converges to zero.The convergence of the
last term can be proved in a similar way to the second one.

Now, coming back to the inequality (47), we can conclude
that E ∫

𝑇

0
|𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠
|
2

𝑑𝑠 → 0. This meansthat (𝑧
𝑛

𝑡
)
𝑡∈[0,𝑇]

is a
Cauchy sequence in H2(0, 𝑇;R𝑑), and we denoted its limit
by (𝑧
𝑡
)
𝑡∈[0,𝑇]

.

From (17), we know that

𝐴
𝑛

𝑡
− 𝐴
𝑚

𝑡
= 𝑦
𝑛

0
− 𝑦
𝑚

0
− ∫

𝑡

0

(𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑚

𝑠
, 𝑧
𝑚

𝑠
)) 𝑑𝑠

+ ∫

𝑡

0

(𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠
) 𝑑𝐵
𝑠
,

(53)

and then, from the basic algebraic inequality and BDG’s
inequality, we can get

E[ sup
0≤𝑡≤𝑇

𝐴
𝑛

𝑡
− 𝐴
𝑚

𝑡


2

]

≤ 3E
𝑦
𝑛

0
− 𝑦
𝑚

0


2

+ 3E∫

𝑇

0

𝑧
𝑛

𝑠
− 𝑧
𝑚

𝑠


2

𝑑𝑠

+ 3E[(∫

𝑇

0

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑚

𝑠
, 𝑧
𝑚

𝑠
)
 𝑑𝑠)

2

] .

(54)

In order to show that, when 𝑚, 𝑛 → ∞, the limit of the third
term of the right-hand side of (54) is zero, we only need to
show that if 𝑛 → ∞, then

E[(∫

𝑇

0

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑠
, 𝑧
𝑠
)
 𝑑𝑠)

2

] → 0. (55)

Because (𝑧
𝑛

𝑡
)
𝑡∈[0,𝑇]

is a Cauchy sequence in H2(0, 𝑇;R𝑑),
there is at least a subsequence (𝑧

𝑛
𝑘

𝑡
)
𝑡∈[0,𝑇]

such that 𝑑𝑃 × 𝑑𝑡-
a.e., 𝑧

𝑛
𝑘

𝑡
→ 𝑧
𝑡
, and �̆�

𝑡
:= sup

𝑘≥1
|𝑧
𝑛
𝑘

𝑡
| ∈ H2(0,T;R𝑑). For

convenience, we denote the subsequence by (𝑧
𝑛

𝑡
)
𝑡∈[0,𝑇]

itself.
According to the assumption (H2), we can deduce that

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) − 𝑔 (𝑠, 𝑦

𝑠
, 𝑧
𝑠
)


≤ 𝑎
𝜑

𝑢
𝑠


𝑦
𝑛

𝑠
− 𝑦
𝑠


+𝑏
𝜑

𝑢
𝑠

+ 𝑎
𝜓
V
𝑠


𝑧
𝑛

𝑠
− 𝑧
𝑠


+ 𝑏
𝜓
V
𝑠
.

(56)

The right-hand side of the above inequality is dominated by

𝑅
𝑠

:= 𝑎
𝜑

𝑢
𝑠
𝐺
𝑠

+ 𝑏
𝜑

𝑢
𝑠

+ 𝑎
𝜓
V
𝑠

(�̆�
𝑠

+ 𝑧
𝑠
) + 𝑏
𝜓
V
𝑠
. (57)

It is easy to check that E[(∫
𝑇

0
𝑅
𝑠

𝑑𝑠)
2

] < ∞. Then the
convergence of (55) is a direct consequence of the Lebesgue
dominated convergence theorem.

From the above argument and Proposition 11, we can
assert that (𝐴

𝑛

𝑡
)
𝑡∈[0,𝑇]

is also a Cauchy sequence in S2(0, 𝑇;

R)with a unique limit (𝐴
𝑡
)
𝑡∈[0,𝑇]

.Theproof is completed.

Proof of Theorem 8. From the procedure of the proof of
Proposition 12, we know that

∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) 𝑑𝑠 → ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) 𝑑𝑠, (58)
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uniformly on [0,T], in mean square, that is,

E[( sup
0≤𝑡≤𝑇



∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑛

𝑠
, 𝑧
𝑛

𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) 𝑑𝑠



)

2

]

→ 0.

(59)

And, by the property of Itô’s integration, BDG’s inequality,
and Proposition 12, we also have

∫

𝑇

𝑡

𝑧
𝑛

𝑠
𝑑𝐵
𝑠

→ ∫

𝑇

𝑡

𝑧
𝑠

𝑑𝐵
𝑠
, (60)

uniformly on [0,T], in mean square, that is,

E[ sup
0≤𝑡≤𝑇



∫

𝑇

𝑡

𝑧
𝑛

𝑠
𝑑𝐵
𝑠

− ∫

𝑇

𝑡

𝑧
𝑠

𝑑𝐵
𝑠



2

]

≤ 𝐶E [∫

𝑇

0

𝑧
𝑛

𝑠
− 𝑧
𝑠


2

𝑑𝑠] → 0.

(61)

Then combining the above convergence and the fact that
the sequences (𝑦

𝑛

𝑡
)
𝑡∈[0,𝑇]

and (𝐴
𝑛

𝑡
)
𝑡∈[0,𝑇]

themselves or
their subsequences converge to (𝑦

𝑡
)
𝑡∈[0,𝑇]

and
(𝐴
𝑡
)
𝑡∈[0,𝑇]

uniformly on [0, 𝑇], in mean square, respectively,
we can obtain the following equation:

𝑦
𝑡

= 𝑌
𝑇

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
𝑑𝐵
𝑠

+ 𝐴
𝑇

− 𝐴
𝑡
,

𝑡 ∈ [0, 𝑇] .

(62)

Notice that (𝐴
𝑛

𝑡
)
𝑡∈[0,𝑇]

is an increasing process with 𝐴
𝑛

0
= 0;

then its limit (𝐴
𝑡
)
𝑡∈[0,𝑇]

will preserve this property. In fact, we
have proved the first part of Theorem 8, because, according
to (43), the 𝑔-supermartingale (𝑌

𝑡
)
𝑡∈[0,𝑇]

coincides with the
first component (𝑦

𝑡
)
𝑡∈[0,𝑇]

of the solution for the BSDE (62).
And finally, the uniqueness of the decomposition of 𝑔-
supermartingale follows from the uniqueness of the decom-
position of 𝑔-supersolution. The proof is completed.

Now, in addition, if we assume that 𝑔 is independent
of 𝑦, then we can write the decomposition of Doob-Meyer’s
type for 𝑔-supermartingale in a more clear sense like the
classical martingale theory.

Corollary 13. Let 𝑔 be independent of 𝑦 and satisfy the
conditions (H1) and (H2). If (𝑋

𝑡
)
𝑡∈[0,𝑇]

is a continuous 𝑔-
supermartingale in S2(0, 𝑇;R), then it has the following
decomposition:

𝑋
𝑡

= 𝑀
𝑡

− 𝐴
𝑡
, (63)

where (𝑀
𝑡
)
𝑡∈[0,𝑇]

is a 𝑔-martingale and (𝐴
𝑡
)
𝑡∈[0,𝑇]

is an
increasing process which belongs to A2(0, 𝑇;R).

Proof. By Theorem 8, a 𝑔-supermartingale (𝑋
𝑡
)
𝑡∈[0,𝑇]

on
[0, 𝑇] has the following form. There exists a pair of
processes (𝑧

𝑡
, 𝐴
𝑡
)
𝑡∈[0,𝑇]

such that

𝑋
𝑡

= 𝑋
𝑇

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
𝑑𝐵
𝑠

+ 𝐴
𝑇

− 𝐴
𝑡
,

𝑡 ∈ [0, 𝑇] .

(64)

We set 𝑀
𝑡

= 𝑋
𝑡

+ 𝐴
𝑡
; then

𝑀
𝑡

= 𝑋
𝑇

+ 𝐴
𝑇

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑧
𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
𝑑𝐵
𝑠
, 𝑡 ∈ [0, 𝑇] .

(65)

Obviously, the pair of the processes (𝑀
𝑡
, 𝑧
𝑡
)
𝑡∈[0,𝑇]

is a solu-
tion of the BSDE with the terminal data 𝑋

𝑇
+ 𝐴
𝑇
and the

generator 𝑔. Definition 6 implies that 𝑀
𝑡
is a 𝑔-martingale.

The proof is completed.
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