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We obtain the global existence of weak solutions for the Cauchy problem of the nonhomogeneous, resonant system. First, by using
the technique given in Tsuge (2006), we obtain the uniformly bounded 𝐿∞ estimates 𝑧(𝜌𝛿,𝜀, 𝑢𝛿,𝜀) ≤ 𝐵(𝑥) and 𝑤(𝜌𝛿,𝜀, 𝑢𝛿,𝜀) ≤ 𝛽
when 𝑎(𝑥) is increasing (similarly, 𝑤(𝜌𝛿,𝜀, 𝑢𝛿,𝜀) ≤ 𝐵(𝑥) and 𝑧(𝜌𝛿,𝜀, 𝑢𝛿,𝜀) ≤ 𝛽 when 𝑎(𝑥) is decreasing) for the 𝜀-viscosity and 𝛿-
flux approximation solutions of nonhomogeneous, resonant system without the restriction 𝑧

0
(𝑥) ≤ 0 or 𝑤

0
(𝑥) ≤ 0 as given in

Klingenberg and Lu (1997), where 𝑧 and 𝑤 are Riemann invariants of nonhomogeneous, resonant system; 𝐵(𝑥) > 0 is a uniformly
bounded function of 𝑥 depending only on the function 𝑎(𝑥) given in nonhomogeneous, resonant system, and 𝛽 is the bound
of 𝐵(𝑥). Second, we use the compensated compactness theory, Murat (1978) and Tartar (1979), to prove the convergence of the
approximation solutions.

1. Introduction

The following system

(𝑎𝜌)
𝑡
+ (𝑎𝜌𝑢)

𝑥
= 0,

(𝑎𝜌𝑢)
𝑡
+ (𝑎 (𝜌𝑢

2

+ 𝑃 (𝜌)))
𝑥

= 𝑎
𝑥
𝑃 (𝜌) ,

𝑎
𝑡
= 0

(1)

describes the evolution of an isothermal fluid in a nozzle with
discontinuous cross-sectional area 𝑎(𝑥) > 0, where 𝜌 and
𝑢 stand for the density and the particle velocity of the fluid
under consideration, respectively, and 𝑃(𝜌) denotes the pres-
sure function (See [1]).The existence of global weak solutions
for theCauchy problemor the initial boundary value problem
of system (1) has been studied in [1–3]. In [4–6], the authors
showed the global existence of BV entropy solutions to amore
general class of nonhomogeneous, resonant system by the
generalized Glimm scheme.

TheRiemannproblem for amore general resonant system
of 𝑛 + 1 equations,

𝑎
𝑡
= 0,

𝑢
𝑡
+ 𝐹(𝑢, 𝑎)

𝑥
= 0,

(2)

was resolved in [7], where 𝑢 ∈ 𝑅𝑛 and 𝐹 : 𝑅𝑛 × 𝑅 → 𝑅
𝑛 is a

smooth function.
To study the existence of entropy solutions of the Cauchy

problem (1), themain difficulty is to establish boundedness of
solutions because the equations are not in conservative form
and the Conley-Chuey-Smoller principle of invariant regions
does not apply (See [1] for the details about the physical
background of system (1) and its difficulty in analysis). For
the polytropic gas and the adiabatic exponent 𝛾 ∈ (1, 5/3],
the definition of a finite energy solution (unbounded) is
given and its existence is obtained by using the compensated
compactness method in [1].
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2 Abstract and Applied Analysis

For smooth solution, system (1) is equivalent to the
following conservation laws of three equations:

𝑎
𝑡
= 0,

(𝑎𝜌)
𝑡
+ (𝑎𝜌𝑢)

𝑥
= 0,

𝑢
𝑡
+ (

1

2
𝑢
2

+ ∫

𝜌

0

𝑃


(𝑠)

𝑠
𝑑𝑠)

𝑥

= 0

(3)

or the system of two equations

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 𝐴 (𝑥) 𝜌𝑢,

𝑢
𝑡
+ (

1

2
𝑢
2

+ ∫

𝜌

0

𝑃


(𝑠)

𝑠
𝑑𝑠)

𝑥

= 0,

(4)

where𝐴(𝑥) = −(𝑎(𝑥)/𝑎(𝑥)).When 𝑎 is a constant, system (3)
or system (4) itself has many different physical backgrounds.
For instance, it is a scaling limit system of Newtonian dynam-
ics with long-range interaction for a continuous distribution
of mass in 𝑅 (cf. [8, 9]) and also a hydrodynamic limit for
the Vlasov equation (cf. [10]). Its global weak solution was
obtained by using the random choice method [2] in [11] and
by using the compensated compactness theory in [12, 13].

By simple calculations, two eigenvalues of system (4) are

𝜆
1
= 𝑢 − √𝑃 (𝜌), 𝜆

2
= 𝑢 + √𝑃 (𝜌), (5)

with corresponding Riemann invariants

𝑧 (𝑢, 𝜌) = ∫

𝜌

𝑐

√𝑃 (𝑠)

𝑠
𝑑𝑠 − 𝑢,

𝑤 (𝑢, 𝜌) = ∫

𝜌

𝑐

√𝑃 (𝑠)

𝑠
𝑑𝑠 + 𝑢,

(6)

where 𝑐 is a constant.
The existence of weak solutions for the Cauchy problem

(4) with bounded initial data

(𝜌 (𝑥, 0) , 𝑢 (𝑥, 0)) = (𝜌
0
(𝑥) , 𝑢

0
(𝑥)) , 𝜌

0
(𝑥) ≥ 0 (7)

was first studied in [12], where 𝑎(𝑥) is a smooth func-
tion and the technical condition 𝑧(𝑢

0
(𝑥), 𝜌
0
(𝑥)) ≤ 0 or

𝑤(𝑢
0
(𝑥), 𝜌
0
(𝑥)) ≤ 0 on the initial data is imposed for

obtaining the a-priori, uniform 𝐿∞ estimate of 𝑧 or 𝑤.
Without the condition 𝑧

0
(𝑥) ≤ 0 or 𝑤

0
(𝑥) ≤ 0, the

reasonable estimate, depending on the variable 𝑥 : 𝑧(𝑥, 𝑡) ≤
𝐶𝑥
−(2(𝛾−1)/(𝛾+1)), 𝐶 > 0 was first obtained in [2] for system

(1) when 𝑃(𝜌) = 𝜌
𝛾, 1 < 𝛾 < 5/3 by using a modified

Godunov scheme, and in [14] for general pressure function
𝑃(𝜌) and smooth function 𝑎(𝑥) by using the compensated
compactness.

In this paper, using the vanishing viscosity method
and the maximum principle coupled with the flux approx-
imation proposed in [15] for the homogeneous system of
isentropic gas dynamics, we extend the results in [2, 12] to the
Cauchy problem (4)–(7) for any bounded initial data and for

the function 𝑎(𝑥) satisfying the conditions 0 < 𝑐
1
≤ 𝑎(𝑥) ≤ 𝑐

2
,

𝑎


(𝑥) ∈ 𝐿
1

(𝑅).
We first construct the sequence of hyperbolic systems

𝜌
𝑡
+ (𝑢 (𝜌 − 𝛿))

𝑥
= 𝐴
𝜀
1
(𝑥) 𝑢 (𝜌 − 𝛿) ,

𝑢
𝑡
+ (
1

2
𝑢
2

+ 𝑃
1
(𝜌, 𝛿))

𝑥

= 0

(8)

to approximate system (4), where 𝛿 > 0 denotes the flux
approximation constant and the approximation pressure

𝑃
1
(𝜌, 𝛿) = ∫

𝜌

𝛿

𝑡 − 𝛿

𝑡2
𝑃


(𝑡) 𝑑𝑡, (9)

𝐴
𝜀
1(𝑥) = −(𝑎

𝜀
1(𝑥)


/𝑎
𝜀
1(𝑥)), and 𝑎𝜀1 = 𝑎(𝑥) ∗ 𝐺

𝜀
1 is the

smooth approximation of 𝑎(𝑥), 𝐺𝜀1 being a mollifier. If 𝑎(𝑥)
is a monotonic function, 0 < 𝑐

1
≤ 𝑎(𝑥) ≤ 𝑐

2
as required in

Theorem 2, and 𝜀 and 𝛿 converge to zero much faster than 𝜀
1
,

then it is easy to prove that 𝐴𝜀1(𝑥) and 𝑎𝜀1 satisfy

lim
𝜀
1
→0

𝐴
𝜀
1
(𝑥) = 𝐴 (𝑥) , 𝑎.𝑒. on 𝑅,

lim
𝜀
1
,𝛿→0

𝛿𝐴
𝜀
1
(𝑥) = 0, 𝑎.𝑒. on 𝑅,

𝐴
𝜀
1
(𝑥) is uniformly bounded in 𝐿1 (𝑅) ,

lim
𝜀
1
,𝜀→0

(𝜀𝑎
𝜀
1
(𝑥)


, 𝜀𝑎
𝜀
1
(𝑥)


) = (0, 0) , 𝑎.𝑒. on 𝑅.

(10)

Second, we add the viscosity terms to the right-hand side of
(8) to obtain the following parabolic system:

𝜌
𝑡
+ (𝑢 (𝜌 − 𝛿))

𝑥
= 𝐴
𝜀
1
(𝑥) 𝑢 (𝜌 − 𝛿) + 𝜀𝜌

𝑥𝑥
,

𝑢
𝑡
+ (
1

2
𝑢
2

+ 𝑃
1
(𝜌, 𝛿))

𝑥

= 𝜀𝑢
𝑥𝑥
,

(11)

with initial data

(𝜌
𝛿,𝜀

(𝑥, 0) , 𝑢
𝛿,𝜀

(𝑥, 0)) = (𝜌
0
(𝑥) + 𝛿, 𝑢

0
(𝑥)) , (12)

where (𝜌
0
(𝑥), 𝑢
0
(𝑥)) are given in (7).

Lemma 1. Let 0 < 𝑐
1
≤ 𝑎(𝑥) ≤ 𝑐

2
or equivalently 0 < 𝑐

1
≤

𝑎
𝜀
1(𝑥) ≤ 𝑐

2
for two constants 𝑐

1
and 𝑐
2
. If 𝑎(𝑥) is increasing or

equivalently 𝑎𝜀1(𝑥) ≥ 0, then we can choose a function 𝐵(𝑥)
satisfying 𝐵(𝑥) ≤ 0, 0 < 𝛽

0
≤ 𝐵(𝑥) ≤ 𝛽, and

2𝐴
𝜀
1
(𝑥) 𝐵 (𝑥) ≤ 𝐵



(𝑥) ≤ 𝐴
𝜀
1
(𝑥) 𝐵 (𝑥) , (13)

where the positive constants 𝛽
0
, and 𝛽 depend on 𝑐

1
, and 𝑐

2
, but

are independent of 𝜀
1
.

The proof of Lemma 1 is trivial.
By applying the maximum principle to the Cauchy prob-

lem (11)-(12), we first obtain the 𝐿∞ estimates 𝑧(𝜌𝛿,𝜀, 𝑢𝛿,𝜀) ≤
𝐵(𝑥) and 𝑤(𝜌𝛿,𝜀, 𝑢𝛿,𝜀) ≤ 𝛽 when 𝑎(𝑥) is increasing (similarly
𝑤(𝜌
𝛿,𝜀

, 𝑢
𝛿,𝜀

) ≤ 𝐵(𝑥) and 𝑧(𝜌𝛿,𝜀, 𝑢𝛿,𝜀) ≤ 𝛽when 𝑎(𝑥) is decreas-
ing) for a suitable positive, bounded function 𝐵(𝑥) given
in Lemma 1; then by using the compensated compactness
theory and the already existed compact frameworks given
in [12, 13], we give the following global existence theorem of
weak solutions.
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Theorem 2. Let (√𝑃(𝜌)/𝜌)


≥ 0 and 0 < 𝑐
1
≤ 𝑎(𝑥) ≤ 𝑐

2
for

two positive constants 𝑐
1
and 𝑐
2
.

(A) Let 𝑎(𝑥) be increasing and we choose 𝐵(𝑥) ∈ 𝐶2(𝑅)
satisfying all conditions in Lemma 1 and, moreover, 𝐵(𝑥) ≤ 0
or 𝐵(𝑥) = 𝐵

1
+𝐵
2
, where 𝐵

1
≤ 0 and |2𝑐𝐵

2
| ≤ |𝐵(𝑥)𝐵



(𝑥)| for
a sufficiently small constant 𝑐. Then the Riemann invariants 𝑧
and 𝑤 of system (4) with respect to the approximated solutions
of the Cauchy problem (11)-(12) satisfy the estimate

𝑧 (𝜌
𝛿,𝜀

, 𝑢
𝛿,𝜀

) = ∫

𝜌
𝛿,𝜀

𝛿

√𝑃 (𝑠)

𝑠
𝑑𝑠 − 𝑢

𝛿,𝜀

≤ 𝐵 (𝑥) , (14)

if 𝑧(𝜌𝛿,𝜀(𝑥, 0), 𝑢𝛿,𝜀(𝑥, 0)) ≤ 𝐵(𝑥) and

𝑤(𝜌
𝛿,𝜀

(𝑥, 𝑡) , 𝑢
𝛿,𝜀

(𝑥, 𝑡)) = ∫

𝜌
𝛿,𝜀

𝛿

√𝑃 (𝑠)

𝑠
𝑑𝑠 + 𝑢

𝛿,𝜀

≤ 𝛽, (15)

if 𝑤(𝜌𝛿,𝜀(𝑥, 0), 𝑢𝛿,𝜀(𝑥, 0)) ≤ 𝛽.
(B) For such function 𝐴(𝑥) and the initial data satisfying

the conditions in Part (𝐴), if either 𝑃(𝜌) = (1/𝛾)𝜌𝛾, 𝛾 > 3,

or (√𝑃(𝜌)/𝜌)


≥ 𝑑, where 𝑑 is a positive constant, then there
exists a subsequence of (𝜌𝛿,𝜀(𝑥, 𝑡), 𝑢𝛿,𝜀(𝑥, 𝑡)), which converges
pointwise to a pair of bounded functions (𝜌(𝑥, 𝑡), 𝑢(𝑥, 𝑡)) as 𝛿,
and 𝜀 tend to a zero, and the limit is a weak entropy solution of
the Cauchy problem (4)–(7).

Definition 3. For integrable function 𝑎(𝑥)/𝑎(𝑥) ∈ 𝐿
1

(𝑅),
a pair of bounded measurable functions (𝜌(𝑥, 𝑡), 𝑢(𝑥, 𝑡)) is
called a weak entropy solution of the Cauchy problem (4)–
(7), if

∫

∞

0

∫

∞

−∞

𝜌𝜙
𝑡
+ (𝜌𝑢) 𝜙

𝑥
−
𝑎


(𝑥)

𝑎 (𝑥)
(𝜌𝑢) 𝜙 𝑑𝑥 𝑑𝑡

+ ∫

∞

−∞

𝜌
0
(𝑥) 𝜙 (𝑥, 0) 𝑑𝑥 = 0,

∫

∞

0

∫

∞

−∞

𝑢𝜙
𝑡
+ (

1

2
𝑢
2

+ ∫

𝜌

0

𝑃


(𝑠)

𝑠
𝑑𝑠)𝜙

𝑥
𝑑𝑥 𝑑𝑡

+ ∫

∞

−∞

𝑢
0
(𝑥) 𝜙 (𝑥, 0) 𝑑𝑥 = 0

(16)

hold for all test function 𝜙 ∈ 𝐶1
0
(𝑅 × 𝑅

+

) and

∫

∞

0

∫

∞

−∞

𝜂 (𝜌, 𝑢) 𝜙
𝑡
+ 𝑞 (𝜌, 𝑢) 𝜙

𝑥

−
𝑎


(𝑥)

𝑎 (𝑥)
𝜂(𝜌, 𝑢)

𝜌
𝜌𝑢𝜙𝑑𝑥 𝑑𝑡 ≥ 0

(17)

holds for any nonnegative test function𝜙 ∈ 𝐶∞
0
(𝑅 × 𝑅

+

− {𝑡 =

0}), where (𝜂, 𝑞) is a pair of convex entropy-entropy flux of
system (4).

We can easily construct many functions 𝐴(𝑥), and 𝐵(𝑥)
satisfying the conditions inTheorem 2.

Example 4. Let

𝐴 (𝑥) = −
1

1 + 𝑥2
, (18)

and choose

𝐵 (𝑥) = 𝑒
−∫

𝑥

−∞
(1/(1+𝑠

2
))𝑑𝑠

. (19)

Then (13) is satisfied since 𝐵(𝑥) = 𝐴(𝑥)𝐵(𝑥) and 𝐵(𝑥)
satisfies all the conditions in Theorem 2. In fact, we may
choose 𝐵

1
= 0 and then 𝐵

2
= 𝐵


(𝑥) and

𝐵


(𝑥)

=

𝐵


(𝑥) 𝐴 (𝑥) + 𝐵 (𝑥)𝐴


(𝑥)


=



𝐵


(𝑥) 𝐴 (𝑥) +
𝐴


(𝑥)

𝐴 (𝑥)
𝐵


(𝑥)



=



1 + 2𝑥

1 + 𝑥2
𝐵


(𝑥)



≤ 𝑀

𝐵


(𝑥)


(20)

for a positive constant𝑀.

We are going to proveTheorem 2 in the next section.

2. Proof of Theorem 2

By simple calculations, two eigenvalues of system (8) are

𝜆
𝛿

1
= 𝑢 −

𝜌 − 𝛿

𝜌
√𝑃 (𝜌), 𝜆

𝛿

2
= 𝑢 +

𝜌 − 𝛿

𝜌
√𝑃 (𝜌), (21)

with corresponding right eigenvectors

𝑟
1
= (1, 𝑢 − √𝑃 (𝜌))

𝑇

, 𝑟
2
= (1, 𝑢 + √𝑃 (𝜌))

𝑇

, (22)

and Riemann invariants

𝑧 (𝑢, 𝜌) = ∫

𝜌

𝛿

√𝑃 (𝑠)

𝑠
𝑑𝑠 − 𝑢,

𝑤 (𝑢, 𝜌) = ∫

𝜌

𝛿

√𝑃 (𝑠)

𝑠
𝑑𝑠 + 𝑢

(23)

which are similar to the Riemann invariants of system (4)
given by (6).

We multiply (11) by (𝑤
𝜌
, 𝑤
𝑢
) and (𝑧

𝜌
, 𝑧
𝑢
), respectively, to

obtain

𝑤
𝑡
+ 𝜆
𝛿

2
𝑤
𝑥
= 𝜀𝑤
𝑥𝑥
− 𝜀(

√𝑃 (𝜌)

𝜌
)



𝜌
2

𝑥

+ 𝐴
𝜀
1
(𝑥) (𝜌 − 𝛿) 𝑢

√𝑃 (𝜌)

𝜌
,

(24)

𝑧
𝑡
+ 𝜆
𝛿

1
𝑧
𝑥
= 𝜀𝑧
𝑥𝑥
− 𝜀(

√𝑃 (𝜌)

𝜌
)



𝜌
2

𝑥

+ 𝐴
𝜀
1
(𝑥) (𝜌 − 𝛿) 𝑢

√𝑃 (𝜌)

𝜌
.

(25)
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Let V = 𝑤 − 𝐵(𝑥). Then

V
𝑡
+ (𝑢 +

𝜌 − 𝛿

𝜌
√𝑃 (𝜌)) (V

𝑥
+ 𝐵


(𝑥))

= 𝜀V
𝑥𝑥
+ 𝜀𝐵


(𝑥) − 𝜀(

√𝑃 (𝜌)

𝜌
)



𝜌
2

𝑥

+ 𝐴
𝜀
1
(𝑥)

𝜌 − 𝛿

𝜌
√𝑃 (𝜌)

× (𝐵 (𝑥) + V − ∫
𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌) ,

(26)

or

V
𝑡
+ (𝑢 +

𝜌 − 𝛿

𝜌
√𝑃 (𝜌)) V

𝑥

+ 𝐵


(𝑥)(𝐵 (𝑥) + V − ∫
𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌)

+ (𝜌 − 𝛿) 𝐵


(𝑥)

√𝑃 (𝜌)

𝜌

= 𝜀V
𝑥𝑥
+ 𝜀𝐵


(𝑥) − 𝜀(

√𝑃 (𝜌)

𝜌
)



𝜌
2

𝑥

+ 𝐴
𝜀
1
(𝑥) 𝐵 (𝑥) (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌

+ 𝐴
𝜀
1
(𝑥) (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌
V

− 𝐴
𝜀
1
(𝑥) (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌
∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌,

(27)

or

V
𝑡
+ 𝑎 (𝑥, 𝑡) V

𝑥
+ 𝑏 (𝑥, 𝑡) V

+ (
1

2
𝐵


(𝑥) 𝐵 (𝑥) − 𝜀𝐵


(𝑥))

− 𝐵


(𝑥) ∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌 +

1

2
𝐵 (𝑥) 𝐵



(𝑥)

+ [𝐵


(𝑥) − 𝐴
𝜀
1
(𝑥) 𝐵 (𝑥)] (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌

+ 𝐴
𝜀
1
(𝑥) (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌
∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌

= 𝜀V
𝑥𝑥
− 𝜀(

√𝑃 (𝜌)

𝜌
)



𝜌
2

𝑥
,

(28)

where 𝑎(𝑥, 𝑡) = 𝑢 + ((𝜌 − 𝛿)/𝜌)√𝑃(𝜌) and 𝑏(𝑥, 𝑡) = 𝐵(𝑥) −

𝐴
𝜀
1(𝑥)(𝜌 − 𝛿)(√𝑃(𝜌)/𝜌).
Using the first equation of (11), we have the a-priori

estimate 𝜌 ≥ 𝛿. Since the conditions on 𝐵(𝑥) in Theorem 2,
the following two terms on the left-hand side of (28):

1

2
𝐵


(𝑥) 𝐵 (𝑥) − 𝜀𝐵


(𝑥) ≥ 0. (29)

Now, we consider the other terms

𝐿 = − 𝐵


(𝑥) ∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌 +

1

2
𝐵 (𝑥) 𝐵



(𝑥)

+ [𝐵


(𝑥) − 𝐴
𝜀
1
(𝑥) 𝐵 (𝑥)] (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌

+ 𝐴
𝜀
1
(𝑥) (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌
∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌

(30)

on the left-hand side of (28).
First, we have from 𝐵(𝑥) ≥ 𝐵(𝑥)𝐴𝜀1(𝑥) that

𝐿 ≥ − 𝐵


(𝑥) ∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌 +

1

2
𝐵 (𝑥) 𝐵



(𝑥)

+ 𝐴
𝜀
1
(𝑥) (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌
∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌.

(31)

Second, we have from (√𝑃(𝜌)/𝜌)


≥ 0, 𝐴𝜀1(𝑥) ≥ 0 that

𝐴
𝜀
1
(𝑥) (𝜌 − 𝛿)

√𝑃 (𝜌)

𝜌
∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌

≥ 𝐴
𝜀
1
(𝑥)(∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌)

2 (32)
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and so

𝐿 ≥ − 𝐵


(𝑥) ∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌 +

1

2
𝐵 (𝑥) 𝐵



(𝑥)

+ 𝐴
𝜀
1
(𝑥)(∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌)

2

= 𝐴
𝜀
1
(𝑥)(∫

𝜌

𝛿

√𝑃 (𝜌)

𝜌
𝑑𝜌 −

𝐵


(𝑥)

2𝐴𝜀1 (𝑥)
)

2

+
1

2
𝐵 (𝑥) 𝐵



(𝑥) −

(𝐵


(𝑥))
2

4𝐴𝜀1 (𝑥)
≥ 0,

(33)

since 𝐵(𝑥) ≤ 2𝐵(𝑥)𝐴(𝑥).
Thus, (28) is reduced to the following inequality about V:

V
𝑡
+ 𝑎 (𝑥, 𝑡) V

𝑥
+ 𝑏 (𝑥, 𝑡) V ≤ 𝜀V

𝑥𝑥
(34)

and we can prove that V ≤ 0 or 𝑤 ≤ 𝐵(𝑥) if applying for the
maximum principle to (34).

To prove the estimate of 𝑧, we have from (25) that

𝑧
𝑡
+ 𝑎
1
(𝑥, 𝑡) 𝑧

𝑥
≤ 𝜀𝑧
𝑥𝑥
+ 𝐴 (𝑥) (𝜌 − 𝛿) 𝑢

√𝑃 (𝜌)

𝜌
,

(35)

where 𝑎
1
(𝑥, 𝑡) = 𝑢 − (𝜌 − 𝛿)(√𝑃(𝜌)/𝜌).

Let

𝑧 = 𝑋 + 𝛽 +

𝑁(𝑥
2

+ 𝐿ℎ𝑒
3𝑡

)

𝐿2
, (36)

where 𝛽 ≥ 𝐵(𝑥) > 0 is the upper bound of 𝑧
0
(𝑥) and𝑁, and

ℎ are the bounds of |𝑧| and |𝑎
1
(𝑥, 𝑡)| obtained from the local

solution. Then

𝑋(𝑥, 0) = 𝑧
0
(𝑥) − 𝛽 −

𝑁(𝑥
2

+ 𝐿ℎ)

𝐿2
< 0,

𝑋 (±𝐿, 𝑡) = 𝑧 (±𝐿, 𝑡) − 𝛽 −

𝑁(𝐿
2

+ 𝐿ℎ𝑒
3𝑡

)

𝐿2
< 0.

(37)

We have from (35)–(37) that

𝑋(𝑥, 𝑡) < 0, on (−𝐿, 𝐿) × (0, 𝑇) . (38)

We argue by assuming that (38) is violated for 𝑋 at a point
(𝑥, 𝑡) in (−𝐿, 𝐿) × (0, 𝑇). Let 𝑡 be the least upper bound of
values of 𝑡 at which 𝑋 < 0. Then, by the continuity we see
that𝑋 = 0 at some points (𝑥, 𝑡) ∈ (−𝐿, 𝐿) × (0, 𝑇). So𝑋

𝑡
≥ 0,

𝑋
𝑥
= 0, and −𝑋

𝑥𝑥
≥ 0 at (𝑥, 𝑡); that is,

𝑋
𝑡
+ 𝑎
1
(𝑥, 𝑡) 𝑋

𝑥
− 𝜀𝑋
𝑥𝑥
≥ 0 at (𝑥, 𝑡) . (39)

But from (35) and (36),

𝑋
𝑡
+ 𝑎
1
(𝑥, 𝑡) 𝑋

𝑥
− 𝜀𝑋
𝑥𝑥

≤ 𝐴 (𝑥) (𝜌 − 𝛿) 𝑢

√𝑃 (𝜌)

𝜌

− (
3𝑁ℎ𝐿𝑒

3𝑡

𝐿2
+ 𝑎
1
(𝑥, 𝑡)

2𝑁𝑥

𝐿2
− 𝜀
2𝑁

𝐿2
) .

(40)

Since𝑋 = 0 on (𝑥, 𝑡); then

𝑧 = 𝛽 +

𝑁(𝑥
2

+ 𝐿ℎ𝑒
3𝑡

)

𝐿2
> 𝛽 ≥ 𝑤 at (𝑥, 𝑡) , (41)

Thus, 𝑢 < 0 at (𝑥, 𝑡) from the relation of 𝑤, and 𝑧 given by
(23). So the right-hand side of (40) is negative, which yields
a conclusion contradicting (39). So (38) is proved. Therefore
for any point (𝑥

0
, 𝑡
0
) in (−𝐿, 𝐿) × (0, 𝑇),

𝑧 (𝑥
0
, 𝑡
0
) < 𝛽 +

𝑁(𝑥
2

0
+ 𝐿ℎ𝑒

3𝑡
0)

𝐿2
, (42)

which yields the desired estimate

𝑧 (𝑥, 𝑡) ≤ 𝛽, (43)

if we let 𝐿 ↑ ∞ in (42), and, hence, complete the proof of Part
(A) inTheorem 2.

For the homogeneous case (𝑎(𝑥) = 0), the convergence of
(𝜌
𝛿,𝜀

, 𝑢
𝛿,𝜀

) → (𝜌, 𝑢) as 𝛿, and 𝜀 tend to zero in the Part (B)
was given in [13] when 𝑃(𝜌) = (1/𝛾)𝜌𝛾, 𝛾 > 3, and given in

[12] when (√𝑃(𝜌)/𝜌)


≥ 𝑑 > 0 by using the compensated
compactness theory [16, 17] coupled with some basic ideas of
the kinetic formulation [18, 19].

Now, we are going to prove the convergence of
(𝜌
𝛿,𝜀

, 𝑢
𝛿,𝜀

) → (𝜌, 𝑢) as 𝛿, and 𝜀 tend to zero for the
inhomogeneous system (11).

Any entropy-entropy flux pair (𝜂(𝜌, 𝑢), 𝑞(𝜌, 𝑢)) of the
original hyperbolic system (4) satisfies the additional system.
Consider

𝑞
𝜌
= 𝑢𝜂
𝜌
+
𝑃


(𝜌)

𝜌
𝜂
𝑢
, 𝑞

𝑢
= 𝜌𝜂
𝜌
+ 𝑢𝜂
𝑢
. (44)

Eliminating the 𝑞 from (44), we have

𝜂
𝜌𝜌
=
𝑃


(𝜌)

𝜌2
𝜂
𝑢𝑢
. (45)

Similarly, any entropy-entropy flux pair (𝜂(𝜌, 𝑢), 𝑞(𝜌, 𝑢)) of
the approximated hyperbolic system (8) satisfies

𝑞
𝜌
= 𝑢𝜂
𝜌
+
(𝜌 − 𝛿) 𝑃



(𝜌)

𝜌2
𝜂
𝑢
, 𝑞

𝑢
= (𝜌 − 𝛿) 𝜂

𝜌
+ 𝑢𝜂
𝑢
.

(46)

By eliminating the 𝑞 from (46), we have also the same entropy
equation (45). Therefore, system (4) and system (8) have the
same entropies.
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For any entropy-entropy flux pair (𝜂
0
(𝜌, 𝑢), 𝑞

0
(𝜌, 𝑢)) of

system (4), by multiplying (𝜂
0𝜌
, 𝜂
0𝑢
) to system (11), we have

𝜂
0𝑡
+ 𝑞
0𝑥
+ 𝛿𝑞
1𝑥

= 𝜀𝜂
0𝑥𝑥
− 𝜀 (𝜌

𝜀,𝛿

𝑥
, 𝑢
𝜀,𝛿

𝑥
) ⋅ ∇
2

𝜂
0
(𝜌
𝜀,𝛿

, 𝑢
𝜀,𝛿

)

⋅ (𝜌
𝜀,𝛿

𝑥
, 𝑢
𝜀,𝛿

𝑥
)
𝑇

+ 𝜂
0𝜌
𝐴
𝜀
1
(𝑥) 𝑢 (𝜌 − 𝛿) ,

(47)

where 𝑞
0
+𝛿𝑞
1
is the entropy flux of the approximated system

(8) corresponding to entropy 𝜂
0
. Since 𝐴𝜀1(𝑥) is uniformly

integrable, then the last term on the right-hand side of system
(47) is compact in 𝑊−1,𝛼loc (𝑅 × 𝑅

+

), for some 𝛼 ∈ (1, 2),
by the Sobolev embedding theorems. It is obvious that the
term 𝛿𝑞

1𝑥
on the left-hand side is compact in 𝐻−1loc(𝑅 × 𝑅

+

).
Therefore, using the same techniques given in [12, 13] for the
homogeneous system, we may prove that 𝜂

0𝑡
+𝑞
0𝑥
is compact

in 𝐻−1loc(𝑅 × 𝑅
+

) and so the convergence of (𝜌𝛿,𝜀, 𝑢𝛿,𝜀) →
(𝜌, 𝑢) as 𝛿, and 𝜀 tend to zero. Furthermore, the limit (𝜌, 𝑢)
satisfies (16).

If precisely using (10), we can prove that the limit (𝜌, 𝑢)
satisfies the following conservation form:

∫

∞

0

∫

∞

−∞

𝑎 (𝑥) 𝜌𝜙
𝑡
+ (𝑎 (𝑥) 𝜌𝑢) 𝜙

𝑥

+ ∫

∞

−∞

𝑎 (𝑥) 𝜌
0
(𝑥) 𝜙 (𝑥, 0) 𝑑𝑥 = 0.

(48)

In fact, wemultiply the first equation in (11) by 𝑎𝜀1(𝑥) to obtain

(𝑎
𝜀
1
(𝑥) 𝜌)

𝑡
+ (𝑎
𝜀
1
(𝑥) 𝑢 (𝜌 − 𝛿))

𝑥

= −𝛿𝑎
𝜀
1
(𝑥)


+ 𝜀𝑎
𝜀
1
(𝑥) 𝜌
𝑥𝑥

= −𝛿𝑎
𝜀
1
(𝑥)


+ 𝜀(𝑎
𝜀
1
(𝑥) 𝜌)

𝑥𝑥

− 2𝜀(𝑎
𝜀
1
(𝑥)


𝜌)
𝑥

+ 𝜀𝑎
𝜀
1
(𝑥)


𝜌,

(49)

which yields (48) when 𝜀
1
goes to zero.

Since both systems (4) and (8) have the same entropies,
we can easily prove that the limit (𝜌, 𝑢) satisfies the entropy
condition (17). So we complete the proof of Theorem 2.
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