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This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least
squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation
method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and
high efficiency of the method.

1. Introduction

The inverse problem of parabolic equations appears in a wide
variety of physical and engineering settings, such as elasticity,
plasticity, hydrology, material sciences, heat transfer, com-
bustion systems, medical imaging, transport problems, and
control theory. Many researchers solved this problem using
different methods [1–10].

For many decades, many numerical methods have been
developed to solve partial differential equations, such as finite
difference method, finite elements method, and boundary
elements method. However, these above methods are mesh
dependent methods, and, for some problems such as large
deformation, the mesh generation is very difficult, especially
with the irregular geometries. As a result, the meshless
method appeared.

Compared with these mesh dependent numerical meth-
ods, in the meshless methods, mesh generation on the
spatial domain of the problem is not needed; this property
is the main advantage of these techniques over the mesh
dependent methods, and it is a technique on scattered data;
this method uses the distributed nodal points to approximate
the unknown function; the distribution of nodes could be
selected regularly or randomly in the analyzed domain, and
there is no need for the geometry of the domain.

Many meshless methods have been discussed, such as
smooth particle hydrodynamics method [11], the finite point

method [12], diffuse element method [13], element-free
Galerkin method [14], hp-clouds method [15], and meshless
local Petrov-Galerkin method [16]. Moving least squares
is very important for constructing the shape functions in
meshless method, and it had been studied by a number
of investigators, Lancaster and Salkauskas [17], Levin [18],
Mirzaei and Dehghan [19], Armentano [20, 21], and so forth.

In this paper, a collocation meshless method based on
moving least squares approximation is used for numerical
solution of a class of inverse problems in parabolic equation.
The rest of the paper is organized as follows. In Section 2, we
will give an outline of the moving least squares. In Section 3,
we solve the inverse problem using the meshless method
based on the moving least squares. Numerical experiments
will be given in Section 4 in order to illustrate the feasibility
of the method.

2. An Outline of the Moving Least
Squares (MLS)

The MLS method as an approximation and interpolating
method has been introduced by Lancaster and Salkauskas.

Given data values u = {𝑢𝑗}
𝑁
𝑗=1 at nodes 𝑥𝑗, 𝑁 is the

number of scattered nodes, the MLS method produces a
function 𝑢

ℎ that approximates data u in a weighted square
sense.
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It can be defined as

𝑢

ℎ
(x) =

𝑚

∑

𝑖=1

𝑝𝑖 (x) 𝑎𝑖 (x) = 𝑃

𝑇
(x) a (x) , ∀x ∈ Ω, (1)

where 𝑚 is the number of terms in the basis, 𝑝𝑖(x) are the
monomial basis functions, 𝑎𝑖(x) are the coefficients of the
basis functions, and

𝑃

𝑇
(x) = [𝑝1 (x) , 𝑝2 (x) , . . . , 𝑝𝑚 (x)] ,

𝑎 (x) = [𝑎1(x), 𝑎2(x), . . . , 𝑎𝑚(x)]
𝑇
.

(2)

The unknown coefficient a(x) is determined by minimiz-
ing the functional 𝐽, which is defined as

𝐽 =

𝑛

∑

𝑗=1

𝜔 (x−x𝑗) (𝑢
ℎ
(x) − 𝑢𝑗)

2

=

𝑛

∑

𝑗=1

𝜔 (x−x𝑗)(
𝑚

∑

𝑖=1

𝑝𝑖(x𝑗)𝑎𝑖(x) − 𝑢𝑗)

2

=

𝑛

∑

𝑗=1

𝜔 (x − x𝑗) (𝑃
𝑇
(x𝑗)a(x) − 𝑢𝑗)

2
,

(3)

where 𝑛 is the number of nodes in the support domain of the
point x, 𝜔(x− x𝑗) is the weight function, and x𝑗 are the nodes
in the influence domain of x.

Equation (3) can be rewritten in the vector form

𝐽 = (𝑃a−u)𝑇𝑊(𝑃a−u) , (4)

where

𝑃 =

[

[

[

[

[

𝑝1 (x1) 𝑝2 (x1) ⋅ ⋅ ⋅ 𝑝𝑚 (x1)
𝑝1 (x2) 𝑝2 (x2) ⋅ ⋅ ⋅ 𝑝𝑚 (x2)

...
...

...
𝑝1 (x𝑛) 𝑝2 (x𝑛) ⋅ ⋅ ⋅ 𝑝𝑚 (x𝑛)

]

]

]

]

]

,

u = [𝑢1, 𝑢2, . . . , 𝑢𝑛]
𝑇
,

𝑊 =

[

[

[

[

[

𝜔 (x − x1) 0 ⋅ ⋅ ⋅ 0

0 𝜔 (x − x2) ⋅ ⋅ ⋅ 0

...
...

...
0 0 ⋅ ⋅ ⋅ 𝜔 (x − x𝑛)

]

]

]

]

]

.

(5)

According to the above conditions (4)-(5), taking the
derivative a(x) to zero, we have

𝜕𝐽

𝜕a
= 𝐴 (x) a (x) − 𝐵 (x) u = 0, (6)

which is equivalent to

𝐴 (x) a (x) = 𝐵 (x) u, (7)

where

𝐴 (x) = 𝑃

𝑇
𝑊𝑃,

𝐵 (x) = 𝑃

𝑇
𝑊.

(8)

Then, we get

a (x) = 𝐴

−1
(x) 𝐵 (x) 𝑢, (9)

and, by substituting (9) into (1), we have

𝑢

ℎ
(x) = 𝑃

𝑇
(x) a (x) = Φ

𝑇
(x) u =

𝑁

∑

𝑗=1

𝜙𝑗 (x) 𝑢𝑗, (10)

where

Φ

𝑇
(x) = 𝑃

𝑇
(x) 𝐴−1 (x) 𝐵 (x) (11)

and 𝜙𝑗(x) is called the shape function.

3. The Inverse Problem and Its
Numerical Solution

In this section, the collocation meshless method based on
moving least squares approximation is implemented for
the numerical solution of the inverse problem of parabolic
equations, and the problem is as follows.

Find 𝑢 = 𝑢(𝑥, 𝑡) and 𝑓(𝑡) which satisfy

𝑢𝑡 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡) + 𝑓 (𝑡) , (𝑥, 𝑡) ∈ 𝑄𝑇 = (0, 𝑙) × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ (0, 𝑙) ,

𝑢 (0, 𝑡) = ℎ0 (𝑡) , 𝑢 (𝑙, 𝑡) = ℎ𝑙 (𝑡) , 𝑡 ∈ (0, 𝑇) .

(12)

And the additional specification is

𝑢 (𝑥

∗
, 𝑡) = 𝐸 (𝑡) , 𝑥

∗
∈ (0, 𝑙) , 𝑡 ∈ (0, 𝑇) , (13)

where𝜑(𝑥), ℎ0(𝑡), ℎ𝑙(𝑡), and𝐸(𝑡) are known functions and𝑥
∗

is a fixed prescribed point in the admissible set.
Assume that these known functions satisfy the com-

patibility conditions; the unique solvability of this inverse
problem is presented in [5]. However, this inverse problem
is ill-posed; that is to say, the solution is unstable, and
any small change in the additional specification may result
in a dramatic change in the numerical solution. To obtain
a stable numerical solution, some regularization strategies
should be applied.

According to (13), consider the following transformation
[22]:

𝐸


(𝑡) = 𝑢𝑥𝑥|𝑥=𝑥∗ + 𝑓 (𝑡) , (14)

and using (14), we get

𝑓 (𝑡) = 𝐸


(𝑡) − 𝑢𝑥𝑥|𝑥=𝑥∗ . (15)

By substituting (14) into (12), (12) is transformed to the
following equation:

𝑢𝑡 = 𝑢𝑥𝑥 + (𝐸


(𝑡) − 𝑢𝑥𝑥|𝑥=𝑥∗) , (𝑥, 𝑡) ∈ 𝑄𝑇,

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ (0, 𝑙) ,

𝑢 (0, 𝑡) = ℎ0 (𝑡) , 𝑢 (𝑙, 𝑡) = ℎ𝑙 (𝑡) , 𝑡 ∈ (0, 𝑇) .

(16)

So the inverse problem is transformed to a direct problem.
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Table 1: The errors for different Δ𝑥 and Δ𝑡.

Δ𝑡

Δ𝑥 = 0.5 Δ𝑥 = 0.1

𝐸𝑢 𝐸𝑓 𝐸𝑢 𝐸𝑓

0.01 1.1428 × 10

−2
6.1902 × 10

−3
3.0506 × 10

−3
3.0599 × 10

−3

0.005 1.0569 × 10

−2
4.1804 × 10

−3
1.5394 × 10

−3
1.5832 × 10

−3

0.001 9.9744 × 10

−3
1.8376 × 10

−3
3.4687 × 10

−4
4.1021 × 10

−4

0.0005 9.9068 × 10

−3
1.2985 × 10

−3
2.1206 × 10

−4
2.5863 × 10

−4

0.0001 9.8539 × 10

−3
5.8058 × 10

−4
1.3264 × 10

−4
1.0545 × 10

−4
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Figure 1: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) (a), the error 𝑓(𝑡) − ̂

𝑓(𝑡) (b) with Δ𝑥 = 0.5, Δ𝑡 = 0.01.
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Figure 2: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) (a), the error 𝑓(𝑡) − ̂

𝑓(𝑡) (b) with Δ𝑥 = 0.5, Δ𝑡 = 0.001.
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Figure 3: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) (a), the error 𝑓(𝑡) − ̂

𝑓(𝑡) (b) with Δ𝑥 = 0.1, Δ𝑡 = 0.01.
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Figure 4: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) (a), the error 𝑓(𝑡) − ̂

𝑓(𝑡) (b) with Δ𝑥 = 0.1, Δ𝑡 = 0.001.

Table 2: The errors for different 𝛾.

𝛾 𝐸𝑢 𝐸𝑓

0.01 1.0799 × 10

−2
2.0392 × 10

−3

0.005 5.5640 × 10

−3
1.4692 × 10

−3

0.001 1.3792 × 10

−3
7.4892 × 10

−4

Table 3: The errors for different 𝑞.

𝑞 𝐸𝑢 𝐸𝑓

0.01 3.4147 × 10

−4
8.7343 × 10

−4

0.005 3.8703 × 10

−4
6.4143 × 10

−4

0.001 3.2703 × 10

−4
4.1964 × 10

−4
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Figure 5: The exact solution 𝑢(𝑥, 𝑡) and numerical solution �̂�(𝑥, 𝑡) at 𝑡 = 0.1 (a), 1 (b), 1.5 (c), and 2 (d).
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Figure 6: The numerical solution of �̂�(𝑥, 𝑡) (a), the error 𝑢(𝑥, 𝑡) − �̂�(𝑥, 𝑡) (b) with Δ𝑥 = 0.1, Δ𝑡 = 0.01.
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Table 4: The errors for different Δ𝑡.

𝛾 = 0.01 𝛾 = 0.001 𝑞 = 0.01 𝑞 = 0.001

Δ𝑡 = 0.01 7.0116 × 10

−3
3.6493 × 10

−3
3.6401 × 10

−3
3.0238 × 10

−3

Δ𝑡 = 0.001 2.0392 × 10

−3
7.4892 × 10

−4
8.5168 × 10

−4
4.2884 × 10

−4

Δ𝑡 = 0.0001 6.3895 × 10

−4
2.2068 × 10

−4
2.7201 × 10

−4
1.1466 × 10

−4
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Figure 7: The numerical solution of �̂�(𝑥, 𝑡) (a), the error 𝑢(𝑥, 𝑡) − �̂�(𝑥, 𝑡) (b) with Δ𝑥 = 0.1, Δ𝑡 = 0.001.

Table 5: The errors for different Δ𝑥, Δ𝑡 and noisy parameter.

FDM MLS
Δ𝑥 = 0.5, Δ𝑡 = 0.01, 𝛾 = 0 3.4720 × 10

−2
9.0561 × 10

−3

Δ𝑥 = 0.5, Δ𝑡 = 0.001, 𝛾 = 0 3.4877 × 10

−3
9.0857 × 10

−4

Δ𝑥 = 0.1, Δ𝑡 = 0.01, 𝛾 = 0 3.4720 × 10

−2
6.4498 × 10

−3

Δ𝑥 = 0.1, Δ𝑡 = 0.001, 𝛾 = 0 3.4877 × 10

−3
6.4677 × 10

−4

Δ𝑥 = 0.5, Δ𝑡 = 0.01, 𝛾 = 0.001 3.5700 × 10

−2
9.5460 × 10

−3

Δ𝑥 = 0.5, Δ𝑡 = 0.001, 𝛾 = 0.001 7.3814 × 10

−3
1.4210 × 10

−3

Δ𝑥 = 0.1, Δ𝑡 = 0.01, 𝛾 = 0.001 3.5691 × 10

−2
6.7775 × 10

−3

Δ𝑥 = 0.1, Δ𝑡 = 0.001, 𝛾 = 0.001 7.2994 × 10

−3
9.9116 × 10

−4

Δ𝑥 = 0.5, Δ𝑡 = 0.01, 𝑞 = 0.001 2.5285 × 10

−1
8.9877 × 10

−3

Δ𝑥 = 0.5, Δ𝑡 = 0.001, 𝑞 = 0.001 2.4914 × 10

0
9.7315 × 10

−4

Δ𝑥 = 0.1, Δ𝑡 = 0.01, 𝑞 = 0.001 2.5354 × 10

−1
6.4462 × 10

−3

Δ𝑥 = 0.1, Δ𝑡 = 0.001, 𝑞 = 0.001 2.5664 × 10

0
6.7999 × 10

−4

The approximate function �̂�(𝑥, 𝑡) of 𝑢(𝑥, 𝑡) can be repre-
sented as

�̂� (𝑥, 𝑡) =

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡) 𝜙𝑗 (𝑥) , (17)

where 𝜙𝑗(𝑥) is the shape function described in Section 2.

By substituting (17) into (16), the system (16) can be
rewritten as

𝑛

∑

𝑗=1

𝜆


𝑗 (𝑡) 𝜙𝑗 (𝑥) =

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡) 𝜙

𝑗 (𝑥)

+ (𝐸


(𝑡) −

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡) 𝜙

𝑗 (𝑥
∗
)) ,

(𝑥, 𝑡) ∈ 𝑄𝑇,

𝑛

∑

𝑗=1

𝜆𝑗 (0) 𝜙𝑗 (𝑥) = 𝜑 (𝑥) , 𝑥 ∈ (0, 𝑙) ,

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡) 𝜙𝑗 (0) = ℎ0 (𝑡) ,

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡) 𝜙𝑗 (𝑙) = ℎ𝑙 (𝑡) ,

𝑡 ∈ (0, 𝑇) .

(18)

It is well known that the step lengths in the standard
numerical method have regularization effect; hence, we can
choose appropriate step lengths to compute the derivative
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Figure 8: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) (a), the error 𝑓(𝑡) − ̂

𝑓(𝑡) (b) with 𝛾 = 0.01.

of 𝑡. We apply a simple one-step forward difference formula,
and we get

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚+1) − 𝜆𝑗 (𝑡𝑚)

Δ𝑡

𝜙𝑗 (𝑥)

=

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙

𝑗 (𝑥)

+ (

𝐸 (𝑡𝑚+1) − 𝐸 (𝑡𝑚)

Δ𝑡

−

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙

𝑗 (𝑥
∗
)) ,

(𝑥, 𝑡) ∈ 𝑄𝑇,

𝑛

∑

𝑗=1

𝜆𝑗 (0) 𝜙𝑗 (𝑥) = 𝜑 (𝑥) , 𝑥 ∈ (0, 𝑙) ,

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙𝑗 (0) = ℎ0 (𝑡𝑚) ,

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙𝑗 (𝑙) = ℎ𝑙 (𝑡𝑚) ,

𝑡 ∈ (0, 𝑇) .

(19)

Then, from the first formula of (19), we obtain

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚+1) 𝜙𝑗 (𝑥)

=

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙𝑗 (𝑥)

+ Δ𝑡
[

[

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙

𝑗 (𝑥)

+(

𝐸 (𝑡𝑚+1) − 𝐸 (𝑡𝑚)

Δ𝑡

−

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙

𝑗 (𝑥
∗
))

]

]

;

(𝑥, 𝑡) ∈ 𝑄𝑇,

(20)

by substituting each 𝑥𝑘 for 𝑥 in (20), we get

𝑛

∑

𝑗=1

𝜆𝑗(𝑡𝑚+1) 𝜙𝑗
(𝑥𝑘)

=

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙𝑗 (𝑥𝑘)

+ Δ𝑡
[

[

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙

𝑗 (𝑥𝑘)

+(

𝐸 (𝑡𝑚+1) − 𝐸 (𝑡𝑚)

Δ𝑡

−

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙

𝑗 (𝑥
∗
))

]

]

.

(𝑥, 𝑡) ∈ 𝑄𝑇.

(21)

Let

�̂� (𝑥𝑘, 𝑡𝑚) =

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙𝑗 (𝑥𝑘) ; (22)
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Figure 9: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) (a), the error 𝑓(𝑡) − ̂

𝑓(𝑡) (b) with 𝛾 = 0.001.
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Figure 10: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) (a), the error 𝑓(𝑡) − ̂

𝑓(𝑡) (b) with 𝑞 = 0.01.

then (21) can be rewritten as follows:

�̂� (𝑥𝑘, 𝑡𝑚+1) =

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚+1) 𝜙𝑗 (𝑥𝑘)

= �̂� (𝑥𝑘, 𝑡𝑚) + Δ𝑡

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙

𝑗 (𝑥𝑘)

+ 𝐸 (𝑡𝑚+1) − 𝐸 (𝑡𝑚) − Δ𝑡

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚) 𝜙

𝑗 (𝑥
∗
) ;

(23)
using the iterative method, by (19) and (22), we can obtain
𝜆𝑗(𝑡𝑚), 𝑗 = 1, 2, . . . , 𝑛, 𝑚 = 1, 2, . . . ,𝑀, and the numerical
solution �̂�(𝑥𝑘, 𝑡𝑚); then we get the numerical solution

̂
𝑓 (𝑡𝑚+1) =

𝐸 (𝑡𝑚+1) − 𝐸 (𝑡𝑚)

Δ𝑡

−

𝑛

∑

𝑗=1

𝜆𝑗 (𝑡𝑚+1) 𝜙

𝑗 (𝑥
∗
) . (24)



Abstract and Applied Analysis 9

0 0.5 1 1.5 2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

t

Exact solution
Numerical solution

(a)

0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

Er
ro

r

t

Exact solution
Numerical solution

×10
−3

(b)

Figure 11: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) (a), the error 𝑓(𝑡) − ̂

𝑓(𝑡) (b) with 𝑞 = 0.001.
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Figure 12: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) with no noisy data, (a) MLS and (b) FDM.

4. Numerical Experiments and Discussions

In this section, we give two examples to illustrate the
correctness of the theoretical result and the feasibility of the
method.

Example 1. Consider (12)-(13), with the conditions

𝑢 (𝑥, 0) = 𝜑 (𝑥) = 2 + sin𝑥,

𝑢 (0, 𝑡) = ℎ0 (𝑡) = (2 + 𝑡) 𝑒

−𝑡
,

𝑢 (𝑙, 𝑡) = ℎ𝑙 (𝑡) = (2 + 𝑡 + sin 𝑙) 𝑒−𝑡,

𝑢 (𝑥

∗
, 𝑡) = 𝐸 (𝑡) = (2 + 𝑡 + sin𝑥∗) 𝑒−𝑡,

(25)

and we let 𝑙 = 2, 𝑇 = 2, and 𝑥

∗
= 1.

The exact solutions are

𝑢 (𝑥, 𝑡) = (2 + 𝑡 + sin𝑥) 𝑒−𝑡,

𝑓 (𝑡) = − (1 + 𝑡) 𝑒

−𝑡
.

(26)
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Figure 13: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) with 𝛾 = 0.001, (a) MLS and (b) FDM.
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Figure 14: The exact solution 𝑓(𝑡) and the numerical solution of ̂
𝑓(𝑡) with 𝑞 = 0.001, (a) MLS and (b) FDM.

At first, in order to get the approximation effect of ̂
𝑓(𝑡)

according to different nodes of 𝑥 and 𝑡, we let Δ𝑥 = 0.5, Δ𝑡 =
0.01, 0.001 and Δ𝑥 = 0.1, Δ𝑡 = 0.01, 0.001, respectively; the
exact solution𝑓(𝑡), the numerical solution ̂

𝑓(𝑡), and the error
𝑓(𝑡) −

̂
𝑓(𝑡) are plotted in Figures 1–4.

As seen from Figures 1 and 2 if the Δ𝑥 is fixed, the error
decreases as Δ𝑡 decreases, but around the initial point, the
error changes a little. When we decrease Δ𝑥, from Figures 3
and 4, it is clear that the error around the initial point
decreases obviously, and with the decrease of Δ𝑡, the total
error decreases too.

In Figure 5, we plot the exact solution 𝑢 and the numerical
solutions �̂� at 𝑡 = 0.1, 1, 1.5, 2, respectively, withΔ𝑥 = 0.1 and
Δ𝑡 = 0.001.

Figure 5 shows clearly that the approximate solution �̂� is
well for different value of 𝑡.

Figures 6 and 7 give the numerical solution �̂� and the
error �̂� − 𝑢 with Δ𝑥 = 0.1, Δ𝑡 = 0.01, 0.001, respectively.

As seen from Figures 6 and 7 the effect of different Δ𝑡 to
the approximate solution �̂� is the same to ̂

𝑓; that is, the error
decreases according to decreasing Δ𝑡.
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Next, in order to illustrate the effect of the noisy data on
numerical solution, we define the artificial error function as
follows:

𝐸𝛾 (𝑡) = 𝐸 (𝑡) (1 + 𝛾) , (27)

where 𝛾 represents the noisy parameter, and we consider two
cases in this paper as follows:

(i) 𝛾 is const;
(ii) 𝛾 is random uniformly distributed on (−𝑞, 𝑞).
Let 𝛾 = 0.01, 0.001, respectively; in case (i), we plot the

exact solution𝑓(𝑡), the numerical solution ̂
𝑓(𝑡), and the error

𝑓(𝑡) −
̂
𝑓(𝑡) with Δ𝑥 = 0.1, Δ𝑡 = 0.001, in Figures 8 and 9.

From Figures 8 and 9, we can see that when the noisy
data exist in additional specification, the effect of numerical
solution is worse than when there is no noisy data. However,
the effect of approximation becomes better with the noisy
parameter 𝛾 decrease; this suggests that the method in this
paper is stable.

In case (ii), we let the parameter 𝑞 = 0.01 and 0.001,
respectively, and plot the exact solution 𝑓(𝑡), the numerical
solution ̂

𝑓(𝑡), and the error 𝑓(𝑡) − ̂
𝑓(𝑡) with Δ𝑥 = 0.1, Δ𝑡 =

0.001, and the results are shown in Figures 10 and 11.
Figures 10 and 11 show that when the noisy parameter

is random, the result of numerical solution is also bad,
but it is the same to the case that 𝛾 is const.; with the
parameter 𝑞 decrease, the effect of approximation becomes
better. Moreover, comparing with the fact that 𝛾 is const,
when the noisy parameter is random, although the result
fluctuation is very big, they can be controlled in a certain
range.

At last, in order to illustrate the approximate effect, we
define the root mean square error of the functions 𝑢 and 𝑓 as
follows:

𝐸𝑢 =

√

∑

𝑀
𝑖=1∑
𝑁
𝑗=1 (𝑢(𝑥𝑖, 𝑡𝑗) − �̂�(𝑥𝑖, 𝑡𝑗))

2

𝑀𝑁

,

𝐸𝑓 =

√

∑

𝑁
𝑗=1 (𝑓(𝑡𝑗) −

̂
𝑓(𝑡𝑗))

2

𝑁

,

(28)

where 𝑢(𝑥𝑖, 𝑡𝑗) and 𝑓(𝑡𝑗) are the exact solution and �̂�(𝑥𝑖, 𝑡𝑗)

and ̂
𝑓(𝑡𝑗) are the approximate numerical solution. The error

results for different Δ𝑥 and Δ𝑡with no noisy data are listed in
Table 1.

Wewill give the error results for different noisy parameter
with Δ𝑥 = 0.1, Δ𝑡 = 0.001 in Tables 2 and 3 and for different
Δ𝑡 with the same noisy parameter in Table 4.

From Tables 2 and 3, we see that the errors vary with the
noisy parameter. In Table 4, we find that the approximation
effect varies with Δ𝑡 for the same noisy parameter, and these
show that the length ofΔ𝑡 has the effect of regularization, and
our method in this paper is stable.

In the next example, we will compare the numerical
solution using the finite difference method (FDM) and the
meshless collocation method based on moving least squares
(MLS), respectively.

Example 2. Consider the conditions

𝑢 (𝑥, 0) = 𝜑 (𝑥) = 𝑥

2
,

𝑢 (0, 𝑡) = ℎ0 (𝑡) = 2𝑡 + sin (𝜋𝑡) ,

𝑢 (𝑙, 𝑡) = ℎ𝑙 (𝑡) = 4 + 2𝑡 + sin (𝜋𝑡) ,

𝑢 (𝑥

∗
, 𝑡) = 𝐸 (𝑡) = 1 + 2𝑡 + sin (𝜋𝑡) ,

(29)

and we let 𝑙 = 2, 𝑇 = 2, and 𝑥

∗
= 1.

The exact solutions are

𝑢 (𝑥, 𝑡) = 𝑥

2
+ 2𝑡 + sin (𝜋𝑡) ,

𝑓 (𝑡) = 𝜋 cos (𝜋𝑡) .
(30)

We plot the exact solution and numerical solution of 𝑓(𝑡)
in three different cases using FDM and MLS, respectively.

Let Δ𝑥 = 0.1, Δ𝑡 = 0.01; first, we plot the result in
Figure 12 with no noisy data.

In Figures 13 and 14, we let 𝛾 = 0.001 and 𝑞 = 0.001,
respectively.

From Figures 12, 13, and 14, we can see that when there
is no noisy data, the two methods are stable relatively, and,
when there exist noisy data, the method FDM is unstable,
especially in the case that the noisy parameter is random; but
the method MLS is always stable.

Finally, we give the errors of numerical solution with
different cases using these two methods in Table 5.

From Table 5, we obtain that the method MLS is more
stable and efficient than the method FDM in any case.

5. Conclusion

In this paper, the meshless method based on the moving least
squares is used for solving the inverse problem of parabolic
equation with the time-dependent source term.We use some
transformations to change the problem, and, in order to
overcome the ill-posedness, we use the appropriate length
of time. From the experiments, we find that the numerical
solution is stable. Moreover, compared with the method
FDM, we see that our method is stable and highly efficient.
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