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We construct an implicit sequence suitable for the approximation of solutions of K-positive definite operator equations in real
Banach spaces. Furthermore, implicit error estimate is obtained and the convergence is shown to be faster in comparsion to the
explicit error estimate obtained by Osilike and Udomene (2001).

1. Introduction

Let 𝐸 be a real Banach space and let 𝐽 denote the normalized
duality mapping from 𝐸 to 2𝐸

∗

defined by

𝐽 (𝑥) = {𝑓
∗
∈ 𝐸
∗
: ⟨𝑥, 𝑓

∗
⟩ = ‖𝑥‖

2
,
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩 = ‖𝑥‖} , (1)

where 𝐸∗ denotes the dual space of 𝐸 and ⟨⋅, ⋅⟩ denotes the
generalized duality pairing. It is well known that if 𝐸∗ is
strictly convex, then 𝐽 is single valued. We will denote the
single-valued duality mapping by 𝑗.

Let 𝐸 be a Banach space. Themodulus of smoothness of 𝐸
is the function.
𝜌
𝐸
: [0,∞) → [0,∞) defined by

𝜌
𝐸 (𝑡) = sup {1

2
(
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) − 1 : ‖𝑥‖ ≤ 1,
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑡} .

(2)

The Banach space 𝐸 is called uniformly smooth if

lim
𝑡→0

𝜌
𝐸 (𝑡)

𝑡
= 0. (3)

A Banach space 𝐸 is said to be strictly convex if for two
elements 𝑥, 𝑦 ∈ 𝐸 which are linearly independent we have
that ‖𝑥 + 𝑦‖ < ‖𝑥‖ + ‖𝑦‖.

Let 𝐸
1
be a dense subspace of a Banach space 𝐸. An

operator𝑇with domain𝐷(𝑇) ⊇ 𝐸
1
is called continuously𝐸

1
-

invertible if the range of𝑇,𝑅(𝑇), with𝑇 in𝐸 considered as an
operator restricted to 𝐸

1
, is dense in 𝐸 and 𝑇 has a bounded

inverse on 𝑅(𝑇).
Let 𝐸 be a Banach space and let 𝐴 be a linear unbounded

operator defined on a dense domain,𝐷(𝐴), in 𝐸. An operator
𝐴 will be called 𝐾 positive definite (𝐾pd) [1] if there exist a
continuously 𝐷(𝐴)-invertible closed linear operator 𝐾 with
𝐷(𝐴) ⊂ 𝐷(𝐾) and a constant 𝑐 > 0 such that 𝑗(𝐾𝑥) ∈ 𝐽(𝐾𝑥),

⟨𝐴𝑥, 𝑗 (𝐾𝑥)⟩ ≥ 𝑐‖𝐾𝑥‖
2
, ∀𝑥 ∈ 𝐷 (𝐴) . (4)

Without loss of generality, we assume that 𝑐 ∈ (0, 1).
In [1], Chidume and Aneke established the extension of

𝐾pd operators of Martynjuk [2] and Petryshyn [3, 4] from
Hilbert spaces to arbitrary real Banach spaces. They proved
the following result.

Theorem 1. Let 𝐸 be a real separable Banach space with a
strictly convex dual𝐸 and let𝐴 be a𝐾pd operator with𝐷(𝐴) =
𝐷(𝐾). Suppose

⟨𝐴𝑥, 𝑗 (𝐾𝑦)⟩ = ⟨𝐾𝑥, 𝑗 (𝐴𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝐷 (𝐴) . (5)

Then, there exists a constant 𝛼 > 0 such that for all 𝑥 ∈ 𝐷(𝐴)

‖𝐴𝑥‖ ≤ 𝛼 ‖𝐾𝑥‖ . (6)
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Furthermore, the operator 𝐴 is closed, 𝑅(𝐴) = 𝐸, and the
equation 𝐴𝑥 = 𝑓 has a unique solution for any given 𝑓 ∈ 𝐸.

As the special case of Theorem 1 in which 𝐸 = 𝐿
𝑝
(𝑙
𝑝
)

spaces, 2 ≤ 𝑝 < ∞, Chidume and Aneke [1] introduced
an iteration process which converges strongly to the unique
solution of the equation 𝐴𝑥 = 𝑓, where 𝐴 and 𝐾 are
commuting. Recently, Chidume and Osilike [5] extended the
results of Chidume and Aneke [1] to the more general real
separable 𝑞-uniformly smooth Banach spaces, 1 < 𝑞 < ∞,
by removing the commutativity assumption on 𝐴 and 𝐾.
Later on, Chuanzhi [6] proved convergence theorems for the
iterative approximation of the solution of the 𝐾pd operator
equation 𝐴𝑥 = 𝑓 in more general separable uniformly
smooth Banach spaces.

In [7], Osilike and Udomene proved the following result.

Theorem 2. Let 𝐸 be a real separable Banach space with a
strictly convex dual and let 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸 be a
𝐾pd operator with 𝐷(𝐴) = 𝐷(𝐾). Suppose ⟨𝐴𝑥, 𝑗(𝐾𝑦)⟩ =
⟨𝐾𝑥, 𝑗(𝐴𝑦)⟩ for all 𝑥, 𝑦 ∈ 𝐷(𝐴). Choose any 𝜖

1
∈ (0, 𝑐

2
/(1 +

𝛼(1 − 𝑐) + 𝛼
2
)) and define 𝑇

𝜖
: 𝐷(𝐴) ⊆ 𝐸 → 𝐸 by

𝑇
𝜖
𝑥 = 𝑥 + 𝜖𝐾

−1
𝑓 − 𝜖𝐾

−1
𝐴𝑥. (7)

Then the Picard iteration scheme generated from an arbitrary
𝑥
0
∈ 𝐷(𝐴) by

𝑥
𝑛+1
= 𝑇
𝜖
𝑥
𝑛
= 𝑇
𝑛

𝜖
𝑥
0 (8)

converges strongly to the solution of the equation 𝐴𝑥 = 𝑓.
Moreover, if 𝑥∗ denotes the solution of the equation 𝐴𝑥 = 𝑓,
then

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ (1 − 𝑐𝜖 (1 − 𝑐))

𝑛
𝛽
−1 󵄩󵄩󵄩󵄩𝐾𝑥0 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 .
(9)

The most general iterative formula for approximating
solutions of nonlinear equation and fixed point of nonlinear
mapping is the Mann iterative method [8] which produces a
sequence {𝑥

𝑛
} via the recursive approach 𝑥

𝑛+1
= 𝛼
𝑛
𝑥
𝑛
+ (1 −

𝛼
𝑛
)𝑇𝑥
𝑛
, for nonlinear mapping 𝑇 : 𝐶 = 𝐷(𝑇) → 𝐶, where

the initial guess 𝑥
0
∈ 𝐶 is chosen arbitrarily. For convergence

results of this scheme and related iterative schemes, see, for
example, [9–15].

In [16], Xu and Ori introduced the implicit iteration
process {𝑥

𝑛
}, which is the modification of Mann, generated

by 𝑥
0
∈ 𝐶, 𝑥

𝑛
= 𝛼
𝑛
𝑥
𝑛−1
+ (1 − 𝛼

𝑛
)𝑇
𝑛
𝑥
𝑛
, for 𝑇

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

nonexpansive mappings, and 𝑇
𝑛
= 𝑇
𝑛
(mod𝑁) and {𝛼

𝑛
} ⊂

(0, 1). They proved the weak convergence of this process to
a common fixed point of the finite family of nonexpansive
mappings in Hilbert spaces. Since then fixed point problems
and solving (or approximating) nonlinear equations based
on implicit iterative processes have been considered by many
authors (see, e.g., [17–21]).

It is our purpose in this paper to introduce implicit
scheme which converges strongly to the solution of the 𝐾pd
operator equation 𝐴𝑥 = 𝑓 in a separable Banach space. Even
though our scheme is implicit, the error estimate obtained
indicates that the convergence of the implicit scheme is faster
in comparison to the explicit scheme obtained by Osilike and
Udomene [7].

2. Main Results

We need the following results.

Lemma 3 (see [10]). If𝐸∗ is uniformly convex then there exists
a continuous nondecreasing function 𝑏 : [0,∞) → [0,∞)

such that 𝑏(0) = 0, 𝑏(𝛿𝑡) ≤ 𝛿𝑏(𝑡) for all 𝛿 ≥ 1 and

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑗 (𝑥)⟩ +max {‖𝑥‖ , 1} 󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 𝑏 (
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) ,

(R)

for all 𝑥, 𝑦 ∈ 𝐸.

Lemma 4 (see [22]). If there exists a positive integer 𝑁 such
that for all 𝑛 ≥ 𝑁, 𝑛 ∈ N (the set of all positive integers),

𝜌
𝑛+1
≤ (1 − 𝜃

𝑛
) 𝜌
𝑛
+ 𝑏
𝑛
, (10)

then

lim
𝑛→∞

𝜌
𝑛
= 0, (11)

where 𝜃
𝑛
∈ [0, 1), ∑∞

𝑛=1
𝜃
𝑛
= ∞ and 𝑏

𝑛
= 𝑜(𝜃
𝑛
).

Remark 5 (see [6]). Since 𝐾 is continuously 𝐷(𝐴) invertible,
there exists a constant 𝛽 > 0 such that

‖𝐾𝑥‖ ≥ 𝛽 ‖𝑥‖ , ∀𝑥 ∈ 𝐷 (𝐾) = 𝐷 (𝐴) . (12)

In the continuation 𝑐 ∈ (0, 1), 𝛼 and 𝛽 are the constants
appearing in (4), (6), and (12), respectively. Furthermore, 𝜖 >
0 is defined by

𝜖 =
𝑐 − 𝜂

𝛼 (1 − 𝜂)
, 𝜂 ∈ (0, 𝑐) . (13)

With these notations, we now prove our main results.

Theorem 6. Let 𝐸 be a real separable Banach space with a
strictly convex dual and let 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸 be a
𝐾pd operator with 𝐷(𝐴) = 𝐷(𝐾). Suppose ⟨𝐴𝑥, 𝑗(𝐾𝑦)⟩ =
⟨𝐾𝑥, 𝑗(𝐴𝑦)⟩ for all 𝑥, 𝑦 ∈ 𝐷(𝐴). Let 𝑥∗ denote a solution of
the equation𝐴𝑥 = 𝑓. For arbitrary 𝑥

0
∈ 𝐸, define the sequence

{𝑥
𝑛
}
∞

𝑛=0
in 𝐸 by

𝑥
𝑛
= 𝑥
𝑛−1
+ 𝜖𝐾
−1
𝑓 − 𝜖𝐾

−1
𝐴𝑥
𝑛
, 𝑛 ≥ 0. (14)

Then, {𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑥∗ with
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤ 𝜌
𝑛
𝛽
−1 󵄩󵄩󵄩󵄩𝐾𝑥0 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 ,
(15)

where 𝜌 = 1 − ((𝑐 − 𝜂)/(𝛼(1 − 𝜂) + 𝑐 − 𝜂))𝜂 ∈ (0, 1). Thus, the
choice 𝜂 = 𝑐/2 yields 𝜌 = 1−(𝑐2/(4𝛼(1−𝑐/2)+2𝑐)). Moreover,
𝑥
∗ is unique.

Proof. The existence of the unique solution to the equation
𝐴𝑥 = 𝑓 comes fromTheorem 1. From (4) we have

⟨𝐴𝑥 − 𝑐𝐾𝑥, 𝑗 (𝐾𝑥)⟩ ≥ 0, (16)

and from Lemma 1.1 of Kato [23], we obtain that

‖𝐾𝑥‖ ≤
󵄩󵄩󵄩󵄩𝐾𝑥 + 𝛾 (𝐴𝑥 − 𝑐𝐾𝑥)

󵄩󵄩󵄩󵄩 , (17)



Abstract and Applied Analysis 3

for all 𝑥 ∈ 𝐷(𝐴) and 𝛾 > 0. Now, from (14), linearity of𝐾 and
the fact that 𝐴𝑥∗ = 𝑓 we obtain that

𝐾𝑥
𝑛
= 𝐾𝑥
𝑛−1
+ 𝜖𝑓 − 𝜖𝐴𝑥

𝑛

= 𝐾𝑥
𝑛−1
+ 𝜖𝐴𝑥

∗
− 𝜖𝐴𝑥

𝑛
,

(18)

which implies that

𝐾𝑥
𝑛−1
= 𝐾𝑥
𝑛
− 𝜖𝐴𝑥

∗
+ 𝜖𝐴𝑥

𝑛
, (19)

so that

𝐾𝑥
𝑛−1
− 𝐾𝑥
∗
= 𝐾𝑥
𝑛
− 𝐾𝑥
∗
− 𝜖𝐴𝑥

∗
+ 𝜖𝐴𝑥

𝑛
. (20)

With the help of (14) and Theorem 1, we have the following
estimate:
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑥

∗󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝐴 (𝑥𝑛 − 𝑥

∗
)
󵄩󵄩󵄩󵄩 ≤ 𝛼

󵄩󵄩󵄩󵄩𝐾 (𝑥𝑛 − 𝑥
∗
)
󵄩󵄩󵄩󵄩

= 𝛼
󵄩󵄩󵄩󵄩𝐾𝑥𝑛 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩

= 𝛼
󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥

∗
− 𝜖 (𝐴𝑥

𝑛
− 𝐴𝑥
∗
)
󵄩󵄩󵄩󵄩

≤ 𝛼
󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼𝜖
󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑥

∗󵄩󵄩󵄩󵄩 ,

(21)

which gives

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑥
∗󵄩󵄩󵄩󵄩 ≤

𝛼

1 − 𝛼𝜖

󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥
∗󵄩󵄩󵄩󵄩 . (22)

Furthermore, inequality (20) can be rewritten as

𝐾𝑥
𝑛−1
− 𝐾𝑥
∗

= (1 + 𝜖) (𝐾𝑥𝑛 − 𝐾𝑥
∗
)

+ 𝜖 (𝐴𝑥
𝑛
− 𝐴𝑥
∗
− 𝑐 (𝐾𝑥

𝑛
− 𝐾𝑥
∗
))

− 𝜖 (1 − 𝑐) (𝐾𝑥𝑛 − 𝐾𝑥
∗
)

= (1 + 𝜖) [𝐾𝑥𝑛 − 𝐾𝑥
∗

+
𝜖

1 + 𝜖
(𝐴𝑥
𝑛
− 𝐴𝑥
∗
− 𝑐 (𝐾𝑥

𝑛
− 𝐾𝑥
∗
))]

− 𝜖 (1 − 𝑐) (𝐾𝑥𝑛 − 𝐾𝑥
∗
)

= (1 + 𝜖) [𝐾𝑥𝑛 − 𝐾𝑥
∗

+
𝜖

1 + 𝜖
(𝐴𝑥
𝑛
− 𝐴𝑥
∗
− 𝑐 (𝐾𝑥

𝑛
− 𝐾𝑥
∗
))]

− 𝜖 (1 − 𝑐) (𝐾𝑥𝑛−1 − 𝐾𝑥
∗
) + 𝜖
2
(1 − 𝑐) (𝐴𝑥𝑛 − 𝐴𝑥

∗
) .

(23)

In addition, from (17) and (22), we get that
󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩

≥ (1 + 𝜖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐾𝑥
𝑛
− 𝐾𝑥
∗

+
𝜖

1 + 𝜖
(𝐴𝑥
𝑛
− 𝐴𝑥
∗
− 𝑐 (𝐾𝑥

𝑛
− 𝐾𝑥
∗
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

− 𝜖 (1 − 𝑐)
󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 − 𝜖
2
(1 − 𝑐)

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑥
∗󵄩󵄩󵄩󵄩

≥ (1 + 𝜖)
󵄩󵄩󵄩󵄩𝐾𝑥𝑛 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 − 𝜖 (1 − 𝑐)
󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩

− 𝜖
2
(1 − 𝑐)

𝛼

1 − 𝛼𝜖

󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥
∗󵄩󵄩󵄩󵄩 ,

(24)
which implies that
󵄩󵄩󵄩󵄩𝐾𝑥𝑛 − 𝐾𝑥

∗∗󵄩󵄩󵄩󵄩

≤
1 + 𝜖 (1 − 𝑐) + 𝜖

2
(1 − 𝑐) (𝛼/ (1 − 𝛼𝜖))

1 + 𝜖

󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥
∗󵄩󵄩󵄩󵄩

= 𝜌
󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 ,

(25)

where

𝜌 =
1 + 𝜖 (1 − 𝑐) + 𝜖

2
(1 − 𝑐) (𝛼/ (1 − 𝛼𝜖))

1 + 𝜖

= 1 −
𝜖

1 + 𝜖
(𝑐 − 𝜖 (1 − 𝑐)

𝛼

1 − 𝛼𝜖
)

= 1 −
𝜖

1 + 𝜖
𝜂

= 1 −
𝑐 − 𝜂

𝛼 (1 − 𝜂) + 𝑐 − 𝜂
𝜂

= 1 −
𝑐
2

4𝛼 (1 − 𝑐/2) + 2𝑐
.

(26)

From (25) and (26), we have that
󵄩󵄩󵄩󵄩𝐾𝑥𝑛 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 ≤ 𝜌
󵄩󵄩󵄩󵄩𝐾𝑥𝑛−1 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 ≤ ⋅ ⋅ ⋅ ≤ 𝜌
𝑛 󵄩󵄩󵄩󵄩𝐾 (𝑥0 − 𝑥

∗
)
󵄩󵄩󵄩󵄩 .

(27)

Hence by Remark 5, we get that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝛽
−1 󵄩󵄩󵄩󵄩𝐾𝑥𝑛 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 ≤ ⋅ ⋅ ⋅ ≤ 𝜌
𝑛
𝛽
−1 󵄩󵄩󵄩󵄩𝐾𝑥0 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 󳨀→ 0,

(28)

as 𝑛 → ∞. Thus, 𝑥
𝑛
→ 𝑥
∗ as 𝑛 → ∞.

In [6], Chuanzhi provided the following result.

Theorem 7. Let 𝐸 be a real uniformly smooth separable
Banach space, and let 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸 be a 𝐾pd operator
with 𝐷(𝐴) = 𝐷(𝐾). Suppose ⟨𝐴𝑥, 𝑗(𝐾𝑦)⟩ = ⟨𝐾𝑥, 𝑗(𝐴𝑦)⟩ for
all 𝑥, 𝑦 ∈ 𝐷(𝐴). For arbitrary 𝑓 ∈ 𝐸 and 𝑥

0
∈ 𝐷(𝐴), define

the sequence {𝑥
𝑛
}
∞

𝑛=0
by

𝑥
𝑛+1
= 𝑥
𝑛
+ 𝑡
𝑛
𝛾
𝑛
,

𝛾
𝑛
= 𝐾
−1
𝑓 − 𝐾

−1
𝐴𝑥
𝑛
,

0 ≤ 𝑡
𝑛
≤
1

2𝑐
,

∑ 𝑡
𝑛
= 0, lim

𝑛→∞
𝑡
𝑛
= 0,

𝑏 (𝛼𝑡
𝑛
) ≤

2𝑐

𝐵𝛼
, 𝑛 ≥ 0,

(29)
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where 𝑏(𝑡) is as in (R), 𝛼 is the constant appearing in inequality
(6), 𝑐 is the constant appearing in inequality (4), and

𝐵 = max {󵄩󵄩󵄩󵄩𝐾𝛾0
󵄩󵄩󵄩󵄩 , 1} . (30)

Then, {𝑥
𝑛
}
∞

𝑛=0
converges strongly to the unique solution of𝐴𝑥 =

𝑓.

However, its implicit version is as follows.

Theorem 8. Let 𝐸 be a real uniformly smooth separable
Banach space, and let 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸 be a 𝐾pd operator
with 𝐷(𝐴) = 𝐷(𝐾). Suppose ⟨𝐴𝑥, 𝑗(𝐾𝑦)⟩ = ⟨𝐾𝑥, 𝑗(𝐴𝑦)⟩ for
all 𝑥, 𝑦 ∈ 𝐷(𝐴). For arbitrary 𝑓 ∈ 𝐸 and 𝑥

0
∈ 𝐷(𝐴), define

the sequence {𝑥
𝑛
}
∞

𝑛=0
by

𝑥
𝑛
= 𝑥
𝑛−1
+ 𝑡
𝑛
𝛾
𝑛
, (31)

𝛾
𝑛
= 𝐾
−1
𝑓 − 𝐾

−1
𝐴𝑥
𝑛
, (32)

∑𝑡
𝑛
= ∞, lim

𝑛→∞
𝑡
𝑛
= 0, 𝑛 ≥ 0. (33)

Then, {𝑥
𝑛
}
∞

𝑛=0
converges strongly to the unique solution of𝐴𝑥 =

𝑓.

Proof. The existence of the unique solution to the equation
𝐴𝑥 = 𝑓 comes fromTheorem 1. Using (31) and (32) we obtain

𝐾𝛾
𝑛
= 𝐾𝛾
𝑛−1
− 𝑡
𝑛
𝐴𝛾
𝑛
. (34)

Consider
󵄩󵄩󵄩󵄩𝐾𝛾𝑛

󵄩󵄩󵄩󵄩

2
= ⟨𝐾𝛾

𝑛
, 𝑗 (𝐾𝛾

𝑛
)⟩ = ⟨𝐾𝛾

𝑛−1
− 𝑡
𝑛
𝐴𝛾
𝑛
, 𝑗 (𝐾𝛾

𝑛
)⟩

= ⟨𝐾𝛾
𝑛−1
, 𝑗 (𝐾𝛾

𝑛
)⟩ − 𝑡
𝑛
⟨𝐴𝛾
𝑛
, 𝑗 (𝐾𝛾

𝑛
)⟩

≤
󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐾𝛾𝑛
󵄩󵄩󵄩󵄩 − 𝑐𝑡𝑛

󵄩󵄩󵄩󵄩𝐾𝛾𝑛
󵄩󵄩󵄩󵄩

2
,

(35)

which implies that
󵄩󵄩󵄩󵄩𝐾𝛾𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1

󵄩󵄩󵄩󵄩 − 𝑐𝑡𝑛
󵄩󵄩󵄩󵄩𝐾𝛾𝑛

󵄩󵄩󵄩󵄩 . (36)

Hence, {𝐾𝛾
𝑛
}
∞

𝑛=0
is bounded. Let

𝑀
1
= sup
𝑛≥0

󵄩󵄩󵄩󵄩𝐾𝛾𝑛
󵄩󵄩󵄩󵄩 . (37)

Also from (6) it can be easily seen that {𝐴𝛾
𝑛
}
∞

𝑛=0
is also

bounded. Let
𝑀
2
= sup
𝑛≥0

󵄩󵄩󵄩󵄩𝐴𝛾𝑛
󵄩󵄩󵄩󵄩 . (38)

Denote𝑀 = 𝑀
1
+𝑀
2
; then𝑀 < ∞.

By using (34) and Lemma 3, we have
󵄩󵄩󵄩󵄩𝐾𝛾𝑛

󵄩󵄩󵄩󵄩

2
=
󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1 − 𝑡𝑛𝐴𝛾𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1

󵄩󵄩󵄩󵄩

2
− 2𝑡
𝑛
⟨𝐴𝛾
𝑛
, 𝑗 (𝐾𝛾

𝑛−1
)⟩

+max {󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1
󵄩󵄩󵄩󵄩 , 1}

󵄩󵄩󵄩󵄩𝑡𝑛𝐴𝛾𝑛
󵄩󵄩󵄩󵄩 𝑏 (

󵄩󵄩󵄩󵄩𝑡𝑛𝐴𝛾𝑛
󵄩󵄩󵄩󵄩)

=
󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1

󵄩󵄩󵄩󵄩

2
− 2𝑡
𝑛
⟨𝐴𝛾
𝑛−1
, 𝑗 (𝐾𝛾

𝑛−1
)⟩

+ 2𝑡
𝑛
⟨𝐴𝛾
𝑛−1
− 𝐴𝛾
𝑛
, 𝑗 (𝐾𝛾

𝑛−1
)⟩

+max {󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1
󵄩󵄩󵄩󵄩 , 1} 𝑡𝑛

󵄩󵄩󵄩󵄩𝐴𝛾𝑛
󵄩󵄩󵄩󵄩 𝑏 (𝑡𝑛

󵄩󵄩󵄩󵄩𝐴𝛾𝑛
󵄩󵄩󵄩󵄩)

≤ (1 − 2𝑐𝑡
𝑛
)
󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1

󵄩󵄩󵄩󵄩

2
+ 2𝑡
𝑛

󵄩󵄩󵄩󵄩𝐴𝛾𝑛−1 − 𝐴𝛾𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1
󵄩󵄩󵄩󵄩

+max {󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1
󵄩󵄩󵄩󵄩 , 1} 𝛼𝑡𝑛

󵄩󵄩󵄩󵄩𝐾𝛾𝑛
󵄩󵄩󵄩󵄩 𝑏 (𝛼𝑡𝑛

󵄩󵄩󵄩󵄩𝐾𝛾𝑛
󵄩󵄩󵄩󵄩)

≤ (1 − 2𝑐𝑡
𝑛
)
󵄩󵄩󵄩󵄩𝐾𝛾𝑛−1

󵄩󵄩󵄩󵄩

2
+ 2𝑀𝑡

𝑛
𝜂
𝑛

+max {𝑀, 1} 𝛼2𝑀2𝑡𝑛𝑏 (𝑡𝑛) ,
(39)

where
𝜂
𝑛
=
󵄩󵄩󵄩󵄩𝐴𝛾𝑛−1 − 𝐴𝛾𝑛

󵄩󵄩󵄩󵄩 . (40)
By using (6) and (34) we obtain that
󵄩󵄩󵄩󵄩𝐴𝛾𝑛−1 − 𝐴𝛾𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝐴 (𝛾𝑛−1 − 𝛾𝑛)

󵄩󵄩󵄩󵄩 ≤ 𝛼
󵄩󵄩󵄩󵄩𝐾 (𝛾𝑛−1 − 𝛾𝑛)

󵄩󵄩󵄩󵄩

= 𝛼𝑡
𝑛

󵄩󵄩󵄩󵄩𝐴𝛾𝑛
󵄩󵄩󵄩󵄩 ≤ 𝑀𝛼𝑡𝑛 󳨀→ 0, as 𝑛 󳨀→ ∞.

(41)
Thus,

𝜂
𝑛
󳨀→ 0 as 𝑛 󳨀→ ∞. (42)

Denote
𝜌
𝑛
=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

𝜃
𝑛
= 2𝑐𝑡
𝑛
,

𝜎
𝑛
= 2𝑀𝑡

𝑛
𝜂
𝑛
+max {𝑀, 1} 𝛼2𝑀2𝑡𝑛𝑏 (𝑡𝑛) .

(43)

Condition (33) assures the existence of a rank 𝑛
0
∈ N such

that 𝜃
𝑛
= 2𝑐𝑡
𝑛
≤ 1, for all 𝑛 ≥ 𝑛

0
. Since 𝑏(𝑡) is continuous, so

lim
𝑛→∞

𝑏(𝑡
𝑛
) = 0 (by condition (33)). Now with the help of

(33), (42), and Lemma 4, we obtain from (39) that
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐾𝛾𝑛
󵄩󵄩󵄩󵄩 = 0. (44)

At last by Remark 5, 𝛾
𝑛
→ 0 as 𝑛 → ∞; that is 𝐴𝑥

𝑛
→ 𝑓

as 𝑛 → ∞. Because𝐴 has bounded inverse, this implies that
𝑥
𝑛
→ 𝐴
−1
𝑓, the unique solution of𝐴𝑥

𝑛
= 𝑓. This completes

the proof.

Remark 9. (1)According to the estimates (6–8) ofMartynjuk
[2], we have

󵄩󵄩󵄩󵄩𝐾𝑥𝑛+1 − 𝐾𝑥
∗󵄩󵄩󵄩󵄩

≤
1 + 𝜖
1 (1 − 𝑐) + 𝛼𝜖

2

1
(1 − 𝑐 + 𝛼)

1 + 𝜖
1

󵄩󵄩󵄩󵄩𝐾𝑥𝑛 − 𝐾𝑥
∗󵄩󵄩󵄩󵄩

= 𝜃
󵄩󵄩󵄩󵄩𝐾𝑥𝑛 − 𝐾𝑥

∗󵄩󵄩󵄩󵄩 ,

(45)

where

𝜃 =
1 + 𝜖
1 (1 − 𝑐) + 𝛼𝜖

2

1
(1 − 𝑐 + 𝛼)

1 + 𝜖
1

= 1 −
𝜖
1

1 + 𝜖
1

(𝑐 − 𝛼 (1 − 𝑐 + 𝛼) 𝜖1)

= 1 −
𝜖
1

1 + 𝜖
1

𝜂,

(46)

for 𝜂 = 𝑐−𝛼(1−𝑐+𝛼)𝜖
1
or 𝜖
1
= (𝑐−𝜂)/𝛼(1−𝑐+𝛼), 𝜂 ∈ (0, 𝑐).

Thus,
𝜃 = 1 −

𝑐 − 𝜂

𝛼 (1 − 𝑐 + 𝛼) + 𝑐 − 𝜂
𝜂

= 1 −
𝑐
2

4𝛼 (1 − 𝑐 + 𝛼) + 2𝑐
.

(47)
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Table 1

𝑛 1 2 3 4 5 6 7 8
𝑥
𝑛

0.0922 0.0851 0.07859 0.07528 0.06947 0.06411 0.05916 0.05459

Table 2

𝑛 1 2 3 4 5 6 7 8
𝑥
𝑛

0.0893 0.0798 0.07136 0.06376 0.05698 0.05092 0.04550 0.04066

Table 3

𝑛 1 2 3 4 5 6 7 8
𝑥
𝑛

0.0098 0.0096 0.00949 0.00933 0.00917 0.00901 0.00885 0.00870

Table 4

𝑛 1 2 3 4 5 6 7 8
𝑥
𝑛

0.0098 0.0096 0.00941 0.00923 0.00905 0.00887 0.00869 0.00852

(2) For 𝛼 > 𝑐/2, we observe that

𝜌 = 1 −
𝑐
2

4𝛼 (1 − 𝑐/2) + 2𝑐

= 𝜃 −
4𝛼𝑐
2

(4𝛼 (1 − 𝑐/2) + 2𝑐) (4𝛼 (1 − 𝑐 + 𝛼) + 2𝑐)
(𝛼 −

𝑐

2
) .

(48)

Thus, the relation between Martynjuk [2] and our parameter
of convergence, that is, between 𝜃 and 𝜌, respectively, is the
following:

𝜌 < 𝜃. (49)

Despite the fact that our scheme is implicit, inequality
(49) shows that the results of Osilike and Udomene [7] are
improved in the sense that our scheme converges faster.

Example 10. Suppose 𝐸 = R, 𝐷(𝐴) = R
+
, 𝐴𝑥 = 𝑥, 𝐾𝑥 =

2𝐼 (𝑥∗ = 0 is the solution of 𝐴𝑥 = 𝑓); then for the explicit
iterative scheme due to Osilike and Udomene [7] we have

𝐾𝑥
𝑛+1
= 𝐾𝑥
𝑛
− 𝜖
1
𝐴𝑥
𝑛
, (50)

which implies that

2𝑥
𝑛+1
= 2𝑥
𝑛
− 𝜖
1
𝑥
𝑛
, (51)

and hence

𝑥
𝑛+1
= (1 −

𝜖
1

2
) 𝑥
𝑛
. (52)

Also for the implicit iterative scheme we have that

𝐾𝑥
𝑛
= 𝐾𝑥
𝑛−1
− 𝜖𝐴𝑥

𝑛
, (53)

which implies that

𝑥
𝑛
=

1

1 + 𝜖/2
𝑥
𝑛−1
. (54)

It can be easily seen that for 𝑐 ≤ 1/2 and 𝛼 ≥ 1/2, (4) and (6)
are satisfied. Suppose 𝑐 = 1/4 and 𝛼 = 3/5; then 𝜂 = 0.125,
𝜖 = (𝑐 − 𝜂)/𝛼(1 − 𝜂) = 0.23810, 𝜖

1
= (𝑐 − 𝜂)/𝛼(1 − 𝑐 + 𝛼) =

0.15432, 𝜌 = 0.97596, and 𝜃 = 0.983288 and so 𝜌 < 𝜃. Take
𝑥
0
= 0.1; then from (52) we have Table 1 and for (54) we get

Table 2.

Example 11. Let us take 𝐸 = R, 𝐷(𝐴) = R
+
, 𝐴𝑥 = (1/4)𝑥,

𝐾𝑥 = 2𝑥 (𝑥∗ = 0 is the solution of 𝐴𝑥 = 𝑓); then for the
explicit iterative scheme due to Osilike and Udomene [7] we
have

𝐾𝑥
𝑛+1
= 𝐾𝑥
𝑛
− 𝜖
1
𝐴𝑥
𝑛
, (55)

which implies that

2𝑥
𝑛+1
= 2𝑥
𝑛
−
𝜖
1

4
𝑥
𝑛
, (56)

and hence

𝑥
𝑛+1
= (1 −

𝜖
1

8
) 𝑥
𝑛
. (57)

Also for the implicit iterative scheme we have that

𝐾𝑥
𝑛
= 𝐾𝑥
𝑛−1
− 𝜖𝐴𝑥

𝑛
, (58)

which implies that

𝑥
𝑛
=

1

1 + 𝜖/8
𝑥
𝑛−1
. (59)

It can be easily seen that for 𝑐 ≤ 1/8 and 𝛼 ≥ 1/8, (4) and
(6) are satisfied. Suppose 𝑐 = 0.0625 and 𝛼 = 0.2; then 𝜂 =
0.03125, 𝜖 = (𝑐 − 𝜂)/𝛼(1 − 𝜂) = 0.16129, 𝜖

1
= (𝑐 − 𝜂)/𝛼(1 −

𝑐+𝛼) = 0.13736, 𝜌 = 0.99566, and 𝜃 = 0.99623 and so 𝜌 < 𝜃.
Take 𝑥

0
= 0.01; then from (57) we have Table 3 and for (59)

we get Table 4.
Even though our scheme is implicit we observe that

it converges strongly to the solution of the 𝐾pd operator
equation 𝐴𝑥 = 𝑓 with the error estimate which is faster in
comparison to the explicit error estimate obtained by Osilike
and Udomene [7].
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