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Software defect prediction studies usually build models without analyzing the data used in the procedure. As a result, the same
approach has different performances on different data sets. In this paper, we introduce discrimination analysis for providing a good
method to give insight into the inherent property of the software data. Based on the analysis, we find that the data sets used in
this field have nonlinearly separable and class-imbalanced problems. Unlike the prior works, we try to exploit the kernel method
to nonlinearly map the data into a high-dimensional feature space. By combating these two problems, we propose an algorithm
based on kernel discrimination analysis called KDC to build more effective prediction model. Experimental results on the data sets
from different organizations indicate that KDC is more accurate in terms of F-measure than the state-of-the-art methods. We are
optimistic that our discrimination analysis method can guide more studies on data structure, which may derive useful knowledge
from data science for building more accurate prediction models.

1. Introduction

Defect-prone software modules prediction is very critical for
the high-assurance and mission-critical systems. It tries to
estimate a functional relationship between the features of
the software modules and the quality of the modules. Many
software engineering researchers apply data mining methods
on different software data sets. However, there are rarely
researchers analyzing the inner structure of the data sets,
either because it needs a good technical background on data
science or the modules developed belong to strange domains
for the local companies. Building prediction models requires
solving binary classification problem as many pattern recog-
nition applications. Many pattern recognition approaches are
applied to build predictors but have different performances
on different data sets. As pointed out byKhoshgoftaar et al. [1]
andMenzies et al. [2],majority of the defects in a software sys-
tem are located in a small percentage of the programmodules;
software defect data sets are highly class-imbalanced. Since
then, many specific approaches to handling class-imbalanced
problem were proposed in software defect prediction, such
as sampling approaches, cost-sensitive approaches, feature

selection approaches, and ensemble approaches. In addition
to the class-imbalanced property, we think that software data
sets have another property, that is, nonlinear separability.
On data sets with better separability, most methods will
yield good performances, while on data sets with worse sep-
arability, most methods will perform poorly. But, to the best
of our knowledge, very few studies focused on the prediction
model based on the inherent property of the software data
sets.

This paper makes the following contributions. (1) We
newly introduced the kernel based discrimination analysis on
software data sets, to gain insight into the inherent property of
the data used in defect prediction. The results of the analysis
suggested that data sets used in this field have a nonlinearly
separable property, which may require nonlinear algorithm
to build predictors to improve the performance. (2) By com-
paring the transformation results of the linear discrimination
analysis with kernel discrimination analysis, we proposed
a kernel based algorithm to build defect predictor, which
addressed the nonlinearly separable and class-imbalanced
problems. (3) We conducted our experiments on data
sets drawn from different projects and different companies
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. The experimental results show that the proposed algorithm
gives better performance on all the data sets when compared
with the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
briefly reviews the background of the discrimination analysis
techniques and software defect prediction algorithms. Based
on the theories of linear and kernel discrimination, Section 3
presents our algorithm for building the defect predictor.
Section 4 describes the software defect data sets, performance
metrics used in this study, and shows the experimental
results with discussions. Section 5 finalizes the paper with
conclusions and future works.

2. Related Work

2.1. Discrimination Analysis. Most recently, ignoring the
dependence among the variables, Menzies et al. [2] proposed
a famous method based on naive Bayes classifier to build
defect prediction model. But Fan et al. [3] hold that the
theoretical misclassification rate of the naive Bayes classifier
is higher than that of linear discrimination analysis method.
Linear discriminant analysis (LDA) [4] is a classical mul-
tivariate technique for supervised learning, especially for
classification problems which need projecting data vectors
that belong to the real classes. It has been widely used in
many applications such as traffic incident detection [5], face
recognition [6], document classification [7], speech recog-
nition [8], and image classification [9]. The linear discrimi-
nation analysis methods can find a compact representation
of the original data when the data form a linear subspace.
However, in the distribution of some data such as face images,
which is highly nonlinear and complex, it cannot find this
compact representation. It is therefore reasonable that when
linear discrimination analysis methods fail to provide reliable
results, we should try these nonlinear methods to achieve
robust performances. A number of nonlinear methods have
been developed to deal with these shortcomings of the
linear discrimination analysis methods such as kernel-based
approaches.

Kernel based discrimination analysis (KDA) has good
performances in many applications such as face recognition
[10], information retrieval [11], image classification [12]. Most
recently, the discriminant analysis method is used to combat
the class-imbalanced problem, which exists within the colon
cancer data, lymphoma data, lung cancer data, breast cancer
data, and gene-imprint data [13]. In order to find the defective
modules, we also emphasize the importance of considering
the class imbalance during software quality modeling. We
found that the kernel based discrimination analysis has good
performance on software defect prediction.

2.2. Software Defect Prediction. Software defect prediction
is to predict the defect-prone modules for the next release
of software or cross project software, as shown in Figure 1.
With the software metric research advance, more and more
researchers applymachine learningmethods to predict defec-
tive software modules, such as interpretable models [14],
J4.8 decision tree [15], Bayesian nets [16], ensemble method
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Figure 1: Software defect prediction procedure.

[17], transfer learning [18], asymmetric learning [19, 20],
active learning [21. These articles compare the performance
of learning methods and endorse the use of static code
attributes for predicting defective modules. There are also a
few articles reporting that the further progress in learning
defect predictors may not come from better algorithms but
come from more information content of the training data,
such as [22].

The studies [23, 24] used the PCA and LDA to predict
the fault-prone module directly, without analyzing the sep-
arability of data sets. We not only analyze the nonlinear
separability, which is the property of the software data sets but
also consider class-imbalanced problem which were widely
studied recently [17].

Most recently, the kernel methods were used in software
engineering to estimate the software effort [25]. But rare
articles report the performance of predictor based on kernel
methods for software defect prediction. In this paperwe focus
on nonlinear separable and class-imbalanced problems in
software defect prediction. Based on the kernel discrimina-
tion analysis, a new classifier is proposed to provide the tech-
nique, which transforms low-dimensional input space into a
high-dimensional feature space so as to make the software
data separable in the new space and then calculates the local
mean distances using the class distribution information to
find the minority of defective modules.

3. Defect Prediction Based on
Discrimination Analysis

In this section, we introduce the linear discriminant analy-
sis technic and describe the kernel discrimination analysis
based on the linear version. Then, we propose a kernel
discrimination classifier, which is more suitable for building
software defect predictor based on the inherent property of
the software data sets.
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Table 1: Symbols of the discriminant analysis.

Symbol Description
𝑆𝑏, 𝑆
Φ

𝑏 The between-class scatter matrix
𝑆𝑤, 𝑆
Φ

𝑤 The within-class scatter matrix
𝑛𝑖 The number of the instances of 𝑖th class
𝑊, Ψ The transformation matrix

𝑐1, 𝑐2
The classes of nondefective and defective software
module

𝜇 Mean vector of total instances
𝑢𝑖 Mean vector of 𝑖th class
𝑥𝑖
𝑗 The 𝑗th instances in the 𝑖th class

𝑇𝑟, 𝑇


𝑟 Original and transformed training data
𝑇𝑒, 𝑇


𝑒 Original and transformed test data

3.1. Discrimination Analysis on Software Data Sets. Since
software data sets used in the software defect prediction
are drawn from varied systems which are written in dif-
ferent language, developed by different company, applied
in different domains, the individual data sets appear to
have quite different structure. The discrimination analysis
theory provides a good method to give insight into the data
distributions. Since the concept of discrimination analysis
belongs to the experts’ knowledge of artificial intelligence and
knowledge engineering field, we should describe this technic
to migrate the knowledge from data science to software
engineering.

Here, we would like to predict the defective modules and
nondefective modules in software by solving binary classifi-
cation problem.Therefore, we show the discriminant analysis
method constrained to two classes. Firstly, we calculate the
between-class scatter matrix 𝑆𝑏 and the within-class scatter
matrix 𝑆𝑤 for training data. These two matrixes are shown as
(1) and (2), using the symbols in Table 1:

𝑆𝑏 =

2

∑
𝑖=1

𝑛𝑖 (𝑢𝑖 − 𝑢) (𝑢𝑖 − 𝑢)
⊤
, (1)

𝑆𝑤 =

2

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑥
𝑖

𝑗
− 𝑢𝑖) (𝑥

𝑖

𝑗
− 𝑢𝑖)
⊤

, (2)

𝐽𝐹 (𝑊) =
𝑊
𝑇𝑆𝑏𝑊

𝑊𝑇𝑆𝑤𝑊
, (3)

𝑊opt = argmax

𝑊𝑇𝑆𝑏𝑊


𝑊
𝑇𝑆𝑤𝑊


. (4)

Then, in order to find the maximum points of 𝐽𝐹(𝑊), we
set derivative of (3) equal to zero. This means that when 𝑊

is an eigenvector of 𝑆−1
𝑤
𝑆𝑏, the separation will be equal to the

corresponding eigenvalue. By substituting (1) and (2) into (4),
we get 𝐽𝐹(𝑊) as follows:

𝐽𝐹 (𝑊) =
𝑊
⊤
∑
2

𝑖=1
𝑛𝑖 (𝑢𝑖 − 𝑢) (𝑢𝑖 − 𝑢)

⊤
𝑊

𝑊⊤∑
2

𝑖=1
∑
𝑛𝑖

𝑗=1
(𝑥𝑖
𝑗
− 𝑢𝑖) (𝑥

𝑖

𝑗
− 𝑢𝑖)
⊤

𝑊

=
∑
2

𝑖=1
𝑛𝑖𝑊
⊤ (𝑢𝑖 − 𝑢) (𝑢𝑖 − 𝑢)

⊤
𝑊

∑
2

𝑖=1
∑
𝑛𝑖

𝑗=1
𝑊⊤ (𝑥𝑖

𝑗
− 𝑢𝑖) (𝑥

𝑖

𝑗
− 𝑢𝑖)
⊤

𝑊
.

(5)

Suppose 𝑅 = 𝑊⊤(𝑢𝑖 − 𝑢), then𝑊⊤(𝑢𝑖 − 𝑢)(𝑢𝑖 − 𝑢)
⊤
𝑊 = 𝑅𝑅⊤

in the subspace; the original data points to be discriminated
are projected as follow.

𝜏 = 𝑊
⊤
𝑥. (6)

Set the dimension of 𝑤 equal to the dimension of the
training data, then we can obtain the classifier with the
threshold as prior probability log(𝑝(𝑐1)/𝑝(𝑐2)), as in [26].
We can see that the objective of linear discriminant analysis
approach is to maximize the ratio of between-class variance
to withinclass variance.Therefore, we can exploit it to analyze
the software data so as to give insight into the separability of
the defective and nondefective classes. We will see that the
software data are nonlinearly separable as shown in Section 4.

3.2. Kernel Discrimination Classifier. To deal with the soft-
ware data sets which are nonlinearly separable, we perform
nonlinear mapping Φ(𝑥) to transform the input vectors 𝑋
to a higher dimensional feature space. Then, a new classifier
based on kernel discrimination analysis (KDC) is proposed
to deal with the nonlinearly separable and class-imbalanced
problem, which are often inherent in software defect predic-
tion. In the kernel discrimination analysis (KDA) [27], the
between-class scatter matrix is as follows:

𝑆
Φ

𝑏
=

2

∑
𝑖=1

𝑛𝑖 (𝑢𝑖 − 𝑢) (𝑢𝑖 − 𝑢)
⊤
. (7)

And the within-class scatter matrix is

𝑆
Φ

𝑤
=

2

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(Φ (𝑥
𝑖

𝑗
) − 𝑢𝑖) (Φ (𝑥

𝑖

𝑗
) − 𝑢𝑖)

⊤

, (8)

where 𝑢𝑖 = (1/𝑛𝑖) ∑
𝑛𝑖

𝑗=1
Φ(𝑥𝑖
𝑗
) is class-conditional mean

vector, 𝑢 is mean vector of total instances, Φ(𝑥𝑖
𝑗
) is the 𝑗th

instances in the 𝑖th class, and 𝑛𝑖 is the number of instances of
the 𝑖th class.Then, the modified objective function is given as
follows:

Ψopt = argmax 𝐽Φ
𝐹(𝑊)

= max

Ψ𝑇𝑆Φ
𝑏
Ψ


Ψ
𝑇𝑆Φ
𝑤
Ψ

. (9)

To maximize 𝐽Φ
𝐹(𝑊)

, (9) can be transformed into a nonlinear
eigenvalue problem [28]. Then, we can find the maximum
eigenvalues of (𝑆Φ

𝑤
+ 𝜆𝐼)

−1
𝑆Φ
𝑏
, where 𝜆𝐼 is a regularizing

diagonal term introduced to improve the numerical stability
of the inverse computation as described by Shawe-Taylor and
Cristianini [27].
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Table 2: Data sets.

Project Examples %Defective Description
NASA data sets

pc1 705 9.66 Flight software
pc2 745 2.85 Flight software
pc3 1077 12.4 Flight software
pc4 1458 12.2 Flight software
kc2 522 20.49 Storage management
kc3 194 18.56 Storage management
cm1 327 12.84 Spacecraft instrument
mw1 253 10.67 A zero-gravity experiment

SOFTLAB data sets
ar3 63 12.7 Embedded controller
ar4 107 18.69 Embedded controller
ar5 36 22.22 Embedded controller
ar6 101 16.0 Embedded controller

After the analysis as described above, we can get eigen-
vector vectors {𝑡𝑞}

𝑚

1
∈ Ψ corresponding to the maximum

eigenvalues of this eigenvalue problem. Finally, the original
features can be projected to the new spaces by transformation
matrix Ψ as follows:

𝑇 = Ψ ⋅ Φ (𝑥) =

𝑛

∑
𝑖=1

𝑘 (𝑥𝑖, 𝑥) . (10)

In order to combat the class-imbalanced problem, we
propose a kernel discrimination classification (KDC) based
on local mean vector. Considering the correlation between
transformed features and the class distribution, KDC
retrieves the loss caused by the class-imbalanced problem.
Firstly, we compute the 𝑋𝑖NEC, neighbors of class 𝑖 for every
transformed instances 𝑥 ∈ 𝑇

𝑒
:

𝑋
𝑖

NEC = {𝑥𝑗 | 𝑥𝑗 ∈ 𝑇


𝑟
, 𝑑 (𝑥, 𝑥𝑗) ⩽ 𝑑 (𝑥, 𝑥𝐾)} ,

(11)

where 𝑥𝐾 is the 𝑘th nearest neighbor. When 𝑘 = 1, KNN
has the special form 1-NN rule. Then, we calculate the mean
distances of each class:

𝐷
𝑖

NEC =
1

𝑋
𝑖

NEC


∑

𝑥𝑗∈𝑋
𝑖

NEC

𝑑 (𝑥, 𝑥𝑗) . (12)

Assign 𝑥 to the class 𝑐 if the distance between the local mean
vector for 𝑐 and the query pattern is minimum:

𝑀(𝑥) = argmin𝐷𝑖NEC. (13)

KDC is summarized as in Algorithm 1. It originates from
the need to combat the nonlinearly separable and class-
imbalanced problem in the classification. It not only balances
the distribution of data sets, but it also inherits the advantage
of kernel method, which can conduct quite general dimen-
sional feature space mappings.

4. Experiments

In this section we evaluate KDC algorithm empirically. First
of all, we use two types of discrimination methods LDA and
KDA to analyze the well-known data sets used in the software
defect prediction. And then, based on the analysis result, we
investigate the performance of our method compared with
the other three methods. We focus on the visualization and
interpretation of the multivariable data so as to analyze the
inherent property of the data sets used in the software defect
prediction.

4.1. Data Set. In this study, twelve well-known data sets
in software defect prediction are analyzed, including the
eight sets used in [2] as well as four additional data sets
used in [29], as shown in Tables 2 and 3. They are from
NASA projects developed at different sites by different teams
and from projects of Turkish software company (SOFTLAB)
which is related to the embedded controller for white goods,
respectively. Since these data sets are collected from different
companies or different projects developed by different lan-
guages, they are under different distributions.

4.2. DiscriminationAnalysis on SoftwareData Sets. Firstlywe
conduct the discrimination on the data sets fromNASA. Each
Figure (a) shows the distributions of the defective modules
and nondefective modules on two dimensions. Figures (b)
and (c) depict the histograms of the first feature values
obtained by LDA and KDA—the vertical axis corresponds
to number of instances, and the horizontal axis to the
project values on the first feature values. Note that the two
dimensions of the data as shown in Figure (a) are the first
two features, and the first features in Figures (b) and (c)
are obtained from the projection from all the input features.
The first 2D data of the original data pc1 is depicted in
Figure 2(a). Since the distribution of the first two dimensions
of the positive data and negative data is very similar, it is very
hard to classify the two types without discrimination analysis.
However, even projected onto one dimension using LDA,
this data set is still mixed together as shown in Figure 2(b).
Compared with LDA, when conducting KDA, we have found
that the different patterns can be separated as shown in
Figure 2(c). It means that the pc1 data set is a multimodel
data set, which is nonlinearly separable. The result of the
analysis on each data set of different companies contracted
withNASA is very similar to this data set, as shown in Figures
2, 3, 4, 5, 6, 7, 8, and 9. In order to investigate the inherent
property of the data sets used in software defect prediction,
we also apply the discrimination analysis on the (SOFTLAB)
data sets from local company, as shown in Figures 10, 11, 12,
and 13. We can see that all the data sets have the property
of nonlinear separability, which requires more sophisticated
classification.

Each Figure (c) shows that KDA separates the software
modules with defect from nondefect modules reasonably
well. In addition to maximizing the between-class variance,
KDA also tries to minimize the inner-class variance of each
class. Another interesting finding from the figures is that
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Figure 2: Discrimination analysis on pc1 data set.

50 100 150 200 250

0

20

40

60

80

100

120

140

First feature

Se
co

nd
 fe

at
ur

e

−60

−40

−20

(a) First 2D data

0

100

200

0

2

4

6

8

Projected feature
−25 −20 −15 −10 −5 0 5

−25 −20 −15 −10 −5 0 5

N
um

be
r o

f s
am

pl
es

N
um

be
r o

f s
am

pl
es

(b) LDA 1D project

2 2.01 2.02 2.03 2.04 2.05
0

100

200

300

400

2 2.01 2.02 2.03 2.04 2.05
0

2

4

6

8

Projected feature

N
um

be
r o

f s
am

pl
es

N
um

be
r o

f s
am

pl
es

(c) KDA 1D project

Figure 3: Discrimination analysis on pc2 data set.
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Figure 4: Discrimination analysis on pc3 data set.
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Figure 5: Discrimination analysis on pc4 data set.
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Figure 6: Discrimination analysis on kc2 data set.
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Figure 7: Discrimination analysis on kc3 data set.
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Figure 8: Discrimination analysis on cm1 data set.
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Figure 9: Discrimination analysis on mw1 data set.
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Figure 10: Discrimination analysis on ar3 data set.
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Figure 11: Discrimination analysis on ar4 data set.
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Figure 12: Discrimination analysis on ar5 data set.
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Figure 13: Discrimination analysis on ar6 data set.
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Table 3: Software metrics.

Type Description or formula

Mccabe

CYCLOMATIC COMPLEXITY: V(𝐺) = 𝑒 − 𝑛 + 2;
ESSENTIAL COMPLEXITY: 𝑒V(𝐺);
DESIGN COMPLEXITY: 𝑖V(𝐺);
LOC TOTAL;

Halstead

NUM OPERANDS:𝑁1
NUM OPERATORS:𝑁2
NUM UNIQUE OPERANDS: 𝜇1
NUM UNIQUE OPERATORS: 𝜇

2

CONTENT: 𝐼 = �̂� ∗ 𝑉 = (2/𝜇1) ∗ (𝜇2/𝑁2)

DIFFICULTY:𝐷 = 1/𝐿

EFFORT: 𝐸 = V/𝐿
ERROR EST
LENGTH:𝑁 = 𝑁

1
+ 𝑁
2

LEVEL: 𝑉⋆/𝑉 = (2 + 𝜇⋆
2
) log
2
(2 + 𝜇⋆

2
)

PROG TIME: 𝑇 = 𝐸/18 seconds
VOLUME: 𝑉 = 𝑁log

2
(𝜇)

Loc

LOC BLANK
LOC CODE AND COMMENT
LOC COMMENTS
LOC EXECUTABLE
NUMBER OF LINES

Other

NODE COUNT: number of nodes found in a given
module, 𝑛
EDGE COUNT: words and phrases must be
provided, 𝑒.
BRANCH COUNT
CALL PAIRS
CONDITION COUNT
CYCLOMATIC DENSITY
DECISION COUNT: number of decision points in a
given module
DESIGN DENSITY: 𝑖V (𝐺) /V (𝐺)
ESSENTIAL DENSITY: (𝑒V (𝐺) − 1) /(V (𝐺) − 1)

PARAMETER COUNT
GLOBAL DATA COMPLEXITY
GLOBAL DATA DENSITY
MAINTENANCE SEVERITY: 𝑒V(𝐺)/V(𝐺)
MODIFIED CONDITION COUNT
MULTIPLE CONDITION COUNT
NORMALIZED CYLOMATIC COMPLEXITY
PERCENT COMMENTS

the first feature obtained by KDA has a strong positive
correlation to the defective modules. While LDA is incapable
of providing correct classification because of its linear nature,
KDA can usually provide correct classification through non-
linear transformations. Therefore, it is able to produce linear
separable features for such data that are from the input space

and have bad linear separability. KDA is to find a nonlinear
projection direction, by which the original inputs can be
mapped into a high dimension feature space, where they were
linearly separable, and then the LDA was employed.

KDA produces a nonlinear decision boundary, which is
very useful in defect prediction since classes are not always
well separated by a linear function. After transforming the
low-dimensional input space into a high-dimensional feature
space, the data set in the new feature space becomes linearly
separable. Theoretically speaking, the kernel function is able
to implicitly and explicitly map the input space, which may
not be linearly separable, into an arbitrary high-dimensional
feature space that can be linearly separable. What is more, we
calculate the local mean distance for each class to combat the
class-imbalanced problem, as shown in the Algorithm 1. The
performances of KDC can also be seen from the following
experiment.

4.3. Performance Measures. To evaluate the performance of
the prediction model, we can use the confusion matrix of
the predictor from Witten and Frank [30]. In the confusion
matrix, True Positive (TP) is the number of defectivemodules
predicted as defective; False Negative (FN) is the number of
defective modules predicted as nondefective; False Positive
(FP) is the number of nondefective modules predicted as
defective; True Negative (TN) is the number of nondefective
modules predicted as nondefective.

Since 𝐹-measure [31] value serves as a good singular
performance metric when dealing with the class-imbalanced
problem, it is widely used in the software defect prediction
field [32, 33]. It can be expressed as follows:

𝐹-measure = 2 ∗ recall ∗ precision
recall + precision

, (14)

where recall = TP/(TP + FN) is the probability of true
defective modules to the number of defective modules, and
precision = TP/(TP + FP) is the probability of true defective
modules to the number of modules predicted as defective.

4.4. Result. In order to investigate the performance of KDC
(Gaussian kernel 𝐾(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖

2
) is used here),

we compare it with J4.8 decision trees [15, 34], Naive Bayes
[2], random forest (RF) [35], AdaBoost [17], Smote [36], and
linear discrimination analysis based classifier (LDC) [26].
The details are as follows.

(i) Under each labeled rate, each data set is divided into
ten random partitions.

(ii) The defect predictor is built from nine partitions and
tested on the remaining partition for each method.

(iii) Running ten times follows the steps above.
(iv) For comparing the results for these methods, we

conducted Mann-Whitney𝑈-Test (Mann-Whitney𝑈
test is a nonparametric statistical hypothesis test to
compare two independent groups of sampled data,
which is without an assumption of a normal distri-
bution. For details see [37]. That is, we speak of two
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Require:
Normalized training data, 𝑇

𝑟
;

Labels vector of the training data, 𝑌;
Normalized test data, 𝑇𝑒;
Kernel type, kernel;

Ensure:
KDC classifier,𝑀;

(1)𝐾 = kernelize (𝑇𝑟, 𝑇𝑟, 𝑘𝑒𝑟𝑛𝑒𝑙, 𝑘𝑒𝑟𝑛𝑒𝑙𝑝𝑎𝑟𝑎𝑚);
𝐾𝑡 = kernelize (𝑇𝑟, 𝑇𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙, 𝑘𝑒𝑟𝑛𝑒𝑙𝑝𝑎𝑟𝑎𝑚);

(2) ℓ = 𝑠𝑖𝑧𝑒 (𝐾, 1);
(3) ℓ+ = (∑𝑌 + ℓ) /2;
(4) 𝑌+ = 0.5 ∗ (𝑌 + 1);
(5) 𝑒𝑙𝑙− = ℓ − ℓ

+;
(6) 𝑌− = 𝑌+ − 𝑌;
(7) 𝑡 = 𝑠𝑖𝑧𝑒 (𝐾

𝑡
, 2);

(8) Υ = 𝑜𝑛𝑒𝑠 (ℓ, 1) + 𝑌 ∗ ((ℓ− − ℓ+) /ℓ−1) ;
(9) 𝜏+ = 2 ∗ ℓ

−
/(ℓ ∗ ℓ

+
);

(10) 𝜏− = 2 ∗ ℓ+/(ℓ ∗ ℓ−) ;
(11) 𝐵 = diag (Υ) − (𝜏+ ∗ 𝑌+) ∗ 𝑌+ − (𝜏− ∗ 𝑌−) ∗ 𝑌−;
(12) 𝑇 = (𝐵 ∗ 𝐾 + 𝜆 ∗ 𝑒𝑦𝑒 (ℓ, ℓ)) 𝑌

−1;
(13) 𝑇

𝑟
= 𝑇 ∗ 𝑇

𝑟
, 𝑇
𝑒
= 𝑇 ∗ 𝑇

𝑒
;

(14) Collecting the neighbourhoods of 𝑥 ∈ 𝑇𝑒 using (12);
(15) Calculate the mean distances using (13);
(16) Classify 𝑥 as𝑀(𝑥) = argmin 𝐷𝑖NEC;
(17) return 𝑀;

Algorithm 1: Kernel discrimination classifier (KDC).

Table 4: Statistical 𝐹-measure values of six classifiers on all data sets. The line 𝑤/𝑡/𝑙 means that the algorithm at the corresponding KDC
wins in 𝑤 data sets, ties in 𝑡 data sets, and loses in 𝑙 data sets, compared with the algorithm at the corresponding column.

Project J4.8 Naive Bayes RF AdaBoost Smote KDA LDC
ar3 0.500 0.667 0.633 0.377 0.455 0.702 0.500
ar4 0.474 0.514 0.487 0.443 0.457 0.560 0.485
ar5 0.625 0.667 0.490 0.464 0.575 0.650 0.533
ar6 0.105 0.357 0.254 0.237 0.203 0.201 0.087
pc1 0.271 0.344 0.302 0.347 0.393 0.470 0.031
pc2 0.110 0.055 0.140 0.101 0.100 0.150 0.105
pc3 0.302 0.262 0.357 0.340 0.401 0.436 0.121
pc4 0.503 0.418 0.401 0.437 0.423 0.450 0.342
mw1 0.195 0.390 0.367 0.220 0.283 0.357 0.340
kc2 0.522 0.511 0.474 0.530 0.517 0.650 0.492
kc3 0.357 0.406 0.306 0.328 0.336 0.433 0.433
cm1 0.293 0.256 0.277 0.244 0.217 0.397 0.05
𝑤/𝑡/𝑙 10/0/2 8/1/3 10/1/1 6/4/2 7/5/0 — 10/0/2

results for a data set as being “significantly different”
only if the difference is statistically significant at the
0.05 level according to the Mann-Whitney 𝑈-Test.)
with level of significance: 5% (𝑃 = 0.05).

We calculate the means and variances of 𝐹-measure
values of running 10 times’ results for these methods, as
summarized in Table 4. It shows that on all the data sets, KDC
achieves higher 𝐹-measure values than J4.8 significantly.
Although all the methods fail to build practical predictors on

data sets such as pc2, we can still consider that the KDA has
the best performance. Note that this data set has an extreme
imbalance ratio, which is too low (only 21 defective modules
in 745 modules) to express the information of the defective
modules.

4.5. Threats to Validity. As every empirical experiment, our
results are subject to some of the potential threats to validity.
Firstly, in this study, we validated our findings on open
data sets with different characteristics, from two different



Journal of Applied Mathematics 13

organizations, that is, NASA and SOFTLAB. By doing so,
we have gained more confidence in the validity of the
results reported in this paper. Secondly, since systems are
developed for different domains or different applications,
someone could think more about the ability of application of
our method in industrial practice. Therefore, the replicated
studies examining our method on other software systems
will be useful to generalize our findings and improve our
method. Finally, to the best of our knowledge, there is
little current negative criticism for Mann Whitney as a
statistical test for comparing data miners, but many for
others. Although this is often misunderstood as a criticism of
empirical studies, this study shows encouraged results with
kernel discrimination analysis method. Our method should
encourage more researchers to run similar studies on more
kernel based method and deepen the understanding of the
inherent property of the software engineering data. Our study
would be replicatedwithmore projects, differentmetrics, and
replaced by more sophisticated method.

5. Conclusion and Future Work

In this paper, we addressed the issue of analysis of the
property of the data sets in software defect prediction. By
conducting the linear discrimination analysis on software
data sets, we found that these data could not be separated
by LDA. The results projected by LDA and KDA showed
that these data sets had a property of nonlinear separability.
Motivated by the analysis, we proposed a new algorithmKDC
based on the kernel discrimination analysis to build defect
predictor. It can tackle the nonlinearly separable and class-
imbalanced problems. Experiments show that KDC can give
good performances among the comparative methods on the
test sets.

There are several areas inwhichwe can improve thiswork.
First, whenwe try to analyze the data structure of the software
data sets, we only use one type of discrimination methods.
However, we may try other data analysis methods to get
more information of the data for building defect predictors.
Second, in the future we will try to investigate other kernel
based algorithms for software defect prediction on more
software data sets.
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