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This paper is concerned with the numerical simulation for shape reconstruction of the unsteady advection-diffusion problems.
The continuous dependence of the solution on variations of the boundary is established, and the explicit representation of domain
derivative of corresponding equations is derived.This allows the investigation of iterative method for the ill-posed problem. By the
parametric method, a regularized Gauss-Newton scheme is employed to the shape inverse problem. Numerical examples indicate
that the proposed algorithm is feasible and effective for the practical purpose.

1. Introduction

The advection-diffusion problem is important to many
branches of science and engineering. Many physical and
chemical phenomena, such as the diffusion of polluted
substances in water and air, the diffusion of heat and salinity
in the ocean, and even economics and financial forecasting,
can be described as advection-diffusion problems.

For the shape reconstruction problems by the domain
derivative method, many people are contributed to it. Het-
tlich solved the inverse obstacle scattering problem for
sound soft and sound hard obstacles [1, 2] and discussed
a discontinuity in a conductivity from a single boundary
measurement [3]. Kress and Rundell considered an inverse
conduction scattering problem for shape and impedance in
[4]. Chapko et al. dealt with the inverse boundary problem
for the time-dependent heat equation only in the case of
perfectly conducting and insulating inclusions [5, 6]. Har-
brecht and Tausch considered the numerical solution of a
shape identification problem for the heat equation [7, 8]. Yan
and Ma discussed a shape reconstruction problem for heat
conductionwithmixed condition [9] and recovered the shape
of a solid immersed in the incompressible fluid driven by the
Stokes flow [10].

This paper is organized into four parts. In Section 2,
we briefly introduce the shape reconstruction problem of
the two-dimensional advection-diffusion equations for the
transport of a contaminant in the surface water. In Section 3,
we describe the domain perturbation method which is used
for the characterization of the deformation of the shapes
and derive the explicit representation of the derivative of
solution with respect to the boundary, that is, the so-
called “domain derivative.” This representation is important,
because it is the key to deriving many properties of the
domain derivativemethod for numerical analysis. Section 4 is
devoted to the regularized Gauss-Newton scheme applied to
the numerical shape inverse problem.The performance of the
numerical method is discussed and illustrated by numerical
examples.

2. Shape Reconstruction Problem

In this paper, we pay our attention on reconstructing the
shape of a bounded and smooth domain from observed
information. Let 𝑆 be a domain contained in a bounded
domain𝐷 ∈ R2.The boundaries of𝐷 and 𝑆 are assumed to be
𝐶
2 smooth and defined by Γ

1
and Γ
2
, respectively. We denote
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Ω := 𝐷 \ 𝑆 and consider the two-dimensional advection-
diffusion equations for the transport of a contaminant in the
surface water with an initial condition

𝜕𝑢

𝜕𝑡
+ b ⋅ ∇𝑢 − div (𝑎∇𝑢) = 𝑓 x ∈ Ω, 𝑡 ∈ (0, 𝑇] ,

𝑢 (x, 𝑡) = 0 x ∈ Γ
1
, 𝑡 ∈ (0, 𝑇] ,

𝑢 (x, 𝑡) = 0 x ∈ Γ
2
, 𝑡 ∈ (0, 𝑇] ,

𝑢 (x, 0) = 𝑢
0

x ∈ Ω,

(1)

where 𝑡 is time, x = (𝑥, 𝑦) represents the space coordinate,
𝑎 is diffusion coefficient, 𝑢(x, 𝑡) is concentration of the
contaminant, b denotes velocity of water flow, and𝑓 accounts
for external sources and sinks, respectively. Notice that 𝑎

and b are considered to be positive constants quantifying the
diffusion and advection processes. For a given domain 𝐷, it
is well known that this initial boundary value problem has a
unique solution [11].

The purpose of this paper is to investigate the feasibility
of recovering the unknown boundary Γ

2
from the measured

(observed) data on the exterior boundary. We define the
operator 𝐹 on the admissible set 𝑋 by 𝐹(Γ

2
) = 𝑃, where

𝑃 is the measured (observed) data and may represent a
given objective related to specific characteristic features of
the diffusion and advection processes. The inverse problem
is both ill-posed and nonlinear.

First of all, we introduce the following functional spaces
which will be used throughout this paper. Let 𝐿

2
(Ω) be the

space of square integrable real-valued functions onΩwith the
usual norm. The space 𝐻

𝑘
(Ω), where 𝑘 = 1, 2 . . . , 𝑛 denotes

the standard Sobolev space on Ω (see [12]), that is, the space
of functions with generalized derivatives of order up to 𝑘 in
𝐿
2
(Ω). In addition, 𝐻1

0
(Ω) := {V ∈ 𝐻

1
(Ω), V|

𝜕Ω
= 0}.

Multiplying the advection-diffusion equations (1) by a
test function V ∈ 𝐻

1

0
(Ω), we easily derive the variational

formulation as follows.
Find 𝑢 ∈ 𝐻

1

0
(Ω), such that

∫
Ω

𝜕𝑢

𝜕𝑡
Vd𝑥 + ∫

Ω

b ⋅ ∇𝑢Vd𝑥 + ∫
Ω

𝑎∇𝑢 ⋅ ∇Vd𝑥 = ∫
Ω

𝑓Vd𝑥,

(2)

for all V ∈ 𝐻
1

0
(Ω). The above identity has to be intended in

the sense of distribution in (0, 𝑇] and can be expressed in the
finite element method framework as

𝑡 (𝑢, V) + 𝑎 (𝑢, V) + 𝑐 (𝑢, V) = (𝑓, V) ∀V ∈ 𝐻
1

0
(Ω) , (3)

where the forms are given by

𝑎 (𝑢, V) = ∫
Ω

𝑎∇𝑢 ⋅ ∇Vd𝑥, 𝑐 (𝑢, V) = ∫
Ω

b ⋅ ∇𝑢Vd𝑥,

𝑡 (𝑢, V) = ∫
Ω

𝜕𝑢

𝜕𝑡
Vd𝑥, (𝑓, V) = ∫

Ω

𝑓Vd𝑥.

(4)

3. Domain Derivative Method

This section is devoted to deriving the domain derivative of
the solution of the advection-diffusion equations.

A derivative of operator𝐹 at boundary Γ can be defined as
follows [13]. For any real vector field a ∈ 𝐶

2
(Γ;R2), we denote

by Γ
𝑎
the set

Γ
𝑎
= {x + a (x) , x ∈ Γ} , (5)

where ‖a‖
∞

:= maxx∈Γ|a| is small enough. Now we define the
domain derivative of 𝐹 at boundary Γ in the direction a by

𝐹
󸀠
(Γ; a) := lim

𝜖→0

1

𝜖
[𝐹 (Γ
𝜖𝑎
) − 𝐹 (Γ)] , (6)

where the limit should exist uniformly.
Similarly, if the vector fieldh ∈ 𝐶

2
(Γ
2
) is sufficiently small,

a perturbation of the boundary Γ
2
can be specified by

Γ
ℎ

2
= {x + h (x) , x ∈ Γ

2
} , (7)

which is a𝐶
2 boundary of a perturbed domainΩ

ℎ
.We choose

an extension of h ∈ 𝐶
2
(Ω) with ‖h‖

𝐶
2
(Ω)

≤ 𝑐‖h‖
𝐶
2
(Γ
2
)
, 𝑐 > 0,

which vanishes in the exterior of a neighborhood of Γ
2
and

define the diffeomorphism 𝜑(x) = x+h(x) inΩ. If the inverse
function of𝜑 is denoted by𝜓, 𝐽

𝜑
and 𝐽
𝜓
are Jacobianmatrices.

Let us consider 𝑢
ℎ

∈ 𝐻
1

0
(Ω
ℎ
) to be the solution of

perturbed problem, for a variation h given by the solution of

∫
Ω
ℎ

𝜕𝑢
ℎ

𝜕𝑡
V
ℎ
d𝑥
ℎ + ∫
Ω
ℎ

b
ℎ
⋅ ∇𝑢
ℎ
V
ℎ
d𝑥
ℎ

+ ∫
Ω
ℎ

𝑎
ℎ
∇𝑢
ℎ
⋅ ∇V
ℎ
d𝑥
ℎ
= ∫
Ω
ℎ

𝑓
ℎ
V
ℎ
d𝑥
ℎ
,

(8)

for all V
ℎ

∈ 𝐻
1

0
(Ω
ℎ
) with 𝑎

ℎ
, b
ℎ
, and 𝑓

ℎ
defined as 𝑎, b, and

𝑓 replacing Ω by Ω
ℎ
. Changing the spatial variables by the

diffeomorphism 𝜑 leads to

∫
Ω

𝜕𝑢̃

𝜕𝑡
V det (𝐽

𝜑
) d𝑥 + ∫

Ω

b̃ ⋅ ∇𝑢̃V𝐽
𝜓
det (𝐽

𝜑
) d𝑥

+ ∫
Ω

𝑎∇𝑢̃ (𝐽
𝜓
(𝐽
𝜓
)
𝑇

det (𝐽
𝜑
)) ⋅ ∇Vd𝑥

= ∫
Ω

𝑓V det (𝐽
𝜑
) d𝑥,

(9)

for all V ∈ 𝐻
1

0
(Ω), where 𝑎 = 𝑎

ℎ
∘𝜓, b̃ = bh ∘𝜓, and𝑓 = 𝑓

ℎ
∘𝜓.

The Jacobian matrix of h is abbreviated by 𝐽
ℎ
. From 𝐽

𝜑
=

𝐼 + 𝐽
ℎ
and 𝐽
𝜓

= 𝐽
−1

𝜑
∘ 𝜓 = 𝐼 − 𝐽

ℎ
+ 𝑂(‖h‖2

𝐶
2
(Ω)

), the following
first-order expansions hold

󵄩󵄩󵄩󵄩󵄩󵄩
𝑎𝐽
𝜓
(𝐽
𝜓
)
𝑇

det (𝐽
𝜑
) − 𝑎𝐼 + 𝑎 (𝐽

ℎ
+ 𝐽
𝑇

ℎ
) − div (𝑎h) 𝐼

󵄩󵄩󵄩󵄩󵄩󵄩∞

= 𝑂 (‖h‖2
𝐶
2
(Ω)

) ,

󵄩󵄩󵄩󵄩󵄩
b̃ ⋅ 𝐽
𝜓
det (𝐽

𝜑
) − b + b ⋅ 𝐽

ℎ
− div (b ⋅ h) 𝐼󵄩󵄩󵄩󵄩󵄩∞

= 𝑂 (‖h‖2
𝐶
2
(Ω)

) ,

󵄩󵄩󵄩󵄩󵄩
𝑓 det (𝐽

𝜑
) − 𝑓 − div (𝑓h)󵄩󵄩󵄩󵄩󵄩∞ = 𝑂 (‖h‖2

𝐶
2
(Ω)

) .

(10)

Furthermore, we can prove the following important
theorem which is the main theoretical result of the paper.
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Theorem 1. Assume that 𝑆 is a domain with boundary Γ
2
in

the class𝐶2, and 𝑢 ∈ 𝐻
1

0
(Ω) denotes the solution of (1). Then 𝑢

is differentiable at Γ
2
in the sense that there exists 𝑢∗ depending

on h, such that

lim
h→0

1

‖ℎ‖𝐶2

󵄩󵄩󵄩󵄩𝑢̃ − 𝑢 − 𝑢
∗󵄩󵄩󵄩󵄩1 = 0. (11)

Moreover, the domain derivative 𝑢
󸀠 satisfies the initial bound-

ary value problem

𝜕𝑢
󸀠

𝜕𝑡
+ b ⋅ ∇𝑢

󸀠
− div (𝑎∇𝑢

󸀠
) = 0 x ∈ Ω, 𝑡 ∈ (0, 𝑇] ,

𝑢
󸀠
= 0 x ∈ Γ

1
, 𝑡 ∈ (0, 𝑇] ,

𝑢
󸀠
= −ℎ
𝑛

𝜕𝑢

𝜕n
x ∈ Γ
2
, 𝑡 ∈ (0, 𝑇] ,

𝑢
󸀠
(x, 0) = 0 x ∈ Ω,

(12)

where ℎ
𝑛
= h ⋅ n is the normal component of the vector field h.

Proof. Firstly, we will establish the continuous dependence of
the solution 𝑢 on variations of the boundary Γ

2
. We consider

the difference 𝑢̃ − 𝑢, and the variational equation yields

𝑡 (𝑢̃ − 𝑢, V) + 𝑎 (𝑢̃ − 𝑢, V) + 𝑐 (𝑢̃ − 𝑢, V)

= 𝑡 (𝑢̃, V) − 𝑡 (𝐴𝑢̃, V) + 𝑡 (𝐴𝑢̃, V) − 𝑡 (𝑢, V)

+ 𝑎 (𝑢̃, V) − 𝑎 (𝐵𝑢̃, V) + 𝑎 (𝐵𝑢̃, V) − 𝑎 (𝑢, V)

+ 𝑐 (𝑢̃, V) − 𝑐 (𝐶𝑢̃, V) + 𝑐 (𝐶𝑢̃, V) − 𝑐 (𝑢, V)

= 𝑡 ((𝐼 − 𝐴) 𝑢̃, V) + 𝑎 ((𝐼 − 𝐵) 𝑢̃, V)

+ 𝑐 ((𝐼 − 𝐶) 𝑢̃, V) + ∫
Ω

𝑓V𝐴d𝑥 − ∫
Ω

𝑓Vd𝑥,

(13)

where the notations 𝐴 := det(𝐽
𝜑
), 𝐵 := 𝐽

𝜓
(𝐽
𝜓
)
𝑇 det(𝐽

𝜑
), and

𝐶 := 𝐽
𝜓
det(𝐽
𝜑
).

From the first-order approximations (10) inΩ and taking
V = 𝑢̃ − 𝑢, the perturbation argument shows continuity

‖𝑢̃ − 𝑢‖1 󳨀→ 0, as ‖h‖𝐶2(Ω) 󳨀→ 0. (14)

Secondly, in order to prove the differentiability of the
solution 𝑢 with respect to the boundary Γ

2
, we define 𝑢

∗
=

𝑢
󸀠
+ h ⋅ ∇𝑢 with the extension of h in Ω. Notice that in shape

optimization, 𝑢∗ is always called the material derivative (see
[14]). Moreover, 𝑢∗ is the unique solution of

𝑡 (𝑢
∗
, V) + 𝑎 (𝑢

∗
, V) + 𝑐 (𝑢

∗
, V)

= ∫
Ω

𝜕𝑢

𝜕𝑡
div hd𝑥

+ ∫
Ω

∇𝑢 ⋅ (𝑎 (𝐽
ℎ
+ 𝐽
𝑇

ℎ
) − div (𝑎h) 𝐼) ∇Vd𝑥

+ ∫
Ω

(h ⋅ ∇𝑢) div hVd𝑥 + ∫
Ω

div (𝑓h) Vd𝑥,

(15)

for all V ∈ 𝐻
1

0
(Ω). According to the definitions of forms 𝑎(⋅, ⋅),

𝑏(⋅, ⋅), and 𝑡(⋅, ⋅), the identity follows

𝑡 (𝑢̃ − 𝑢 − 𝑢
∗
, V) + 𝑎 (𝑢̃ − 𝑢 − 𝑢

∗
, V) + 𝑐 (𝑢̃ − 𝑢 − 𝑢

∗
, V)

= 𝑡 (𝑢̃ − 𝑢, V) − 𝑡 (𝑢
∗
, V) + 𝑎 (𝑢̃ − 𝑢, V) − 𝑎 (𝑢

∗
, V)

+ 𝑐 (𝑢̃ − 𝑢, V) − 𝑐 (𝑢
∗
, V) .

(16)

Plugging (13) and (15) into the above equation, we obtain

𝑡 (𝑢̃ − 𝑢 − 𝑢
∗
, V) + 𝑎 (𝑢̃ − 𝑢 − 𝑢

∗
, V) + 𝑐 (𝑢̃ − 𝑢 − 𝑢

∗
, V)

= ∫
Ω

𝜕𝑢̃

𝜕𝑡
V (𝐼 − det (𝐽

𝜑
)) d𝑥 − ∫

Ω

𝜕𝑢

𝜕𝑡
div hd𝑥

+ ∫
Ω

∇𝑢̃ (𝑎𝐼 − 𝑎𝐽
𝜓
(𝐽
𝜓
)
𝑇

det (𝐽
𝜑
)) ⋅ ∇Vd𝑥

− ∫
Ω

∇𝑢 ⋅ (𝑎 (𝐽
ℎ
+ 𝐽
𝑇

ℎ
) − div (𝑎h) 𝐼) ∇Vd𝑥

+ ∫
Ω

∇𝑢 ⋅ (b − b̃𝐽
𝜓
det (𝐽

𝜑
)) Vd𝑥

− ∫
Ω

div (b ⋅ h) Vd𝑥 + ∫
Ω

(𝑓 det (𝐽
𝜑
) − 𝑓) Vd𝑥.

(17)

Taking V = 𝑢̃−𝑢−𝑢
∗ and applying the first-order expansions

again and the continuity of 𝑢̃
ℎ
, we have

1

‖h‖𝐶2
󵄩󵄩󵄩󵄩𝑢̃ − 𝑢 − 𝑢

∗󵄩󵄩󵄩󵄩1 󳨀→ 0, as ‖h‖𝐶2 󳨀→ 0. (18)

Finally, we have to show that 𝑢∗ can be split into h ⋅ ∇𝑢

and 𝑢
󸀠. By the chain rule, the formula

∇𝑢 ⋅ [𝑎 (𝐽
ℎ
+ 𝐽
𝑇

ℎ
) − div (𝑎h) 𝐼] ∇V

= − (h ⋅ ∇𝑢) div (𝑎∇V) − (h ⋅ ∇V) div (𝑎∇𝑢)

+ div [𝑎 (h ⋅ ∇𝑢) ∇V + (h ⋅ ∇V) (𝑎∇𝑢) − (𝑎∇𝑢 ⋅ ∇V) h]
(19)

holds, if 𝑎, 𝑢, and V are sufficiently smooth. Applying the
Gauss formula, the equation yields

∫
Ω

divwd𝑥

= ∫
Ω

div [(h ⋅ ∇𝑢) ∇V + (h ⋅ ∇V) ∇𝑢 − (∇𝑢 ⋅ ∇V) h] d𝑥

= ∫
𝜕Ω

[(h ⋅ ∇𝑢) ∇V + (h ⋅ ∇V) ∇𝑢 − (∇𝑢 ⋅ ∇V) h] ⋅ nd𝑠

= ∫
𝜕Ω

(h ⋅ ∇𝑢) ∇V ⋅ nd𝑠,
(20)

with the abbreviationw = (h ⋅∇𝑢)∇V+(h ⋅∇V)∇𝑢−(∇𝑢⋅∇V)h.
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From Green formula and the above equation, we have

𝑎 (h ⋅ ∇𝑢, V)

= −∫
Ω

𝑎 (h ⋅ ∇𝑢) ΔVd𝑥 + ∫
𝜕Ω

𝑎 (h ⋅ ∇𝑢) ∇V ⋅ nd𝑠

= ∫
Ω

𝑎 (divw − (h ⋅ ∇𝑢) ΔV − (h ⋅ ∇V) Δ𝑢) d𝑥

+ ∫
Ω

𝑎 (h ⋅ ∇V) Δ𝑢d𝑥.

(21)

Notice that 𝑢 satisfies the advection-diffusion equations (1)
and applies the geometrical decompositions formulae [13],
and we can obtain

𝑎 (h ⋅ ∇𝑢, V)

= ∫
Ω

𝑎 (divw − (h ⋅ ∇𝑢) ΔV − (h ⋅ ∇V) Δ𝑢) d𝑥

+ ∫
Ω

div hV(𝑓 − b ⋅ ∇𝑢 −
𝜕𝑢

𝜕𝑡
) d𝑥

+ ∫
Ω

V(h ⋅ ∇ (𝑓 − b ⋅ ∇𝑢 −
𝜕𝑢

𝜕𝑡
)) d𝑥.

(22)

Similarly, the following equation holds

𝑐 (h ⋅ ∇𝑢, V) = ∫
Ω

b ⋅ ∇ (h ⋅ ∇𝑢) Vd𝑥

= ∫
Ω

b ⋅ (div h ⋅ ∇𝑢 + hΔ𝑢) Vd𝑥.

(23)

We subtract (22) and (23) from (15); hence the difference is
equal to

𝑡 (𝑢
∗
− h ⋅ ∇𝑢, V) + 𝑎 (𝑢

∗
− h ⋅ ∇𝑢, V) + 𝑏 (𝑢

∗
− h ⋅ ∇𝑢, V)

= ∫
Ω

𝜕𝑢

𝜕𝑡
div hd𝑥

+ ∫
Ω

∇𝑢 ⋅ (𝑎 (𝐽
ℎ
+ 𝐽
𝑇

ℎ
) − div (𝑎h) 𝐼) ∇Vd𝑥

+ ∫
Ω

(h ⋅ ∇𝑢) div h Vd𝑥 + ∫
Ω

div (𝑓h) Vd𝑥

− ∫
Ω

𝑎 (divw − (h ⋅ ∇𝑢) ΔV − (h ⋅ ∇V) Δ𝑢) d𝑥

− ∫
Ω

(h ⋅ ∇V) (𝑓 − b ⋅ ∇𝑢 −
𝜕𝑢

𝜕𝑡
) d𝑥

− ∫
Ω

b ⋅ (div h ⋅ ∇𝑢 + hΔ𝑢) Vd𝑥 = 0.

(24)

From 𝑢
∗

= h ⋅ ∇𝑢 + 𝑢
󸀠, the last equation implies 𝑡(𝑢

󸀠
, V) +

𝑎(𝑢
󸀠
, V) + 𝑏(𝑢

󸀠
, V) = 0; namely,

𝜕𝑢
󸀠

𝜕𝑡
+ b ⋅ ∇𝑢

󸀠
− 𝑎Δ𝑢

󸀠
= 0, x ∈ Ω. (25)

Note that 𝑢
∗ vanishes on the boundary Γ

2
, 𝑢|
Γ
2

= 0 implies
∇
𝜏
𝑢|
Γ
2

= 0, and we derive the boundary condition on Γ
2
,

𝑢
󸀠
= 𝑢
∗
− h ⋅ ∇𝑢 = −(h

𝜏
⋅ ∇
𝜏
𝑢 + h ⋅

𝜕𝑢

𝜕n
n) = −ℎ

𝑛

𝜕𝑢

𝜕n
. (26)

Therefore, 𝑢󸀠 satisfies the initial boundary value problem (12).
This ends the proof.

4. Numerical Algorithm and Examples

In this section, we will present a regularized Gauss-Newton
algorithm and numerical examples in two dimensions to
verify that our methods could be very useful and efficient
for the shape reconstruction problem of unsteady advection-
diffusion equations.

From the numerousmethods which have been developed
for the solution of inverse boundary value problems of this
type, we note two groups of approaches, namely, regularized
Gauss-Newton iterations and decomposition methods. We
choose the regularized Gauss-Newton method in this paper.

Newton method is based on the observed information.
We define an operator 𝐹 on set 𝑋 of admissible boundaries
by

𝐹 (Γ
2
) = 𝑃, (27)

where 𝑃 is the measured (observed) data [14], 𝑋 := {𝜑 ∈

𝐶
2
(Γ
2
), 0 < 𝛽 ≤ ‖𝜑‖

𝐶
2 ≤ 𝛾}, and 𝜑 is the parametrized form

of boundary Γ
2
.

However, since the linearized version of (27) inherits the
ill-posedness, the Newton iterations need to be regularized.
This approach has the advantages that, in principle, it is
conceptually simple and that it leads to highly accurate
reconstructions. But, as disadvantages, we notice that the
numerical implementation requires the forward solution of
the problem (1) in each step of the Newton iteration and
reasonable a priori information for the initial approximation.

4.1. Parametric Technique of Boundary. A numerical imple-
mentation requires a parametrization of the boundary. Here
we apply the parametric representations

Γ
𝑘
:= {𝑋
𝑘
(𝜃) = (𝑥

𝑘,1
(𝜃) , 𝑥

𝑘,2
(𝜃)) , 0 ⩽ 𝜃 < 2𝜋} 𝑘 = 1, 2,

(28)

where 𝑋
𝑘

: R → R2 is twice differentiable and 2𝜋-
periodic with |𝑋

𝑘
(𝜃)| > 0 for all 𝜃. Further we assume that

the orientation of the parametrization 𝑥
1
is clockwise and

the parametrization 𝑥
2
is counter clockwise. In addition, we

assume that Γ
2
is starlike with respect to the origin; that is,

𝑋
𝛼
(𝜃) = 𝑟

𝛼
(𝜃) (

cos 𝜃
sin 𝜃

) , 0 ⩽ 𝜃 < 2𝜋, (29)

where

𝑟
𝛼
(𝜃) = 𝛼

0
+

𝑀

∑

𝑗=1

(𝛼
𝑗
cos 𝑗𝜃 + 𝛼

𝑗+𝑀
sin 𝑗𝜃) (30)



Abstract and Applied Analysis 5

with 𝛼 = (𝛼
0
, . . . , 𝛼

2𝑀
)
𝑇

∈ R2𝑀+1 for some fixed number
𝑀 ∈ 𝑁. Furthermore, we set the variation h(𝜃) =

{(𝑞(𝜃) cos 𝜃, 𝑞(𝜃) sin 𝜃)
𝑇

: 𝜃 ∈ [0, 2𝜋)}. From the represen-
tation (29), we have

d
d𝑠

=
1

√𝑟2
𝛼
(𝜃) + [𝑟󸀠

𝛼
(𝜃)]
2

d
d𝜃

,

h ⋅ n =
𝑞𝑟

√𝑟2
𝛼
+ [𝑟󸀠
𝛼
]
2

.

(31)

4.2. Discrete Domain Derivative Equations. We define 𝑈
𝑀

:=

{𝛼 ∈ R2𝑀+1 : 𝜌
1

≤ 𝑟
𝛼
(𝜃) ≤ 𝜌

2
, 𝜃 ∈ [0, 2𝜋]}, 0 < 𝜌

1
< 𝜌
2
. A

simple application of Theorem 1 shows the following.

Theorem 2. For 𝛼 ∈ 𝑈
𝑀
, the operator 𝐹 is differentiable

with 𝜕𝐹
𝑖
(𝛼)/𝜕𝛼

𝑗
= 𝜕
𝑛
𝑢
󸀠

𝑗
(𝑥
𝑖
) for 𝑖 = 1, . . . , 𝑄 and 𝑗 =

0, . . . , 2𝑀. Here 𝑢
󸀠

∈ 𝐿
2
(0, 𝑇;𝐻

1

0
(Ω)) is the solution of the

initial boundary value problem

𝜕𝑢
󸀠

𝑗

𝜕𝑡
+ b ⋅ ∇𝑢

󸀠

𝑗
− div (𝑎∇𝑢

󸀠

𝑗
) = 0 x ∈ Ω, 𝑡 ∈ (0, 𝑇] ,

𝑢
󸀠

𝑗
= 0 x ∈ Γ

1
, 𝑡 ∈ (0, 𝑇] ,

𝑢
󸀠

𝑗
= −𝑘

𝜕𝑢
𝑗

𝜕𝑛
x ∈ Γ
2
, 𝑡 ∈ (0, 𝑇] ,

𝑢
󸀠

𝑗
(x, 0) = 0, x ∈ Ω,

(32)

where

𝑘 = −
𝑟
𝛼
(𝜃)

√𝑟󸀠
𝛼
(𝜃)
2
+ 𝑟
𝛼
(𝜃)
2

{
cos 𝑗𝜃 𝑗 = 0, . . . ,𝑀

sin (𝑗 − 𝑀) 𝜃 𝑗 = 𝑀 + 1, . . . , 2𝑀

(33)

for 𝜃 ∈ [0, 2𝜋).

4.3. Regularized Gauss-NewtonAlgorithm. The iterative algo-
rithm can be summarized as follows.

Step 1. Choose an initial boundary for Γ
2
and describe it by

the parametric representations 𝛼
0.

Step 2. Solve the advection-diffusion equations (1) by the
finite element method.

Step 3. For a given 𝛼
𝑛, evaluate the Jacobian matrix of

the mapping 𝐹 by solving the discrete domain derivative
equations

𝐽 (𝛼
𝑛+1

) =

[
[
[
[
[
[
[

[

𝜕𝐹
1
(𝛼
𝑛
)

𝜕𝛼
𝑛

0

𝜕𝐹
1
(𝛼
𝑛
)

𝜕𝛼
𝑛

1

⋅ ⋅ ⋅
𝜕𝐹
1
(𝛼
𝑛
)

𝜕𝛼
𝑛

2𝑀

...
... d

...
𝜕𝐹
𝑄
(𝛼
𝑛
)

𝜕𝛼
𝑛

0

𝜕𝐹
𝑄
(𝛼
𝑛
)

𝜕𝛼
𝑛

1

⋅ ⋅ ⋅
𝜕𝐹
𝑄
(𝛼
𝑛
)

𝜕𝛼
𝑛

2𝑀

]
]
]
]
]
]
]

]

. (34)

Step 4. Apply the regularized Gauss-Newton method to
obtain the new approximation of boundary Γ

2
,

𝛼
𝑛+1

= 𝛼
𝑛
− (𝐽(𝛼

𝑛
)
𝑇

𝐽 (𝛼
𝑛
))
−1

𝐽 (𝛼
𝑛
) 𝑟 (𝛼
𝑛
) , (35)

where 𝑟(𝛼
𝑛
) = (𝐹

1
(𝛼
𝑛
) − 𝑃
1
, . . . , 𝐹

𝑄
(𝛼
𝑛
) − 𝑃
𝑄
)
𝑇. If

𝑄

∑

𝑖=1

󵄨󵄨󵄨󵄨𝐹𝑖 (𝛼
𝑛
) − 𝑃
𝑖

󵄨󵄨󵄨󵄨 + 𝜇‖𝛼‖
2
< 𝜀, (36)

where 𝜇 is a regularization parameter, then terminate, other-
wise go back to Step 2.

4.4. Numerical Examples. We carry out the numerical exam-
ples to demonstrate the feasibility and validity of the pro-
posed algorithm in Section 4.3.

In the following, we consider the shape reconstruction
of the advection-diffusion process for the transport of a
contaminant in two dimensions. We choose 𝐷 to be a
rectangle [−4, 5] × [−1.5, 1.5] with the fixed boundary Γ

1
,

and the boundary Γ
2
of solid 𝑆 is to be recovered in our

simulations. The velocity of water flow is imposed by b =

(0.25 − 𝑦
2
, 0), the diffusion coefficient is choose as 𝑎 = 10

−2,
and the time interval is [0, 1].

We will reconstruct the shapes of solid 𝑆 with different
boundary curves.

Case 1. An elliptic curve is defined by 𝑥(𝑡) = 0.8 ∗ cos 𝑡, 𝑦 =

0.6 ∗ sin 𝑡, 𝑡 ∈ [0, 2𝜋].

Case 2. A cone-shaped curve is parametrized by 𝑥(𝑡) = 0.7 ∗

cos 𝑡 + 0.2 ∗ (cos 2𝑡 − 1), 𝑦(𝑡) = 0.5 ∗ sin 𝑡, 𝑡 ∈ [0, 2𝜋].

The dimension of the space 𝑈
𝑀

is 2𝑀 + 1 = 25,
and the number of observation points is 𝑄 = 48. We
apply the finite element method to present the numerical
implementation. Time discretization is effected using the
backward Euler method and we assume that the time interval
[0, 1] is divided into equal intervals of duration Δ𝑡 =

0.05. Spatial discretization is effected using the continuous
piecewise quadratic polynomials on a triangular mesh [15].

Figures 1 and 2 display the finite element mesh for two
different target curves. Figures 3, 4, 5, and 6 demonstrate the
comparison between the target shape and the iterated shape
at different time.The solid line represents the exact boundary,
and the dashed line gives the approximate boundary. The
numerical results show that the iterative algorithm gives good
reconstruction.

5. Conclusions

In this paper, we discuss the shape reconstruction problem
governed by unsteady advection-diffusion equations. The
differentiability of solution of the initial boundary value
problem with respect to the boundary in the sense of the
domain derivative is established, which is the theoretical
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Figure 1: Case 1: finite element mesh for the target curve.

Figure 2: Case 2: finite element mesh for the target curve.
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Figure 3: Case 1: 𝑡 = 0.20, reconstruction of an elliptic curve.
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Figure 4: Case 1: 𝑡 = 0.40, reconstruction of an elliptic curve.
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Figure 5: Case 2: 𝑡 = 0.15, reconstruction of a cone-shaped curve.
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Figure 6: Case 2: 𝑡 = 0.30, reconstruction of a cone-shaped curve.

foundation for the Newton method. A regularized Gauss-
Newton scheme is effectively applied to the shape determina-
tion problem. Numerical experiments indicate the feasibility
of the proposed method.
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[1] F. Hettlich, “Fréchet derivatives in inverse obstacle scattering,”
Inverse Problems, vol. 11, no. 2, pp. 371–382, 1995.



Abstract and Applied Analysis 7

[2] F. Hettlich, “The Landweber iteration applied to inverse con-
ductive scattering problems,” Inverse Problems, vol. 14, no. 4, pp.
931–947, 1998.

[3] F. Hettlich and W. Rundell, “The determination of a disconti-
nuity in a conductivity from a single boundary measurement,”
Inverse Problems, vol. 14, no. 1, pp. 67–82, 1998.

[4] R. Kress and W. Rundell, “Inverse scattering for shape and
impedance,” Inverse Problems, vol. 17, no. 4, pp. 1075–1085, 2001.

[5] R. Chapko, R. Kress, and J.-R. Yoon, “An inverse boundary value
problem for the heat equation: theNeumann condition,” Inverse
Problems, vol. 15, no. 4, pp. 1033–1046, 1999.

[6] R. Chapko, R. Kress, and J.-R. Yoon, “On the numerical solution
of an inverse boundary value problem for the heat equation,”
Inverse Problems, vol. 14, no. 4, pp. 853–867, 1998.

[7] H. Harbrecht and J. Tausch, “On the numerical solution of
a shape optimization problem for the heat equation,” SIAM
Journal on Scientific Computing, vol. 35, no. 1, pp. A104–A121,
2013.

[8] H. Harbrecht and J. Tausch, “An efficient numerical method for
a shape-identification problem arising from the heat equation,”
Inverse Problems, vol. 27, no. 6, article 065013, 2011.

[9] W.-J. Yan and Y.-C. Ma, “The application of domain derivative
for heat conduction with mixed condition in shape reconstruc-
tion,” Applied Mathematics and Computation, vol. 181, no. 2, pp.
894–902, 2006.

[10] W.-J. Yan and Y.-C. Ma, “Shape reconstruction of an inverse
Stokes problem,” Journal of Computational and Applied Math-
ematics, vol. 216, no. 2, pp. 554–562, 2008.

[11] A. Quarteroni and A. Valli, Numerical Approximation of Partial
Differential Equations, vol. 23 of Springer Series in Computa-
tional Mathematics, Springer, Berlin, Germany, 1994.

[12] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, vol. 140
of Pure and Applied Mathematics, Elsevier/Academic Press,
Amsterdam, The Netherlands, 2nd edition, 2003.

[13] O. Pironneau, Optimal Shape Design for Elliptic Systems,
Springer Series in Computational Physics, Springer, Berlin,
Germany, 1984.

[14] M.C.Delfour and J.-P. Zolésio, Shapes andGeometries: Analysis,
Differential Calculus and Optimization, Advance in Design and
Control, Springer, Berlin, Germany, 2002.

[15] V. Isakov, Inverse Problem for Partial Differential Equations,
Spring, New York, NY, USA, 1998.


