
Research Article
Exact Finite Difference Scheme and Nonstandard Finite
Difference Scheme for Burgers and Burgers-Fisher Equations

Lei Zhang, Lisha Wang, and Xiaohua Ding

Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, China

Correspondence should be addressed to Xiaohua Ding; mathdxh@hit.edu.cn

Received 8 October 2013; Revised 20 November 2013; Accepted 29 November 2013; Published 2 January 2014

Academic Editor: Andrew Pickering

Copyright © 2014 Lei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present finite difference schemes for Burgers equation and Burgers-Fisher equation. A new version of exact finite difference
scheme for Burgers equation and Burgers-Fisher equation is proposed using the solitary wave solution. Then nonstandard finite
difference schemes are constructed to solve two equations. Numerical experiments are presented to verify the accuracy and
efficiency of such NSFD schemes.

1. Introduction

During the last few decades, nonlinear diffusion equation (1)

𝑢
𝑡
+ 𝛼𝑢𝑢

𝑥
− 𝑢
𝑥𝑥
= 𝑓 (𝑢, 𝑥, 𝑡) (1)

has played an important role in nonlinear physics. Recently,
it also began to become important in various other fields of
science, for example, biology, chemistry, and economics [1–
3].

When 𝑓(𝑢, 𝑥, 𝑡) = 0, (1) is reduced to the famous Burgers
equation (2)

𝑢
𝑡
= 𝑢
𝑥𝑥
− 𝛼𝑢𝑢

𝑥
. (2)

This equation is the simplest equation combining both
nonlinear propagation effects and diffusive effects [3]. It
has been used in many fields especially for describing wave
processes in acoustics and hydrodynamics [2]. Researchers
have devoted a lot of efforts to studying the solutions of this
equation [1–6]. A. van Niekerk and F. D. van Niekerk [4]
applied Galerkin methods to the nonlinear Burgers equation
and obtained implicit and explicit algorithms using different
higher order rational basis functions. Hon and Mao [5]
applied the multiquadric as a spatial approximation scheme
for solving the nonlinear Burgers equation. Biazar and
Aminikhah [6] considered the variational iteration method
to solve nonlinear Burgers equation.

If we take 𝑓(𝑢, 𝑥, 𝑡) = 𝑢(1 − 𝑢), (1) becomes the Burgers-
Fisher equation (3)

𝑢
𝑡
+ 𝛼𝑢𝑢

𝑥
− 𝑢
𝑥𝑥
= 𝑢 (1 − 𝑢) . (3)

Burgers-Fisher equation is very important in fluid dynamic
model. There have been extensive studies and applications of
this model. A nonstandard finite difference scheme for the
Burgers-Fisher equation was given by Mickens and Gumel
[7]. In [8], Kaya and El-Sayed constructed a numerical simu-
lation and explicit solutions of the generalized Burgers-Fisher
equation. Ismail et al. [9] obtained the approximate solutions
for the Burgers-Huxley and Burgers-Fisher equations by
using the Adomian decomposition method. Wazwaz [10]
presented the tanhmethod for generalized forms of nonlinear
heat conduction and Burgers-Fisher equations. Javidi and
Golbabai [11, 12] studied spectral collocation method and
spectral domain decomposition method for the solution of
the generalized Burgers-Fisher equation. Numerical solution
of Burgers-Fisher equation is presented based on the cubic B-
spline quasi-interpolation by Zhu and Kang [13]. Kocacoban
et al. [14] solved Burgers-Fisher equation by using a different
numerical approach that shows rather rapid convergence
than other methods.

Among various techniques for solving partial differential
equations, the nonstandard finite difference (NSFD) schemes
have been proved to be one of the most efficient approaches
in recent years [15, 16]. Exact finite difference scheme [17–22]
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is a special NSFD method. The exact discretization method
was first discussed by Potts [23] in 1982. Potts considered the
question that whether a linear ordinary difference equation
that has the same general solution with the given linear
ordinary differential equation (ODE) can be determined.
A detailed description of subsequent developments can be
found in Agarwal’s book [24]. In this book, Agarwal said that
any ODE has the exact discretization if its solution exists.
More importantly, studies have shown that this statement is
also true for partial differential equations [20].

The exact discretization is very important for the con-
struction of new numerical algorithms. Mickens et al. [17]
considered a second-order, linear equation (𝑑

2
𝑥/𝑑𝑡
2
) +

𝑎(𝑡)(𝑑𝑥/𝑑𝑡) + 𝑏(𝑡)𝑥 = 𝑓(𝑡) with constant coefficients and
gave an exact finite difference scheme of the equation. Rucker
[18] constructed an exact finite difference for a nonlinear
PDE having linear advection and an odd-cubic reaction term
𝑢
𝑡
+ 𝑎𝑢
𝑥
= 𝜆
1
𝑢 − 𝜆

2
𝑢
3. Roeger and Mickens [19] gave

NSFD schemes that provide exact numerical methods for a
first-order differential equation having three distinct fixed
points. And they also constructed a nonexact NSFD scheme
preserving the critical properties of the original differen-
tial equation. Then Roeger [20] studied a two-dimensional
linear system with constant coefficients and constructed
exact finite-difference scheme for the system. Roeger [21]
raised an exact nonstandard finite-difference methods for
a linear system with a certain coefficient matrix. Cieśliński
[22] discussed the exact finite difference scheme of classical
harmonic oscillator equation and its various extensions cases.

The objective of this paper is twofold. The first objective
is to consider the Burgers and Burgers-Fisher equations

𝑢
𝑡
+ 𝑢𝑢
𝑥
− 𝑢
𝑥𝑥
= 0, (4)

𝑢
𝑡
+ 𝑢𝑢
𝑥
− 𝑢
𝑥𝑥
= 𝑢 (1 − 𝑢) , (5)

with the finite difference schemes. We obtain the exact finite
difference schemes based on the solitary wave solutions of
two equations. The other objective is to construct new NSFD
schemes for solving Burgers equation (4) and Burgers-Fisher
equation (5). The NSFD method of Burgers equation (4) and
Burgers-Fisher equations (5) is constructed using a method
generated by the work of Mickens et al. [17, 19, 25–29] and
Roeger and Mickens [19–21]. In numerical simulation, we
compare our scheme with Adomian decomposition method
(ADM) [9, 30]. It is shown that ADM will have to consume
more computations for derivative and integral when aiming
to achieve the same accuracy with our method. And we also
compare the numerical solution with the exact solitary wave
solution.Thenumerical solutionsmeet the properties that the
“physically” relevant solutions have.

The present paper is built up as follows. In the next
section, we begin with proposing the exact difference scheme
for the Burgers equation (4) and Burgers-Fisher equation
(5). Then we give nonstandard finite difference schemes for
two equations in Section 3. Numerical experiments are then
presented in the final section, showing that our proposed
approach is efficient and accurate.

2. Exact Finite Difference Scheme

In this section,we illustrate the exact finite difference schemes
for Burgers equation (4) and Burgers-Fisher equation (5).

2.1. Exact Finite Difference Scheme for Burgers Equation. The
exact solitary wave solution to (4) is given by [1]

𝑢 (𝑥, 𝑡) =

1

2

+

1

2

tanh [−1
4

(𝑥 −

𝑡

2

)] =

1

1 + 𝑒
(1/2)(𝑥−(𝑡/2))

.

(6)

Pay attention to the solitary wave solution, 0 ≤ 𝑢(𝑥, 𝑡) ≤
1. If we choose Δ𝑡 = 2ℎ, then it can easily obtain 𝑢(𝑥 + ℎ, 𝑡) =
𝑢(𝑥, 𝑡 − Δ𝑡) and the following equations:

1

𝑢 (𝑥, 𝑡)

= 1 + 𝑒
(1/2)(𝑥−(1/2)𝑡)

,

1

𝑢 (𝑥 + ℎ, 𝑡)

= 1 + 𝑒
(1/2)(𝑥+ℎ−(1/2)𝑡)

,

1

𝑢 (𝑥 − ℎ, 𝑡)

= 1 + 𝑒
(1/2)(𝑥−ℎ−(1/2)𝑡)

.

(7)

According (7), we can write

1

𝑢 (𝑥, 𝑡)

−

1

𝑢 (𝑥 + ℎ, 𝑡)

= 𝑒
(1/2)(𝑥−(1/2)𝑡)

(1 − 𝑒
(1/2)ℎ

)

= (1 −

1

𝑢 (𝑥, 𝑡)

) (𝑒
(1/2)ℎ

− 1) ,

1

𝑢 (𝑥, 𝑡)

−

1

𝑢 (𝑥 − ℎ, 𝑡)

= 𝑒
(1/2)(𝑥−(1/2)𝑡)

(1 − 𝑒
−(1/2)ℎ

)

= (

1

𝑢 (𝑥, 𝑡)

− 1) (1 − 𝑒
−(1/2)ℎ

) .

(8)

Let the step functions are 𝜓
1
= (1 − 𝑒

−(1/2)ℎ
)/(1/2), 𝜓

2
=

(𝑒
(1/2)ℎ

−1)/(1/2), 𝜙
1
= (1−𝑒

−(1/4)Δ𝑡
)/(1/4) and𝜙

2
= (𝑒
(1/4)Δ𝑡

−

1)/(1/4), so 𝜙
1
= 2𝜓
1
, and 𝜙

2
= 2𝜓
2
. Thus, we can have the

forward and backward difference quotients with the special
stepsize functions:

𝜕𝑢 =

𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

𝜓
2

=

1

2

𝑢 (𝑥 + ℎ, 𝑡) (𝑢 (𝑥, 𝑡) − 1) ,

𝜕𝑢 =

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)

𝜓
1

=

1

2

𝑢 (𝑥 − ℎ, 𝑡) (𝑢 (𝑥, 𝑡) − 1) .

(9)
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If we select 𝑢
𝑥𝑥
= 𝜕𝜕𝑢, then using the first equation of (9)

we can get

𝜕𝜕𝑢

=

((𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥, 𝑡))/𝜓
2
)−((𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡))/𝜓

2
)

𝜓
1

=

𝑢 (𝑥 + ℎ, 𝑡) (𝑢 (𝑥, 𝑡) − 1) − 𝑢 (𝑥, 𝑡) (𝑢 (𝑥 − ℎ, 𝑡) − 1)

2𝜓
1

=

𝑢 (𝑥, 𝑡) (𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)) + 𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 + ℎ, 𝑡)

2𝜓
1

=

𝑢 (𝑥, 𝑡) (𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡))

2𝜓
1

+

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 + ℎ, 𝑡)

2𝜓
1

= 𝑢 (𝑥, 𝑡)

𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)

2𝜓
1

+

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡 − Δ𝑡)

𝜙
1

.

(10)

When we choose 𝑢
𝑥𝑥
= 𝜕𝜕𝑢, using the second equation

of (9), we can receive

𝜕𝜕𝑢

=

((𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥, 𝑡))/𝜓
1
)−((𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡))/𝜓

1
)

𝜓
2

=

𝑢 (𝑥, 𝑡) (𝑢 (𝑥 + ℎ, 𝑡) − 1) − 𝑢 (𝑥 − ℎ, 𝑡) (𝑢 (𝑥, 𝑡) − 1)

2𝜓
2

=

𝑢 (𝑥, 𝑡) (𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)) + 𝑢 (𝑥 − ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

2𝜓
2

=

𝑢 (𝑥, 𝑡) (𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡))

2𝜓
2

+

𝑢 (𝑥 − ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

2𝜓
2

= 𝑢 (𝑥, 𝑡)

𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)

2𝜓
2

+

𝑢 (𝑥, 𝑡 + Δ𝑡) − 𝑢 (𝑥, 𝑡)

𝜙
2

.

(11)

Based upon the solitary wave solution (6), we write𝑈𝑛
𝑗
as

𝑈
𝑛

𝑗
= 𝑢 (𝑥

𝑗
, 𝑡
𝑛
) =

1

1 + 𝑒
(1/2)(𝑥𝑗−(𝑡𝑛/2))

. (12)

Then we can write an implicit exact finite difference
scheme according to (10) as

𝑈
𝑛+1

𝑗+1
− 2𝑈
𝑛+1

𝑗
+ 𝑈
𝑛+1

𝑗−1

𝜓
2
𝜓
1

= 𝑈
𝑛+1

𝑗

𝑈
𝑛+1

𝑗+1
− 𝑈
𝑛+1

𝑗−1

2𝜓
1

+

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

𝜙
1

.

(13)

And we can also obtain an explicit exact finite difference
scheme based on (11) as

𝑈
𝑛

𝑗+1
− 2𝑈
𝑛

𝑗
+ 𝑈
𝑛

𝑗−1

𝜓
2
𝜓
1

= 𝑈
𝑛

𝑗

𝑈
𝑛

𝑗+1
− 𝑈
𝑛

𝑗−1

2𝜓
2

+

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

𝜙
2

. (14)

Thus the stepsize functions depend on ℎ and Δ𝑡. Then we
can obtain the following theorem.

Theorem 1. An implicit exact finite difference scheme and an
explicit exact finite difference scheme for Burgers equation (4)
are given by (13) and (14), respectively. The stepsize satisfies
2ℎ = Δ𝑡, and the stepsize functions satisfy

𝜓
1
=

(1 − 𝑒
−(1/2)ℎ

)

(1/2)

, 𝜓
2
=

(𝑒
(1/2)ℎ

− 1)

(1/2)

,

𝜙
1
=

(1 − 𝑒
−(1/4)Δ𝑡

)

(1/4)

, 𝜙
2
=

(𝑒
(1/4)Δ𝑡

− 1)

(1/4)

.

(15)

2.2. Exact Finite Difference Scheme for Burgers-Fisher Equa-
tion. In this section, we will obtain the exact finite difference
scheme for Burgers-Fisher equation (5). For Burgers-Fisher
equation (5), the exact solitary wave solution is

𝑢 (𝑥, 𝑡) =

1

1 + 𝑒
(1/2)(𝑥−(5𝑡/2))

. (16)

The exact solution (16) to (5) satisfies 0 ≤ 𝑢(𝑥, 0) ≤ 1.
On the basis of the solitary wave solution (16), set Δ𝑡 =

(2/5)ℎ, so 𝑢(𝑥 + ℎ, 𝑡) = 𝑢(𝑥, 𝑡 − Δ𝑡) holds. Thus we can have

1

𝑢 (𝑥, 𝑡)

= 1 + 𝑒
(1/2)(𝑥−(5/2)𝑡)

,

1

𝑢 (𝑥 + ℎ, 𝑡)

= 1 + 𝑒
(1/2)(𝑥+ℎ−(5/2)𝑡)

,

1

𝑢 (𝑥 − ℎ, 𝑡)

= 1 + 𝑒
(1/2)(𝑥−ℎ−(5/2)𝑡)

.

(17)

According to (17), we can write

1

𝑢 (𝑥, 𝑡)

−

1

𝑢 (𝑥 + ℎ, 𝑡)

= 𝑒
(1/2)(𝑥−(5/2)𝑡)

(1 − 𝑒
(1/2)ℎ

)

= (1 −

1

𝑢 (𝑥, 𝑡)

) (𝑒
(1/2)ℎ

− 1) ,

1

𝑢 (𝑥, 𝑡)

−

1

𝑢 (𝑥 − ℎ, 𝑡)

= 𝑒
(1/2)(𝑥−(5/2)𝑡)

(1 − 𝑒
−(1/2)ℎ

)

= (

1

𝑢 (𝑥, 𝑡)

− 1) (1 − 𝑒
−(1/2)ℎ

) .

(18)

Let the step functions are 𝜓
1
= (1 − 𝑒

−(1/2)ℎ
)/(1/2),

𝜓
2
= (𝑒
(1/2)ℎ

− 1)/(1/2), 𝜙
1
= (1 − 𝑒

−(5/4)Δ𝑡
)/(5/4), and

𝜙
2
= (𝑒
(5/4)Δ𝑡

− 1)/(5/4). Thus, we can have the forward
and backward difference quotients with the special stepsize
functions:

𝜕𝑢 =

𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

𝜓
2

=

1

2

𝑢 (𝑥 + ℎ, 𝑡) (𝑢 (𝑥, 𝑡) − 1) ,

𝜕𝑢 =

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)

𝜓
1

=

1

2

𝑢 (𝑥 − ℎ, 𝑡) (𝑢 (𝑥, 𝑡) − 1) .

(19)
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By the same way in Section 2.1, if we choose 𝑢
𝑥𝑥
= 𝜕𝜕𝑢,

then using the first equation of (19) we can get

𝜕𝜕𝑢

=

((𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥, 𝑡))/𝜓
2
)−((𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡))/𝜓

2
)

𝜓
1

=

𝑢 (𝑥, 𝑡) (𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡))

2𝜓
1

+

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 + ℎ, 𝑡)

2𝜓
1

= 𝑢 (𝑥, 𝑡)

𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)

2𝜓
1

+

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 + ℎ, 𝑡)

2𝜓
1

.

(20)

We can notice that 1/2𝜑
1
= 1/5𝜙

1
= (1/𝜙

1
) − (4/5𝜙

1
) =

(1/𝜙
1
) − (2/𝜑

1
). So we can have

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 + ℎ, 𝑡)

2𝜓
1

=

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 + ℎ, 𝑡)

𝜙
1

+ 2

𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

𝜑
1

=

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡 − Δ𝑡)

𝜙
1

+ 𝑢 (𝑥 + ℎ, 𝑡) (𝑢 (𝑥, 𝑡) − 1) .

(21)

When we choose 𝑢
𝑥𝑥
= 𝜕𝜕𝑢, using the second equation

of (19), we can receive

𝜕𝜕𝑢

=

((𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥, 𝑡))/𝜓
1
)−((𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡))/𝜓

1
)

𝜓
2

=

𝑢 (𝑥, 𝑡) (𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡))

2𝜓
2

+

𝑢 (𝑥 − ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

2𝜓
2

= 𝑢 (𝑥, 𝑡)

𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)

2𝜓
2

+

𝑢 (𝑥 − ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

2𝜓
2

.

(22)

And we can also have 1/2𝜑
2
= 1/5𝜙

2
= (1/𝜙

2
) − (4/5𝜙

2
) =

(1/𝜙
2
) − (2/𝜑

2
), so

𝑢 (𝑥 − ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

2𝜓
2

=

𝑢 (𝑥 − ℎ, 𝑡) − 𝑢 (𝑥, 𝑡)

𝜙
2

+ 2

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)

𝜑
2

=

𝑢 (𝑥, 𝑡 + Δ𝑡) − 𝑢 (𝑥, 𝑡)

𝜙
2

+ 𝑢 (𝑥 − ℎ, 𝑡) (𝑢 (𝑥, 𝑡) − 1) .

(23)

Using the notation in Section 2.1, we can obtain an exact
finite difference scheme according to (20) and (21):

𝑈
𝑛+1

𝑗+1
− 2𝑈
𝑛+1

𝑗
+ 𝑈
𝑛+1

𝑗−1

𝜓
2
𝜓
1

= 𝑈
𝑛+1

𝑗

𝑈
𝑛+1

𝑗+1
− 𝑈
𝑛+1

𝑗−1

2𝜓
1

+

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

𝜙
1

+ 𝑈
𝑛+1

𝑗+1
(𝑈
𝑛+1

𝑗
− 1) .

(24)

And we can also obtain an explicit exact finite difference
scheme based on (22) and (23) as

𝑈
𝑛

𝑗+1
− 2𝑈
𝑛

𝑗
+ 𝑈
𝑛

𝑗−1

𝜓
2
𝜓
1

= 𝑈
𝑛

𝑗

𝑈
𝑛

𝑗+1
− 𝑈
𝑛

𝑗−1

2𝜓
2

+

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

𝜙
2

+ 𝑈
𝑛

𝑗−1
(𝑈
𝑛

𝑗
− 1) .

(25)

Then we can obtain the following theorem.

Theorem 2. An implicit exact finite difference scheme and
an explicit exact finite difference scheme for Burgers-Fisher
equation (5) are given by (24) and (25), respectively. The
stepsize satisfies (2/5)ℎ = Δ𝑡, and the stepsize functions satisfy

𝜓
1
=

(1 − 𝑒
−(1/2)ℎ

)

(1/2)

, 𝜓
2
=

(𝑒
(1/2)ℎ

− 1)

(1/2)

,

𝜙
1
=

(1 − 𝑒
−(5/4)Δ𝑡

)

(5/4)

, 𝜙
2
=

(𝑒
(5/4)Δ𝑡

− 1)

(5/4)

.

(26)

Remark 3. FromTheorems 1 and 2, we can see that the values
of step functions 𝜓

1
, 𝜓
2
, 𝜙
1
, and 𝜙

2
depend on the values of ℎ

and Δ𝑡. And the stepsize must satisfy 2ℎ = Δ𝑡 and (2/5)ℎ =
Δ𝑡, respectively.

3. Nonstandard Finite Difference Scheme

The exact numerical schemes of Burgers equation and
Burgers-Fisher equation are obtained in Section 2. Notice
that the stepsize for exact schemes in Section 2 must satisfy
some fixed conditions. In order to release the conditions for
stepsize, we would like to use a general way studying form
[17, 19–21, 25–29] to construct nonstandard finite difference
schemes for two equations.

3.1. Nonstandard Finite Difference Scheme for Burgers Equa-
tion. In the classical sense, the first derivative approximation
can be represented as 𝑢

𝑡
→ (𝑢

𝑛+1
− 𝑢
𝑛
)/Δ𝑡, 𝑢

𝑥
→ (𝑢

𝑗+1
−

𝑢
𝑗
)/ℎ. In our sense, the discrete derivative is generalized as

[28]

𝑢
𝑡
→

𝑢
𝑛+1
− 𝑢
𝑛

𝜙 (Δ𝑡, 𝜆)

, 𝜙 (Δ𝑡, 𝜆) = Δ𝑡 + 𝑂 (Δ𝑡
2
) ; (27)

𝑢
𝑥
→

𝑢
𝑗+1
− 𝑢
𝑗

𝜓 (ℎ, 𝜒)

, 𝑢
𝑥
→

𝑢
𝑗+1
− 𝑢
𝑗−1

2𝜓 (ℎ, 𝜒)

,

𝜓 (ℎ, 𝜒) = ℎ + 𝑂 (ℎ
2
) ,

(28)
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where 𝜆, 𝜒 is various parameters appearing in the differential
equation. 𝑡

𝑛
= 𝑛Δ𝑡, 𝑥

𝑗
= 𝑗ℎ, 𝑢

𝑛
, 𝑢
𝑗
is an approximation to

𝑢(𝑡
𝑛
), 𝑢(𝑥
𝑗
), respectively. This way also can be extended to

construct second discrete partial derivatives.
In the classical sense, a special difference scheme of the

Burgers equation can be written as

𝑢
𝑛+1

𝑗
− 𝑢
𝑛

𝑗

Δ𝑡

=

𝑢
𝑛

𝑗+1
− 2𝑢
𝑛

𝑗
+ 𝑢
𝑛

𝑗−1

ℎ
2

− 𝑢
𝑛+1

𝑗

𝑢
𝑛

𝑗
− 𝑢
𝑛

𝑗−1

ℎ

,
(29)

where ℎ and Δ𝑡 are the stepsizes.
Similar to the classical difference scheme (29), we set the

exact difference scheme as

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

Φ

=

𝑈
𝑛

𝑗+1
− 2𝑈
𝑛

𝑗
+ 𝑈
𝑛

𝑗−1

Ψ

− 𝑈
𝑛+1

𝑗

𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1

Γ

,
(30)

where Φ, Γ, and Ψ = Γ2 are the step functions.
According to (29) and (30), we can get

Φ =

(𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗
)ΨΓ

(𝑈
𝑛

𝑗+1
− 2𝑈
𝑛

𝑗
+ 𝑈
𝑛

𝑗−1
) Γ − 𝑈

𝑛+1

𝑗
(𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1
)Ψ

. (31)

Define 𝑠𝑛
𝑗
= 𝑒
(1/2)(𝑥𝑗−(𝑡𝑛/2)). We use 𝑠 to replace 𝑠𝑛

𝑗
in our

calculation process for simplicity. Using (29) and (31) we can
obtain a more detailed format as follows:

Φ

= (

1

1 + 𝑒
−Δ𝑡/4

𝑠

−

1

1 + 𝑠

)ΨΓ

× ((

1

1 + 𝑒
ℎ/2
𝑠

−

2

1 + 𝑠

+

1

1 + 𝑒
−ℎ/2

𝑠

) Γ

−

1

1 + 𝑒
−Δ𝑡/4

𝑠

(

1

1 + 𝑠

−

1

1 + 𝑒
−ℎ/2

𝑠

)Ψ)

−1

= (𝑠 − 𝑒
−Δ𝑡/4

𝑠) (1 + 𝑒
ℎ/2
𝑠) (1 + 𝑒

−ℎ/2
𝑠)ΨΓ

× (((1 + 𝑒
−ℎ/2

𝑠) (𝑠 − 𝑒
ℎ/2
𝑠) + (1 + 𝑒

ℎ/2
𝑠) (𝑠 − 𝑒

−ℎ/2
𝑠))

× (1 + 𝑒
−Δ𝑡/4

𝑠) Γ + (𝑠 − 𝑒
−ℎ/2

𝑠) (1 + 𝑒
ℎ/2
𝑠)Ψ)

−1

=

(1 − 𝑒
−Δ𝑡/4

) (1 + 𝑒
ℎ/2
𝑠) (1 + 𝑒

−ℎ/2
𝑠)Ψ

𝑒
ℎ/2
(1−𝑒
−ℎ/2

)
2

(𝑠−1) (1+𝑒
−Δ𝑡/4

𝑠)+(1−𝑒
−ℎ/2

) (1+𝑒
ℎ/2
𝑠) Γ

=

(1 − 𝑒
−Δ𝑡/4

) (1 + 𝑒
ℎ/2
𝑠) (1 + 𝑒

−ℎ/2
𝑠) Γ
2

𝑒
ℎ/2
(1−𝑒
−ℎ/2

)
2

(𝑠−1) (1+𝑒
−Δ𝑡/4

𝑠)+(1−𝑒
−ℎ/2

) (1+𝑒
ℎ/2
𝑠) Γ

.

(32)

We select Γ = 2(𝑒ℎ/2 − 1) > 0, and so Ψ = Γ2 = 4(𝑒ℎ/2 −
1)
2
> 0. Substituting Γ and Ψ into (32), we can get

Φ = (1 − 𝑒
−Δ𝑡/4

) (1 + 𝑒
ℎ/2
𝑠) (1 + 𝑒

−ℎ/2
𝑠) 4(𝑒

ℎ/2
− 1)

2

× (𝑒
ℎ/2
(1 − 𝑒

−ℎ/2
)

2

(𝑠 − 1) (1 + 𝑒
−Δ𝑡/4

𝑠)

+ (1 − 𝑒
−ℎ/2

) (1 + 𝑒
ℎ/2
𝑠) 2 (𝑒

ℎ/2
− 1) )

−1

= (1 − 𝑒
−Δ𝑡/4

) (1 + 𝑒
ℎ/2
𝑠) (1 + 𝑒

−ℎ/2
𝑠) 4𝑒
ℎ
(1 − 𝑒

−ℎ/2
)

2

× (𝑒
ℎ/2
(1 − 𝑒

−ℎ/2
)

2

(𝑠 − 1) (1 + 𝑒
−Δ𝑡/4

𝑠)

+ (1 − 𝑒
−ℎ/2

) (1 + 𝑒
ℎ/2
𝑠) 2 (𝑒

ℎ/2
− 1) )

−1

=

4 (1 − 𝑒
−Δ𝑡/4

) (1 + 𝑒
ℎ/2
𝑠) (𝑒
ℎ/2
+ 𝑠)

(1 + 𝑒
−Δ𝑡/4

𝑠) (𝑠 − 1) + 2 (1 + 𝑒
ℎ/2
𝑠)

.

(33)

If Γ = ℎ + 𝑂(ℎ2), ℎ → 0, Δ𝑡 → 0, we can easily receive
Φ → 4(1 − 𝑒

−Δ𝑡/4
), so Φ = Δ𝑡 + 𝑂(Δ𝑡

2
). So when ℎ and Δ𝑡

approach zero, we can obtain a nonstandard finite difference
scheme for Burgers-equation as follows:

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

Φ

=

𝑈
𝑛

𝑗+1
− 2𝑈
𝑛

𝑗
+ 𝑈
𝑛

𝑗−1

Ψ

− 𝑈
𝑛+1

𝑗

𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1

Γ

,

Φ = 4 (1 − 𝑒
−Δ𝑡/4

) , Ψ = 4(𝑒
ℎ/2
− 1)

2

,

Γ = 2 (𝑒
ℎ/2
− 1) .

(34)

It can be easily noticed that the scheme is explicit. Solving
for 𝑈𝑛+1
𝑗

and with appropriate 𝑅 = Φ/Ψ and 𝑟 = Φ/Γ gives

𝑈
𝑛+1

𝑗
=

𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅)𝑈

𝑛

𝑗

1 + 𝑟 (𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1
)

. (35)

We can write the following Theorem to ensure the
nonnegativity and boundedness.

Theorem 4. If 1 − 2𝑅 − 𝑟 ≥ 0, the numerical solution 𝑈𝑛
𝑗
(35)

satisfies

0 ≤ 𝑈
𝑛

𝑗
≤ 1 ⇒ 0 ≤ 𝑈

𝑛+1

𝑗
≤ 1, (36)

for all relevant values of 𝑛 and 𝑗.
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Proof. 1−2𝑅− 𝑟 ≥ 0 implies that 1−2𝑅 ≥ 𝑟 > 0, 𝑟 < 1. Using
the upside of (35) minus downside, we receive

𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅)𝑈

𝑛

𝑗
− 𝑟𝑈
𝑛

𝑗
+ 𝑟𝑈
𝑛

𝑗−1

= 𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅 − 𝑟)𝑈

𝑛

𝑗
+ 𝑟𝑈
𝑛

𝑗−1

≤ 𝑅 (1 + 1) + (1 − 2𝑅 − 𝑟) ⋅ 1 + 𝑟 ⋅ 1 = 1,

𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅)𝑈

𝑛

𝑗
≥ 0,

1 + 𝑟 (𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1
) + Φ𝑈

𝑛

𝑗
≥ 1 − 𝑟 + 𝑟𝑈

𝑛

𝑗
≥ 0.

(37)

Equation (37) implies that

0 ≤ 𝑈
𝑛+1

𝑗
=

𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅)𝑈

𝑛

𝑗
+ Φ𝑈

𝑛

𝑗

1 + 𝑟 (𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1
) + Φ𝑈

𝑛

𝑗

≤ 1.

(38)

In a word, if the initial data is nonnegative and bounded by
one, then the discrete-time solution (35) has this behavior for
all subsequent times. This completes the proof.

3.2. Nonstandard Finite Difference Scheme for Burgers-Fisher
Equation. In this section, we will show a nonstandard finite
difference scheme for Burgers-Fisher equation. Using the
result of Section 3.1, a discrete scheme for the left side of (5)
can be constructed by the following form:

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

Φ

=

𝑈
𝑛

𝑗+1
− 2𝑈
𝑛

𝑗
+ 𝑈
𝑛

𝑗−1

Ψ

− 𝑈
𝑛+1

𝑗

𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1

Γ

,
(39)

where the forms ofΦ, Ψ, and Γ are same as those parameters
in (34), and 𝑈𝑛

𝑗
is an approximation to 𝑢(𝑥

𝑗
, 𝑡
𝑛
). If we ignore

the status items, Burgers-Fisher equation is reduced to the
logistic growth equation. Referring to the exact scheme of
logistic growth equation [29], we can replace the right side
of (5) by the “nonlocal” form:

𝑢 (1 − 𝑢) = 𝑢 − 𝑢
2
→ 𝑈

𝑛

𝑗
− 𝑈
𝑛+1

𝑗
𝑈
𝑛

𝑗
. (40)

Based upon (39) and (40), a nonstandard finite difference
scheme for (5) is given:

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

Φ

=

𝑈
𝑛

𝑗+1
− 2𝑈
𝑛

𝑗
+ 𝑈
𝑛

𝑗−1

Ψ

− 𝑈
𝑛+1

𝑗

𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1

Γ

+ 𝑈
𝑛

𝑗
− 𝑈
𝑛+1

𝑗
𝑈
𝑛

𝑗
.

(41)

Similar to the result in Section 3.1, the stepsize function
for Burgers-Fisher equation (5) could be written as

Φ = 4 (1 − 𝑒
−Δ𝑡/4

) , Ψ = 4(𝑒
ℎ/2
− 1)

2

,

Γ = 2 (𝑒
ℎ/2
− 1) .

(42)

We can find thatΦ → Δ𝑡, Ψ → ℎ
2 and Γ → ℎ as ℎ and

Δ𝑡 approach zero.

It can be seen that the scheme is explicit. Solving for𝑈𝑛+1
𝑗

and with appropriate 𝑅 = Φ/Ψ and 𝑟 = Φ/Γ gives

𝑈
𝑛+1

𝑗
=

𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅 + Φ)𝑈

𝑛

𝑗

1 + 𝑟 (𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1
) + Φ𝑈

𝑛

𝑗

. (43)

Similar toTheorem 4, we find at once the following result.

Theorem 5. If 1 − 2𝑅 − 𝑟 ≥ 0, the numerical solution (43)
satisfies

0 ≤ 𝑈
𝑛

𝑗
≤ 1 ⇒ 0 ≤ 𝑈

𝑛+1

𝑗
≤ 1, (44)

for all relevant values of 𝑛 and 𝑗.

Proof. As inTheorem 4, 1 − 2𝑅 − 𝑟 ≥ 0 implies that 1 − 2𝑅 ≥
𝑟 > 0, 𝑟 < 1. Using the upside of (43) minus downside, we
receive

𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅 + Φ)𝑈

𝑛

𝑗
− 𝑟𝑈
𝑛

𝑗
+ 𝑟𝑈
𝑛

𝑗−1
− Φ𝑈

𝑛

𝑗

= 𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅 − 𝑟)𝑈

𝑛

𝑗
+ 𝑟𝑈
𝑛

𝑗−1

≤ 𝑅 (1 + 1) + (1 − 2𝑅 − 𝑟) ⋅ 1 + 𝑟 ⋅ 1 = 1,

𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅)𝑈

𝑛

𝑗
+ Φ𝑈

𝑛

𝑗
≥ 0,

1 + 𝑟 (𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1
) + Φ𝑈

𝑛

𝑗
≥ 1 − 𝑟 + 𝑟𝑈

𝑛

𝑗
+ Φ𝑈

𝑛

𝑗
≥ 0.

(45)

So the inequalities (45) imply that

0 ≤ 𝑈
𝑛+1

𝑗
=

𝑅 (𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗−1
) + (1 − 2𝑅)𝑈

𝑛

𝑗
+ Φ𝑈

𝑛

𝑗

1 + 𝑟 (𝑈
𝑛

𝑗
− 𝑈
𝑛

𝑗−1
) + Φ𝑈

𝑛

𝑗

≤ 1.

(46)

So the initial data is nonnegative and bounded by one;
then the discrete-time solution (43) has this behavior for
all subsequent times. This can ensure that the positivity and
boundedness conditions hold. This completes the proof.

For appropriate 𝑅 and 𝑟, setting 𝑢𝑛
𝑗
= 𝑢(𝑥

𝑗
, 𝑡
𝑛
) precisely,

we have Taylor’s formula for the solution of equation (5), with
appropriate 𝑥

𝑗
∈ (𝑥
𝑗
, 𝑥
𝑗+1
), 𝑡
𝑛
∈ (𝑡
𝑛
, 𝑡
𝑛+1
). For functions

defined on the grid, we introduce these difference quotients:

𝜕
𝑡
𝑢
𝑛

𝑗
=

𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗

Φ

,

𝜕
𝑥
𝑢
𝑛

𝑗
=

𝑈
𝑛

𝑗+1
− 𝑈
𝑛

𝑗

Γ

,

𝜕
𝑥
𝜕
𝑥
𝑢
𝑛

𝑗
=

𝑈
𝑛

𝑗+1
− 2𝑈
𝑛

𝑗
+ 𝑈
𝑛

𝑗−1

Ψ

.

(47)
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Using the method in [31], the local truncation error (or
local discretization error) 𝜏𝑛

𝑗
is shown as follows

𝜏
𝑛

𝑗
= 𝜕
𝑡
𝑢
𝑛

𝑗
+ 𝑢
𝑛+1

𝑗
𝜕
𝑥
𝑢
𝑛

𝑗
− 𝜕
𝑥
𝜕
𝑥
𝑢
𝑛

𝑗
− 𝑢
𝑛

𝑗
(1 − 𝑢

𝑛+1

𝑗
)

= (𝜕
𝑡
𝑢
𝑛

𝑗
− 𝑢
𝑡
(𝑥
𝑗
, 𝑡
𝑛
))+(𝑢

𝑛+1

𝑗
𝜕
𝑥
𝑢
𝑛

𝑗
− 𝑢 (𝑥

𝑗
, 𝑡
𝑛
) 𝑢
𝑥
(𝑥
𝑗
, 𝑡
𝑛
))

− (𝜕
𝑥
𝜕
𝑥
𝑢
𝑛

𝑗
− 𝑢
𝑥𝑥
(𝑥
𝑗
, 𝑡
𝑛
))

− (𝑢
𝑛

𝑗
(1 − 𝑢

𝑛+1

𝑗
) − 𝑢 (𝑥

𝑗
, 𝑡
𝑛
) (1 − 𝑢 (𝑥

𝑗
, 𝑡
𝑛
)))

= 𝑢
𝑡
(𝑥
𝑗
, 𝑡
𝑛
) (

Δ𝑡

Φ

− 1) +

Δ𝑡
2

2Φ

𝑢
𝑡𝑡
(𝑥
𝑗
, 𝑡
𝑛
) +

Δ𝑡
3

6Φ

𝑢
𝑡𝑡𝑡
(𝑥
𝑗
, 𝑡
𝑛
)

+ 𝑢 (𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑥
(𝑥
𝑗
, 𝑡
𝑛
) (

ℎ

Γ

− 1)

+

ℎ
2

2Γ

𝑢 (𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑥𝑥
(𝑥
𝑗
, 𝑡
𝑛
)

+

ℎ
3

6Γ

𝑢 (𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑥𝑥𝑥
(𝑥
𝑗
, 𝑡
𝑛
) +

ℎΔ𝑡

Γ

𝑢
𝑡
(𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑥
(𝑥
𝑗
, 𝑡
𝑛
)

+

ℎ
2
Δ𝑡

2Γ

𝑢
𝑡
(𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑥𝑥
(𝑥
𝑗
, 𝑡
𝑛
)

+

ℎ
3
Δ𝑡

6Γ

𝑢
𝑡
(𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑥𝑥𝑥
(𝑥
𝑗
, 𝑡
𝑛
)

+

ℎΔ𝑡
2

2Γ

𝑢
𝑡𝑡
(𝑥
𝑗
, 𝑡𝑡
𝑛
) 𝑢
𝑥
(𝑥
𝑗
, 𝑡
𝑛
)

+

ℎ
2
Δ𝑡
2

4Γ

𝑢
𝑡𝑡
(𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑥𝑥
(𝑥
𝑗
, 𝑡
𝑛
)

+

ℎ
3
Δ𝑡
2

12Γ

𝑢
𝑡𝑡
(𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑥𝑥𝑥
(𝑥, 𝑡
𝑛
)−(

ℎ
2

Ψ

− 1)𝑢
𝑥𝑥
(𝑥
𝑗
, 𝑡
𝑛
)

−

ℎ
4

12Ψ

𝑢
𝑥𝑥𝑥𝑥

(𝑥
𝑗
, 𝑡
𝑛
) + 𝑢 (𝑥

𝑗
, 𝑡
𝑛
) Δ𝑡𝑢
𝑡
(𝑥
𝑗
, 𝑡
𝑛
)

+

Δ𝑡
2

2

𝑢 (𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑡𝑡
(𝑥
𝑗
, 𝑡
𝑛
) +

Δ𝑡
3

6

𝑢 (𝑥
𝑗
, 𝑡
𝑛
) 𝑢
𝑡𝑡𝑡
(𝑥
𝑗
, 𝑡
𝑛
) .

(48)

When ℎ → 0 and Δ𝑡 → 0, we have Φ ≈ Δ𝑡, Γ ≈ ℎ and
Ψ ≈ ℎ

2. Therefore, 𝜏𝑛
𝑗
= 𝑂(Δ𝑡 + ℎ) if ℎ → 0 and Δ𝑡 → 0.

We also can say that the exact solution satisfies the difference
equation except for a small error.

Remark 6. From (34) and (42), we can see that the value ofΦ
depends on the value of ℎ and Δ𝑡, which implies that 𝑅 and 𝑟
also depend on the value of ℎ and Δ𝑡. And appropriate 𝑅 and
𝑟 that satisfy 1 − 2𝑅 − 𝑟 ≥ 0 (Theorems 4 and 5) can ensure
that the positivity and boundedness conditions hold.

4. Numerical Experiments

To verify the effectivity of the NSFD scheme in Section 3, we
simulate the initial-boundary value problems:

𝑢
𝑡
+ 𝑢𝑢
𝑥
− 𝑢
𝑥𝑥
= 0, 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0,

𝑢 (𝑥, 0) =

1

1 + 𝑒
𝑥/2
, 0 ≤ 𝑥 ≤ 1,

𝑢 (0, 𝑡) =

1

1 + 𝑒
−𝑡/4

, 𝑡 ≥ 0,

𝑢 (1, 𝑡) =

1

1 + 𝑒
(1/2)−(𝑡/4)

, 𝑡 ≥ 0.

(49)

We use scheme (34) and give the initial condition as
follows

𝑈
0

𝑗
=

1

1 + 𝑒
𝑥𝑗/2

, 𝑗 = 0, 1, . . . , 𝐽,

𝑈
𝑛

0
=

1

1 + 𝑒
−𝑡𝑛/4

, 𝑛 = 0, 1, . . . , 𝑁,

𝑈
𝑛

𝐽
=

1

1 + 𝑒
(𝑥𝐽/2)−(𝑡𝑛/4)

, 𝑛 = 0, 1, . . . , 𝑁.

(50)

For (49), in order to compare the numerical solution and
the solitary wave solution (27), we plot the values of these
two solutions in Figure 1(a), in which we set the space step
ℎ as 0.1 with the number of space steps as 10, time step Δ𝑡 as
0.001, and the number of time steps as 5000, respectively. We
can see that the values of 2𝑅 and 𝑟 ensure that 2𝑅 + 𝑟 < 1.
It ensures the positivity and boundedness of our method.
The error of the method is presented in Figure 2(b). For a
given fixed value of 𝑥 = 𝑥, Figure 2(a) shows the values of
numerical solution and solitarywave solution andFigure 2(b)
shows the error between two solutions of different formats. It
also can be found that in Figure 2(a)𝑈 is increased from 0 to
1 as the analytical solution at the given fixed value of 𝑥 = 𝑥.
It means that at a fixed 𝑥 = 𝑥 > 0,

lim
𝑡→∞

𝑈 (𝑥, 𝑡) = 1. (51)

We can see that the result of the calculation is consistent
with diffusion phenomena from the physical point of view.
Figures 1(a) and 2(a) also show that the positivity and the
boundedness hold.

Consider the following problem:

𝑢
𝑡
+ 𝑢𝑢
𝑥
− 𝑢
𝑥𝑥
= 𝑢 (1 − 𝑢) , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0,

𝑢 (𝑥, 0) =

1

1 + 𝑒
𝑥/2
, 0 ≤ 𝑥 ≤ 1,

𝑢 (0, 𝑡) =

1

1 + 𝑒
−5𝑡/4

, 𝑡 ≥ 0,

𝑢 (1, 𝑡) =

1

1 + 𝑒
(1/2)−(5𝑡/4)

, 𝑡 ≥ 0.

(52)
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Figure 1: Simulations of NSFD scheme (34) for (4) with stepsize Δ𝑡 = 0.001 and ℎ = 0.1.
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Figure 2: 𝑈 and 𝑢(𝑥, 𝑡) at a fixed value 𝑥 = 𝑥 = 0.5 for NSFD scheme (34).

We use the two schemes (41), (42). Then give the initial
condition as following:

𝑈
0

𝑗
=

1

1 + 𝑒
𝑥𝑗/2

, 𝑗 = 0, 1, . . . , 𝐽,

𝑈
𝑛

0
=

1

1 + 𝑒
−5𝑡𝑛/4

, 𝑛 = 0, 1, . . . , 𝑁,

𝑈
𝑛

𝐽
=

1

1 + 𝑒
(𝑥𝐽/2)−(5𝑡𝑛/4)

, 𝑛 = 0, 1, . . . , 𝑁.

(53)

For the problem (52), we also use the space step ℎ as 0.1
with the number of space steps as 10, time step Δ𝑡 as 0.001,
and the number of time steps as 5000, respectively. In the

simulation, 𝑅 = 0.0951 and 𝑟 = 0.0098, so 2𝑅 + 𝑟 < 1.
It ensures the positivity and boundedness of our method. In
the simulation Figure 3(a) indicates the numerical solution
and the solitary wave solution. The error of the method is
presented in Figure 3(b). For the given fixed value of 𝑥 =

𝑥, Figure 4(a) also can show that at a fixed 𝑥 = 𝑥 > 0,
𝑈 is increased from 0 to 1. It just likes a diffusion process
expected. The two simulations show that our NSFD schemes
are efficient and accurate.

For the exact schemes in Section 2, if we select the stepsize
as ℎ = 0.1 and Δ𝑡 = 0.001, the exact schemes are reduced to
NSFD scheme. In Figure 5, we contrast this NSFD (13) with
the NSFD scheme in Section 3 for Burgers equation. It shows
that this NSFD scheme is also efficient and accurate.
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Figure 4: 𝑈 and 𝑢(𝑥, 𝑡) at a fixed value 𝑥 = 𝑥 = 0.5 for NSFD scheme (41).

We compare ourmethods (41) withAdomain decomposi-
tion method [9] for Burgers-Fisher equation, which is shown
as follows:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

𝑢
𝑛+1
(𝑥, 𝑡) = 𝑓 (𝑥) + 𝐿

−1
(𝑅 (𝑢
𝑛
) − 𝐴
𝑛
) ,

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) .

(54)

As in paper [9], we use five 𝑢
𝑛
. By applying the ADM

method to the problem (49), we get

𝑢
0
= 𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) =

1

1 + 𝑒
𝑥/2
,

𝑢
1
= 𝑢
1
(𝑥, 𝑡) = −∫

𝑡

0

(𝐴
0
− 𝑢
0𝑥𝑥
) ,

𝑢
2
= 𝑢
2
(𝑥, 𝑡) = −∫

𝑡

0

(𝐴
1
− 𝑢
1𝑥𝑥
) ,
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Figure 5: Comparison of NSFD in Section 3 and exact scheme (13) in Section 2 with other stepsizes ℎ = 0.1 and Δ𝑡 for Burgers equation.

Table 1: The absolute errors of NSFD method and ADM (𝑛 = 4) for (52) at 𝑥 = 0.1.

𝑥 = 0.1 𝑡 = 0.005 𝑡 = 0.01 𝑡 = 0.1 𝑡 = 0.5

NSFD 7.1788 × 10
−6

1.2226 × 10
−5

5.0003 × 10
−5

7.0794 × 10
−5

ADM 7.3 × 10
−3

1.47 × 10
−2

1.531 × 10
−1

8.911 × 10
−1

𝑢
3
= 𝑢
3
(𝑥, 𝑡) = −∫

𝑡

0

(𝐴
2
− 𝑢
2𝑥𝑥
) ,

𝑢
4
= 𝑢
4
(𝑥, 𝑡) = −∫

𝑡

0

(𝐴
3
− 𝑢
3𝑥𝑥
) .

(55)

And Adomain polynomials are given by

𝐴
0
= 𝑢
0
𝑢
0𝑥
+ 𝑢
0
(1 − 𝑢

0
) ,

𝐴
1
= (𝑢
1
𝑢
0𝑥
+ 𝑢
0
𝑢
1𝑥
) − [𝑢

0
(1 − 𝑢

1
) + 𝑢
1
(1 − 𝑢

0
)] ,

𝐴
2
= (𝑢
0
𝑢
2𝑥
+ 𝑢
1
𝑢
1𝑥
+ 𝑢
0𝑥
𝑢
2
)

− [𝑢
0
(1 − 𝑢

2
) + 𝑢
1
(1 − 𝑢

1
) + 𝑢
2
(1 − 𝑢

0
)] ,

𝐴
3
= (𝑢
0
𝑢
3𝑥
+ 𝑢
1𝑥
𝑢
2
+ 𝑢
0𝑥
𝑢
3
+ 𝑢
1
𝑢
2𝑥
)

− [𝑢
0
(1 − 𝑢

3
)+𝑢
1
(1 − 𝑢

2
)+𝑢
2
(1 − 𝑢

1
)+𝑢
3
(1 − 𝑢

0
)] .

(56)
For each 𝑥 = 0.1, 0.5 and 0.9, NSFD methods and ADM

method are applied at different times: 𝑡 = 0.005, 0.01, 0.1, and
0.5 with stepsize ℎ = 0.1, Δ𝑡 = 0.001. From Tables 1, 2, and
3, we can see that our method is more accurate than ADM
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Table 2: The absolute errors of NSFD method and ADM (𝑛 = 4) for (52) at 𝑥 = 0.5.

𝑥 = 0.5 𝑡 = 0.005 𝑡 = 0.01 𝑡 = 0.1 𝑡 = 0.5

NSFD 8.6033 × 10
−6

1.7213 × 10
−5

1.3419 × 10
−4

2.1407 × 10
−4

ADM 6.6 × 10
−3

1.32 × 10
−2

1.382 × 10
−1

8.220 × 10
−1

Table 3: The absolute errors of NSFD method and ADM (𝑛 = 4) for (52) at 𝑥 = 0.9.

𝑥 = 0.9 𝑡 = 0.005 𝑡 = 0.01 𝑡 = 0.1 𝑡 = 0.5

NSFD 7.2255 × 10
−6

1.2430 × 10
−5

5.5237 × 10
−5

8.3619 × 10
−5

ADM 4.7 × 10
−3

1.17 × 10
−2

1.236 × 10
−1

7.502 × 10
−1

(𝑛 = 4) which uses finite 𝑢
𝑛
(𝑥, 𝑡). To achieve better accuracy,

ADM will require 𝑛 to be big enough. In other words, ADM
will have to consume more computations for derivative and
integral. Hence, our method is superior to ADM in terms of
computations when aiming to achieve the same accuracy.

5. Conclusions

In this paper, we present an exact finite difference scheme
for a particular Burgers and Burgers-Fisher equation based
on the solitary wave solutions. The proposed step function
depends on ℎ, Δ𝑡. And nonstandard finite difference schemes
for Burgers and Burgers-Fisher equations can be constructed
using themethod inMickens and Roeger’s papers. Numerical
experiments for a particular example are given. The results
show that the numerical solutions of our methods meet
the properties that the “physically” relevant solutions should
have. By comparison, our methods are also found to be
accurate and effective.
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