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Universal projective synchronization (UPS) of two chaotic systems is defined. Based on the Lyapunov stability theory, an adaptive
control method is derived such that UPS of two different hyperchaotic systems with unknown parameters is realized, which is
up to a scaling function matrix and three kinds of reference systems, respectively. Numerical simulations are used to verify the
effectiveness of the scheme.

1. Introduction

Chaotic synchronization has gained extensively and inten-
sively attention in recent decades since Pecora and Carroll’s
pioneering and meaningful work [1]. It has applications in
vast areas of physics, chemistry, biology, and others par-
ticularly in secure communication. Various synchronization
modes are proposed, such as complete synchronization [1],
phase synchronization [2], projective synchronization [3],
and antisynchronization [4]. Projective synchronization (PS)
[5] as a generalization of complete synchronization (CS)
and antisynchronization (AS), has attracted much attention
for the scaling factor in which the state vectors become
proportional.

The projective synchronization is firstly applied in a class
of systems with partial linearity. Yan and Li [6] applied
this notion in a general class of chaotic systems including
nonpartially-linear systems in 2005: this synchronization
mode was called generalized projective synchronization
(GPS). In [7], themodified projective synchronization (MPS)
is presented to synchronize two identical systems up to a
scaling constant matrix. In 2007, Chen and Li [8] gave a new
synchronization mode—function projective synchronization
(FPS) in which scaling functionmatrix substitutes the scaling
constant matrix. Tang et al. [9] presented FPS in another
familiar way by using a function instead of the scaling factor

of GPS. Du et al. [10] applied Tang’s definition to synchro-
nize different chaotic systems with uncertain parameters. A
more general definition called modified function projective
synchronization (MFPS) was given by Du et al. [11] in 1999
andwas used in secure communication. In recent years,many
efforts are concentrated on MFPS [12–14].

From the development, we know that the scaling factor
is expanded from constant to constant matrix and from
function to matrix function.

In this paper, we will introduce a new type of synchro-
nization called universal projective synchronization (UPS)
which concerns the displacement. Adaptive synchronization
is an effective method for dealing with unknown parameters
[10, 15]. Zhang et al. [16] proposed a newhyperchaotic system.
UPS of hyperchaotic L𝑢̈ system [17] and the new one with
unknown parameters will be investigated by using adaptive
control method. Three kinds of reference systems are chosen
for the UPS. The introduction of UPS will expand the scope
of synchronization.

The rest of this paper is organized as follows. In Section 2,
the definition of UPS is given. In Section 3, the UPS of
hyperchaotic L𝑢̈ system and the new one is studied. Adaptive
control schemes are proposed. Simulation results verify the
effectiveness of the schemes. The conclusion is given in
Section 4.
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) plane of the

drive system and the response system.

2. The Definition of UPS

The drive system and the response system are defined as
follows:

ẋ = f (𝑡, x) , (1)

ẏ = g (𝑡, y) + u (𝑡, x, y) , (2)

where x = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
)

𝑇 and y = (𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
)

𝑇
∈

𝑅

𝑛 are the state vectors; f , g : 𝑅

𝑛
→ 𝑅

𝑛 are continuous
nonlinear vector function; u(𝑡, x, y) ∈ 𝑅

𝑛 is the controller to
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Figure 3: The time evolution of the error 𝑒
1
and the function 𝛽
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(𝑡).
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Figure 4: The time evolution of the error 𝑒
2
and the function 𝛽

2
(𝑡).

be designed. If there is no controller u(𝑡, x, y), (1) and (2) are
chaotic systems. We define the state error vector

e = (𝑒

1
, 𝑒

2
, . . . , 𝑒

𝑛
)

𝑇

≜ x − A (𝑡) y, (3)

where A(𝑡) = diag(𝛼
1
(𝑡), 𝛼

2
(𝑡), . . . , 𝛼

𝑛
(𝑡)); 𝛼

𝑖
(𝑡) (𝑖 =

1, 2, 3, . . . , 𝑛) is continuous differentiable function with
boundness, and 𝛼

𝑖
(𝑡) ̸= 0 for all 𝑡. Obviously, the error system

is

ė = f (𝑡, x) − ̇A (𝑡) y − A (𝑡) (g (𝑡, y) + u (𝑡, x, y)) . (4)

Suppose there exists a reference system

ż = h (𝑡, z) , (5)
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where z = (𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑛
)

𝑇
∈ 𝑅

𝑛,h : 𝑅

𝑛
→ 𝑅

𝑛 is a continuous
differentiable function. Suppose the reference system is an
attractor.

Definition 1. For the scaling diagonal matrix functionA(𝑡), it
is said that the drive system (1) and the response system (2)
are universal projective synchronization (UPS) in the sense of
the system (5), if the error system (4) and the reference system
(5) are completely synchronized; that is,

lim
𝑡→∞

‖e − z‖ = 0. (6)

Now we give another dual definition of UPS. We define
the state error vector

e∗ = (𝑒

∗

1
, 𝑒

∗

2
, . . . , 𝑒

∗

𝑛
)

𝑇

≜ A (𝑡) x − y; (7)
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â
,b̂
,ĉ
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then the error system is

ė∗ = ̇A (𝑡) x + A (𝑡) f (𝑡, x) − g (𝑡, y) − u (𝑡, x, y) . (8)

Definition 2. For the scaling diagonal matrix functionA(𝑡), it
is said that the drive system (1) and the response system (2) are
universal projective synchronization (UPS) in the sense of the
system (5), if there exists a scaling diagonal matrix function
A(𝑡) such that the error system (8) and the reference system
(5) are completely synchronized; that is,

lim
𝑡→∞

󵄩

󵄩

󵄩

󵄩

e∗ − z󵄩󵄩󵄩
󵄩

= 0. (9)
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Remark 3. It is easy to see that UPS degenerated to MFPS if
the reference system denotes constant vector 0; that is, the
initial value and state change rate of system (5) are all 0.

Remark 4. The reference system (5) expresses a constant
vector 𝜉, if its initial value is 𝜉 and the state change rate is 0.
UPS is in the sense of constant vector 𝜉; that is, there exists
a displacement 𝜉 between the drive system and response
system. System (5) can be other attractors, such as periodic
function, quasiperiod function, chaos, and hyperchaos.

Thereinafter UPS is always in the sense of Definition 1.
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3. UPS of Hyperchaotic Systems with
Uncertain Parameters

We take hyperchaotic L𝑢̈ system [17] as the drive system,
which is described by

𝑥̇ = 𝑎 (𝑦 − 𝑥) + 𝑤,

̇𝑦 = −𝑥𝑧 + 𝑐𝑦,

𝑧̇ = 𝑥𝑦 − 𝑏𝑧,

𝑤̇ = 𝑥𝑧 + 𝑑𝑤,

(10)
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where 𝑥, 𝑦, 𝑧, 𝑤 are state variables and 𝑎, 𝑏, 𝑐, 𝑑 are uncer-
tain parameters, which need to be estimated. The new
hyperchaotic system presented by Zhang et al. [16], as the
response system, is given by

𝑥̇

1
= 𝑎

1
(𝑦

1
− 𝑥

1
) + 𝑢

1
,

̇𝑦

1
= 𝑏

1
𝑦

1
− 𝑥

1
𝑧

1
+ 𝑤

1
+ 𝑢

2
,

𝑧̇

1
= 𝑥

1
𝑦

1
− 3.36𝑧

1
+ 𝑢

3
,

𝑤̇

1
= −𝑥

1
𝑧

1
+ 𝑤

1
+ 𝑢

4
,

(11)
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where 𝑥
1
, 𝑦

1
, 𝑧

1
, 𝑤

1
are state variables, 𝑎

1
, 𝑏

1
are uncertain

parameters, which need to be estimated, and 𝑢

1
, 𝑢

2
, 𝑢

3
, 𝑢

4

are the nonlinear control laws. Suppose the scaling matrix
A(𝑡) = diag(𝛼

1
(𝑡), 𝛼

2
(𝑡), 𝛼

3
(𝑡), 𝛼

4
(𝑡)). Obviously the errors

𝑒

1
= 𝑥 − 𝛼

1
(𝑡)𝑥

1
, 𝑒
2

= 𝑦 − 𝛼

2
(𝑡)𝑦

1
, 𝑒
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3
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1
,

and 𝑒

4
= 𝑤 − 𝛼

4
(𝑡)𝑤

1
. The estimations of 𝑎, 𝑏, 𝑐, 𝑑, 𝑎

1
, 𝑏

1
are

𝑎,

̂

𝑏, 𝑐̂,

̂

𝑑, 𝑎̂

1
,

̂

𝑏

1
, respectively. 𝑎 = 𝑎 − 𝑎, ̃𝑏 =

̂

𝑏 − 𝑏, 𝑐 = 𝑐 − 𝑐,
̃

𝑑 =

̂
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1
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1
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Now we discuss the UPS with three kinds of reference
systems.

3.1. UPS in the Sense of Vector Function. Take the vector
function 𝛽(𝑡) = (𝛽

1
(𝑡), 𝛽

2
(𝑡), 𝛽

3
(𝑡), 𝛽

4
(𝑡))

𝑇 as the reference
system. Let ẽ = (𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
)

𝑇
≜ (𝑒

1
−𝛽

1
, 𝑒

2
−𝛽

2
, 𝑒

3
−𝛽

3
, 𝑒

4
−

𝛽

4
)

𝑇.

Theorem 5. For the given scaling matrix A(𝑡) and the vector
function 𝛽(𝑡), the UPS between drive system (10) and response

system (11) with unknown parameters will occur by the control
u = (𝑢

1
, 𝑢

2
, 𝑢

3
, 𝑢

4
) and parameter update law as follows:

𝑢

1
=

1

𝛼

1
(𝑡)

(𝑎 (𝑦 − 𝑥) + 𝑤 − 𝛼̇

1
(𝑡) 𝑥

1

−𝛼

1
(𝑡) 𝑎
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(𝑦
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− 𝑥

1
) −

̇

𝛽

1
(𝑡) + 𝑘

1
𝑒

1
) ,

𝑢

2
=

1

𝛼
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2
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1
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2
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1
−
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𝛽
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𝑒

2
) ,

𝑢

3
=
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1
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3
𝑒

3
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𝑢

4
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+ 𝛼
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1
𝑧
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𝛽
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4
𝑒

4
) ,

(12)
̇

𝑎̂ = (𝑦 − 𝑥) 𝑒

1
,

̇
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3
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2
,

̇

̂

𝑑 = 𝑤𝑒

4
,

̇
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1
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̇
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𝑒
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where 𝑘
1
, 𝑘

2
, 𝑘

3
, 𝑘

4
are positive control gains.

Proof. Choose the following Lyapunov function:

𝑉 =

1

2

(ẽ𝑇ẽ + 𝑎

2
+

̃

𝑏

2
+ 𝑐

2
+

̃

𝑑

2
+ 𝑎

2

1
+

̃

𝑏

2

1
) . (14)

Then the derivative of 𝑉 is given by

̇
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1
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̃
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With the controls (12) and the parameter update laws (13), we
have

̇

𝑉 = −𝑘

1
𝑒

2

1
− 𝑘

2
𝑒

2

2
− 𝑘

3
𝑒

2

3
− 𝑘

4
𝑒

2

4
. (16)

Because ̇

𝑉 is negative simidefinite, 𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
∈ 𝐿

∞
,

𝑎,

̃

𝑏, 𝑐,

̃

𝑑, 𝑎

1
,

̃

𝑏

1
∈ 𝐿

∞
. From the definition of ẽ, we know

̇

𝑒̃

1
,

̇

𝑒̃

2
,

̇

𝑒̃

3
,

̇

𝑒̃

4
∈ 𝐿

∞
. From ̇

𝑉 = −𝑘

1
𝑒

2

1
− 𝑘

2
𝑒

2

2
− 𝑘

3
𝑒

2

3
− 𝑘

4
𝑒

2

4
=

−𝑒

𝑇
𝐾𝑒 (𝐾 = diag(𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑘

4
)), we have

∫

𝑡

0

𝜆min (𝐾) ‖𝑒‖

2
𝑑𝑡 ≤ ∫

𝑡

0

𝑒

𝑇
𝐾𝑒𝑑𝑡

≤ ∫

𝑡

0

−

̇

𝑉𝑑𝑡 = 𝑉 (0) − 𝑉 (𝑡) ≤ 𝑉 (0) ,

(17)

where 𝜆min(𝐾) is the minimum eigenvalue of 𝐾, so
𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
∈ 𝐿

∞
; according to Barbalat’s Lemma we have

lim
𝑡→∞

‖ẽ (𝑡)‖ = 0. (18)

The UPS of system (10) and system (11) in the sense of vector
function 𝛽(𝑡) is achieved.

Now we illustrate the effectiveness of the method. Sup-
pose the vector function 𝛽(𝑡) = (2 sin 𝑡 + cos 2𝑡, 32 sin(3𝑡) +
6, 6 cos 𝑡, 2.7 sin(2𝑡) + 3 cos 𝑡)𝑇. The “unknown” parameters
are 𝑎 = 36, 𝑏 = 3, 𝑐 = 20, 𝑑 = 1.3, 𝑎

1
= 26, and 𝑏

1
= 14.

Control gain is (𝑘
1
, 𝑘

2
, 𝑘

3
, 𝑘

4
) = (2, 3, 4, 5).The scalingmatrix

isA(𝑡) = diag(sin 2𝑡+2, − cos 3𝑡−3, sin 𝑡+cos 𝑡+3, 2 sin 𝑡−3).
The initial values of the drive system and response system
are (3, −4, 2, 2) and (5, 7, 9, 11), respectively. The parameter
estimate initial values are 𝑎(0) = 6, ̂𝑏(0) = −3, 𝑐(0) = 6,
̂

𝑑(0) = 6, 𝑎
1
(0) = 6, and ̂

𝑏

1
(0) = 3. Simulation results are as

Figures 1, 2, 3, 4, 5, 6, 7, and 8.
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Figure 20: The time evolution of the error 𝑒
2
and the state 𝑦

2
.
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Figure 21: The time evolution of the error 𝑒
3
and the state 𝑧

2
.

3.2. UPS in the Sense of a Hyperchaotic System. We take
hyperchaoticWang system [18] as the reference system,which
is given by

𝑥̇

2
= 𝑎

2
(−𝑥

2
+ 𝑦

2
) + 𝑤

2
,

̇𝑦

2
= 𝑐

2
𝑥

2
− 𝑦

2
− 𝑥

2
𝑧

2
,

𝑧̇

2
= 𝑥

2
𝑦

2
− 𝑏

2
𝑧

2
,

𝑤̇

2
= −𝑦

2
𝑧

2
+ 𝑑

2
𝑤

2
,

(19)

where 𝑥
2
, 𝑦

2
, 𝑧

2
, 𝑤

2
are state variables and 𝑎

2
= 10, 𝑏

2
= 8/3,

𝑐

2
= 28, and 𝑑

2
= −1 are parameters.

Let ẽ = (𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
)

𝑇
≜ (𝑒

1
−𝑥

2
, 𝑒

2
−𝑦

2
, 𝑒

3
−𝑧

2
, 𝑒

4
−𝑤

2
)

𝑇.
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Figure 22: The time evolution of the error 𝑒
4
and the state 𝑤

2
.

Theorem 6. For the given scaling matrix A(𝑡) and the
reference system which is hyperchaotic Wang system, the
UPS between drive system (10) and response system (11)
with unknown parameters will occur by the control u =

(𝑢

1
, 𝑢

2
, 𝑢

3
, 𝑢

4
) and parameter update law as follows:

𝑢

1
=

1

𝛼

1
(𝑡)

(𝑎 (𝑦 − 𝑥) + 𝑤 − 𝛼̇

1
(𝑡) 𝑥

1
− 𝛼

1
(𝑡) 𝑎

1
(𝑦

1
− 𝑥

1
)

− (𝑎

2
(−𝑥

2
+ 𝑦

2
) + 𝑤

2
) + 𝑘

1
𝑒

1
) ,

𝑢

2
=

1

𝛼

2
(𝑡)

(−𝑥𝑧 + 𝑐𝑦 − 𝛼̇

2
(𝑡) 𝑦

1
+ 𝛼

2
(𝑡) 𝑥

1
𝑧

1
− 𝛼

2
(𝑡)

̂

𝑏

1
𝑦

1

−𝛼

2
(𝑡) 𝑤

1
− (𝑐

2
𝑥

2
− 𝑦

2
− 𝑥

2
𝑧

2
) + 𝑘

2
𝑒

2
) ,

𝑢

3
=

1

𝛼

3
(𝑡)

(𝑥𝑦 −

̂

𝑏𝑧 − 𝛼̇

3
(𝑡) 𝑧

1
− 𝛼

3
(𝑡) 𝑥

1
𝑦

1
+ 3.36𝛼

3
(𝑡) 𝑧

1

− (𝑥

2
𝑦

2
− 𝑏

2
𝑧

2
) + 𝑘

3
𝑒

3
) ,

𝑢

4
=

1

𝛼

4
(𝑡)

(𝑥𝑧 +

̂

𝑑𝑤 − 𝛼̇

4
(𝑡) 𝑤

1
+ 𝛼

4
(𝑡) 𝑥

1
𝑧

1
− 𝛼

4
(𝑡) 𝑤

1

− (−𝑦

2
𝑧

2
+ 𝑑

2
𝑤

2
) + 𝑘

4
𝑒

4
) ,

(20)

̇

𝑎̂ = (𝑦 − 𝑥) 𝑒

1
,

̇

̂

𝑏 = −𝑧𝑒

3
,

̇

𝑐̂ = 𝑦𝑒

2
,

̇

̂

𝑑 = 𝑤𝑒

4
,

̇

𝑎̂

1
= −𝛼

1
(𝑡) (𝑦

1
− 𝑥

1
) 𝑒

1
,

̇

̂

𝑏

1
= −𝛼

2
(𝑡) 𝑦

1
𝑒

2
.

(21)
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Figure 23: The time evolution of the estimated values 𝑎, ̂𝑏, 𝑐, ̂𝑑.
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Figure 24: The time evolution of the estimated values 𝑎
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1
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The proof is similar to Theorem 5 (omitted!).
Now we illustrate the effectiveness of this method. Sup-

pose the initial value of hyperchaotic Wang is (1, 6, 6, 3). The
“unknown” parameters are 𝑎 = 36, 𝑏 = 3, 𝑐 = 20, 𝑑 = 1.3,
𝑎

1
= 26, and 𝑏

1
= 14. Control gain is (𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑘

4
) =

(12, 13, 14, 15). The scaling matrix is A(𝑡) = diag(sin 2𝑡 +
2, − cos 3𝑡 − 3, sin 𝑡 + cos 𝑡 + 3, 2 sin 𝑡 − 3). The initial values
of the drive system and response system are (3, −4, 2, 2) and
(5, 7, 9, 11), respectively.The parameter estimate initial values
are 𝑎(0) = 6, ̂𝑏(0) = −3, 𝑐(0) = 6, ̂𝑑(0) = 6, 𝑎

1
(0) = 6, and

̂

𝑏

1
(0) = 3. Simulation results are as Figures 9, 10, 11, 12, 13, 14,

15, and 16.
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â
2
,b̂

2
,ĉ
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Figure 25: The time evolution of the estimated values 𝑎
2
,

̂

𝑏

2
, 𝑐

2
,

̂

𝑑

2
.

3.3. UPS in the Sense of a Hyperchaotic Wang System with
Unknown Parameters. We still use hyperchaotic Wang sys-
tem as the reference system, but the parameters 𝑎

2
, 𝑏

2
, 𝑐

2
, 𝑑

3

are uncertain. Suppose the estimated values of 𝑎
2
, 𝑏

2
, 𝑐

2
, 𝑑

3

are 𝑎

2
,

̂

𝑏

2
, 𝑐

2
,

̂

𝑑

2
, respectively; the parameter errors are

(𝑎

2
,

̃

𝑏

2
, 𝑐

2
,

̃

𝑑

2
) = (𝑎

2
− 𝑎

2
,

̂

𝑏

2
− 𝑏

2
, 𝑐

2
− 𝑐

2
,

̂

𝑑

2
− 𝑑

2
). Let ẽ =

(𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
)

𝑇
≜ (𝑒

1
− 𝑥

2
, 𝑒

2
− 𝑦

2
, 𝑒

3
− 𝑧

2
, 𝑒

4
− 𝑤

2
)

𝑇.

Theorem7. For the given scalingmatrixA(𝑡) and the reference
system which is hyperchaotic Wang system with unknown
parameters, the UPS between drive system (10) and response
system (11) with unknown parameters will occur by the control
u = (𝑢

1
, 𝑢

2
, 𝑢

3
, 𝑢

4
) and parameter update law as follows:

𝑢

1
=

1

𝛼

1
(𝑡)

(𝑎 (𝑦 − 𝑥) + 𝑤 − 𝛼̇

1
(𝑡) 𝑥

1
− 𝛼

1
(𝑡) 𝑎

1
(𝑦

1
− 𝑥

1
)

−𝑎

2
(−𝑥

2
+ 𝑦

2
) − 𝑤

2
+ 𝑘

1
𝑒

1
) ,

𝑢

2
=

1

𝛼

2
(𝑡)

(−𝑥𝑧 + 𝑐𝑦 − 𝛼̇

2
(𝑡) 𝑦

1
+ 𝛼

2
(𝑡) 𝑥

1
𝑧

1
− 𝛼

2
(𝑡)

̂

𝑏

1
𝑦

1

−𝛼

2
(𝑡) 𝑤

1
− 𝑐

2
𝑥

2
+ 𝑦

2
+ 𝑥

2
𝑧

2
+ 𝑘

2
𝑒

2
) ,

𝑢

3
=

1

𝛼

3
(𝑡)

(𝑥𝑦 −

̂

𝑏𝑧 − 𝛼̇

3
(𝑡) 𝑧

1
− 𝛼

3
(𝑡) 𝑥

1
𝑦

1
+ 3.36𝛼

3
(𝑡) 𝑧

1

−𝑥

2
𝑦

2
+

̂

𝑏

2
𝑧

2
+ 𝑘

3
𝑒

3
) ,

𝑢

4
=

1

𝛼

4
(𝑡)

(𝑥𝑧 +

̂

𝑑𝑤 − 𝛼̇

4
(𝑡) 𝑤

1
+ 𝛼

4
(𝑡) 𝑥

1
𝑧

1
− 𝛼

4
(𝑡) 𝑤

1

+𝑦

2
𝑧

2
−

̂

𝑑

2
𝑤

2
+ 𝑘

4
𝑒

4
) ,

(22)

̇

𝑎̂ = (𝑦 − 𝑥) 𝑒

1
,

̇

̂

𝑏 = −𝑧𝑒

3
,

̇

𝑐̂ = 𝑦𝑒

2
,

̇

̂

𝑑 = 𝑤𝑒

4
,

̇

𝑎̂

1
= −𝛼

1
(𝑡) (𝑦

1
− 𝑥

1
) 𝑒

1
,

̇

̂

𝑏

1
= −𝛼

2
(𝑡) 𝑦

1
𝑒

2
,

(23)

̇

𝑎̂

2
= − (−𝑥

2
+ 𝑦

2
) 𝑒

1
,

̇

̂

𝑏

2
= 𝑧

2
𝑒

3
,

̇

𝑐̂

2
= −𝑥

2
𝑒

2
,

̇

̂

𝑑

2
= −𝑤

2
𝑒

4
.

(24)

Proof. Choose the following Lyapunov function:

𝑉 =

1

2

(ẽ𝑇ẽ + 𝑎

2
+

̃

𝑏

2
+ 𝑐

2
+

̃

𝑑

2
+ 𝑎

2

1

+

̃

𝑏

2

1
+ 𝑎

2

2
+

̃

𝑏

2

2
+ 𝑐

2

2
+

̃

𝑑

2

2
) .

(25)

Then the derivative of 𝑉 is given by

̇

𝑉 =

1

2

(2ẽ𝑇 ̇ẽ + 2𝑎

̇

𝑎̃ + 2

̃

𝑏

̇

̃

𝑏 + 2𝑐

̇

𝑐̃ + 2

̃

𝑑

̇

̃

𝑑 + 2𝑎

1
̇

𝑎̃

1
+ 2

̃

𝑏

1

̇

̃

𝑏

1

+2𝑎

2
̇

𝑎̃

2
+ 2

̃

𝑏

2

̇

̃

𝑏

2
+ 2𝑐

2
̇

𝑐̃

2
+ 2

̃

𝑑

2

̇

̃

𝑑

2
)

= ẽ𝑇 ̇ẽ + 𝑎

̇

𝑎̃ +

̃

𝑏

̇

̃

𝑏 + 𝑐

̇

𝑐̃ +

̃

𝑑

̇

̃

𝑑 + 𝑎

1
̇

𝑎̃

1
+

̃

𝑏

1

̇

̃

𝑏

1

+ 𝑎

2
̇

𝑎̃

2
+

̃

𝑏

2

̇

̃

𝑏

2
+ 𝑐

2
̇

𝑐̃

2
+

̃

𝑑

2

̇

̃

𝑑

2

= 𝑒

1
(𝑎 (𝑦 − 𝑥) + 𝑤 − 𝛼̇

1
𝑥

1
− 𝛼

1
𝑎

1
(𝑦

1
− 𝑥

1
)

−𝛼

1
𝑢

1
− 𝑎

2
(−𝑥

2
+ 𝑦

2
) − 𝑤

2
)

+ 𝑒

2
(−𝑥𝑧 + 𝑐𝑦 − 𝛼̇

2
𝑦

1
− 𝛼

2
(𝑏

1
𝑦

1
− 𝑥

1
𝑧

1
+ 𝑤

1
)

−𝛼

2
𝑢

2
− 𝑐

2
𝑥

2
+ 𝑦

2
+ 𝑥

2
𝑧

2
)

+ 𝑒

3
(𝑥𝑦 − 𝑏𝑧 − 𝛼̇

3
𝑧

1
− 𝛼

3
(𝑥

1
𝑦

1
− 𝑐

1
𝑧

1
)

−𝛼

3
𝑢

3
− 𝑥

2
𝑦

2
+ 𝑏

2
𝑧

2
)

+ 𝑒

4
(𝑥𝑧 + 𝑑𝑤 − 𝛼̇

4
𝑤

1
− 𝛼

4
(−𝑥

1
𝑧

1
+ 𝑤

1
)

−𝛼

4
𝑢

4
+ 𝑦

2
𝑧

2
− 𝑑

2
𝑤

2
)

+ 𝑎

̇

𝑎̃ +

̃

𝑏

̇

̃

𝑏 + 𝑐

̇

𝑐̃ +

̃

𝑑

̇

̃

𝑑 + 𝑎

1
̇

𝑎̃

1
+

̃

𝑏

1

̇

̃

𝑏

1

+ 𝑎

2
̇

𝑎̃

2
+

̃

𝑏

2

̇

̃

𝑏

2
+ 𝑐

2
̇

𝑐̃

2
+

̃

𝑑

2

̇

̃

𝑑

2
.

(26)
With the controls (22) and the parameter update laws (23)
and (24), we have

̇

𝑉 = −𝑘

1
𝑒

2

1
− 𝑘

2
𝑒

2

2
− 𝑘

3
𝑒

2

3
− 𝑘

4
𝑒

2

4
. (27)
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Because ̇

𝑉 is negative simidefinite, 𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
∈ 𝐿

∞
,

𝑎,

̃

𝑏, 𝑐,

̃

𝑑, 𝑎

1
,

̃

𝑏

1
, 𝑎

2
,

̃

𝑏

2
, 𝑐

2
,

̃

𝑑

2
∈ 𝐿

∞
. From the definition of ẽ, we

know ̇

𝑒̃

1
,

̇

𝑒̃

2
,

̇

𝑒̃

3
,

̇

𝑒̃

4
∈ 𝐿

∞
. From ̇

𝑉 = −𝑘

1
𝑒

2

1
−𝑘

2
𝑒

2

2
−𝑘

3
𝑒

2

3
−𝑘

4
𝑒

2

4
=

−𝑒

𝑇
𝐾𝑒 (𝐾 = diag(𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑘

4
)), we have

∫

𝑡

0

𝜆min (𝐾) ‖𝑒‖

2
𝑑𝑡 ≤ ∫

𝑡

0

𝑒

𝑇
𝐾𝑒𝑑𝑡

≤ ∫

𝑡

0

−

̇

𝑉𝑑𝑡 = 𝑉 (0) − 𝑉 (𝑡) ≤ 𝑉 (0) ,

(28)
where 𝜆min(𝐾) is the minimum eigenvalue of 𝐾, so
𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
∈ 𝐿

∞
; according to Barbalat’s Lemma we have

lim
𝑡→∞

‖ẽ (𝑡)‖ = 0. (29)

The UPS of system (10) and system (11) in the sense of
hyperchaotic Wang system (19) with uncertain parameters is
achieved.

Now we illustrate the effectiveness of this method.
Suppose the initial value of hyperchaotic Wang system is
(1, 6, 6, 3). The “unknown” parameters are 𝑎 = 36, 𝑏 = 3,
𝑐 = 20, 𝑑 = 1.3, 𝑎

1
= 26, 𝑏

1
= 14, 𝑎

2
= 10, 𝑏

2
= 8/3,

𝑐

2
= 28, and 𝑑

2
= −1. Control gain is (𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑘

4
) =

(12, 13, 14, 15). The scaling matrix is A(𝑡) = diag(sin 2𝑡 +
2, − cos 3𝑡 − 3, sin 𝑡 + cos 𝑡 + 3, 2 sin 𝑡 − 3). The initial values
of the drive system and the response system are (3, −4, 2, 2)
and (5, 7, 9, 11), respectively. The parameter estimate initial
values are 𝑎(0) = 6, ̂𝑏(0) = −3, 𝑐(0) = 6, ̂𝑑(0) = 6, 𝑎

1
(0) = 6,

̂

𝑏

1
(0) = 3, 𝑎

2
(0) = 4, ̂𝑏

2
(0) = 4, 𝑐

2
(0) = 4, and ̂

𝑑

2
(0) = 4.

Simulation results are as Figures 17, 18, 19, 20, 21, 22, 23, 24,
and 25.

From the above analysis, we find that, in the form, the
adaptive laws equations (13), (21), and (23) corresponding
three kinds of reference systems are the same.

4. Conclusion

In this paper, we have defined universal projective synchro-
nization. For different hyperchaotic systems with uncertain
parameters, we have given adaptive control method such that
UPS has occured and the parameters have been determined.
Three kinds of reference systems have been concerned and
we find that, in the form, the adaptive laws are the same.
Numerical simulations have verified the effectiveness of the
scheme.
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