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The existence results of positive 𝜔-periodic solutions are obtained for the third-order ordinary differential equation with delays
𝑢
󸀠󸀠󸀠
(𝑡)+𝑎(𝑡)𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡−𝜏

0
), 𝑢
󸀠
(𝑡−𝜏
1
), 𝑢
󸀠󸀠
(𝑡−𝜏
2
)), 𝑡 ∈ R,where 𝑎 ∈ 𝐶(R, (0,∞)) is𝜔-periodic function and𝑓 : R×[0,∞)×R2 →

[0,∞) is a continuous function which is 𝜔-periodic in 𝑡, and 𝜏
0
, 𝜏
1
, 𝜏
2
are positive constants. The discussion is based on the fixed-

point index theory in cones.

1. Introduction

In this paper, we discuss the existence of positive 𝜔-periodic
solutions for the third-order ordinary differential equation
with delays

𝑢
󸀠󸀠󸀠

(𝑡) + 𝑎 (𝑡) 𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏
0
) , 𝑢
󸀠
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠
(𝑡 − 𝜏
2
)) ,

𝑡 ∈ R,

(1)

where 𝑎 ∈ 𝐶(R, (0,∞)) is a 𝜔-periodic function, 𝑓 :

R × [0,∞) × R2 → [0,∞) is a continuous function, and
𝑓(𝑡, 𝑥, 𝑦, 𝑧) is 𝜔-periodic in 𝑡, and 𝜔, 𝜏

0
, 𝜏
1
, 𝜏
2
are positive

constants.
In recent years, the existence of periodic solutions for

first-order and second-order delay differential equations has
been researched by many authors; see [1–5] for the first-
order equations and see [6–12] for the second-order ones.
In some practice models, only positive periodic solutions
are significant. In [3, 8, 9, 11, 12], the authors obtained the
existence of positive periodic solutions for some first-order
and second-order delay differential equations by using Kras-
noselskii’s fixed-point theorem of cone mapping. But, few
people consider the existence of positive periodic solutions
for third-order delay differential equations.

The third-order delay differential equations have their
important physical contexts, for example, which can be

formulated from the problem of the wave solution of the
Korteweg-de Vries (KdV) equation with time delay. Recently,
Zhao and Xu [13] pointed out that the KdV equation with
time delay has more actual significance and they considered
the solitary wave solution of the following KdV equation with
time delay:

𝑈
𝑡
(𝑥, 𝑡) + 𝑈 (𝑥, 𝑡 − 𝜏)𝑈

𝑥
(𝑥, 𝑡) + 𝜏𝑈

𝑥𝑥
(𝑥, 𝑡 − 𝜏)

− 𝑈
𝑥𝑥𝑥

(𝑥, 𝑡) = 0,

(2)

where 𝜏 is a given constant and 𝑈
𝑥𝑥
(𝑥, 𝑡 − 𝜏) means the

backward diffusion with time delay. They looked for a wave
solution𝑈(𝑥, 𝑡) = 𝜑(𝑥 + 𝑐𝑡) with 𝑐 > 0 and from (2) obtained
the following third-order delay ordinary differential equation
of the profile 𝜑:

𝑐𝜑
󸀠

(𝜉) + 𝜑 (𝜉 − 𝑐𝜏) + 𝜏𝜑
󸀠󸀠

(𝜉 − 𝑐𝜏) − 𝜑
󸀠󸀠󸀠

(𝜉) = 0, 𝜉 ∈ R.

(3)

Equation (3) is a special form of (1). If we look for a periodic
wave solution of (2), we need to discuss the existence of the
periodic solution of the delay ordinary differential equation
(3). Hence, the existence problem of periodic solutions of
the general third-order delay differential equation (1) is a
significant topic.

For the third-order ordinary differential equations with-
out delays, the existence of periodic solutions has been con-
sidered by several authors; see [14–23] and references therein.
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2 Abstract and Applied Analysis

Some theorems andmethods of nonlinear functional analysis
have been applied to research on this problem, such as the
methods of topological degree and Leray-Schauder fixed-
point theorem [14, 19], the upper and lower solutions method
and monotone iterative technique [15–17], the implicit func-
tion theorem [18], and Mawhin coincidence degree theory
[20]. Especially, in recent years, the fixed-point theorem
of Krasnoselskii’s cone expansion or compression type has
been availably applied to some special third-order periodic
boundary problems of ordinary differential equations, and
some results of existence andmultiplicity of positive periodic
solutions have been obtained; see [21, 22]. In [21], Chu and
Zhou considered the periodic boundary value problem for
the third-order equation

𝑢
󸀠󸀠󸀠

(𝑡) + 𝜌
3
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 2𝜋] , (4)

where 𝜌 ∈ (0, 1/√3) is a constant and𝑓 ∈ 𝐶([0, 2𝜋]×(0,∞)).
Using the Krasnoselskii’s fixed-point theorem in cones, they
obtained the existence results of positive solutions. Their
results extended the one obtained by the Schauder fixed-
point theorem in [19]. In [22], by the Krasnoselskii’s fixed-
point theorem in cones, Feng established some existence and
multiplicity results of positive periodic solutions for the third-
order equation

𝑢
󸀠󸀠󸀠

(𝑡) + 𝛼𝑢
󸀠󸀠

(𝑡) + 𝛽𝑢
󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 2𝜋] , (5)

where 𝛼 and 𝛽 are positive constants and satisfy certain con-
ditions. In [23], the present author extended and improved
the results in [9, 10] to the general third-order equation

𝑢
󸀠󸀠󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡) , 𝑢
󸀠󸀠

(𝑡)) , 𝑡 ∈ R (6)

that nonlinearity 𝑓 explicitly contains derivative terms 𝑢󸀠(𝑡)
and 𝑢󸀠󸀠(𝑡). However, all of these works are on the third-order
equations without delays and the argument methods are not
applicable to the delay equation (1).

Motivated by the facts mentioned above, we research the
existence of positive periodic solutions of the third-order
delay equation (1).Wewill use the fixed-point index theory in
cones in a meticulous way to obtain the essential conditions
on the existence of positive periodic solutions of (1). Our
main results will be given in Section 3. Some preliminaries
to discuss (1) are presented in Section 2.

2. Preliminaries

Let 𝐶
𝜔
(R) denote the Banach space of all continuous 𝜔-

periodic function 𝑢(𝑡) with norm ‖𝑢‖
𝐶

= max
0≤𝑡≤𝜔

|𝑢(𝑡)|.
Generally, for 𝑛 ∈ N, we use 𝐶𝑛

𝜔
(R) to denote the Banach

space of all 𝑛th-order continuous differentiable 𝜔-periodic
function with the norm ‖𝑢‖

𝐶
𝑛 = ∑

𝑛

𝑘=0
‖𝑢
(𝑘)
‖
𝐶
. Let 𝐶+

𝜔
(R)

denote the cone of all nonnegative functions in 𝐶
𝜔
(R).

Let 𝑀 > 0 be a constant. For ℎ ∈ 𝐶
𝜔
(R), we consider

the existence of 𝜔-periodic solution of the linear third-order
differential equation

𝑢
󸀠󸀠󸀠

(𝑡) + 𝑀𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ R. (7)

It is easy to verify that the linear third-order boundary value
problem

𝑢
󸀠󸀠󸀠

(𝑡) + 𝑀𝑢 (𝑡) = 0, 𝑡 ∈ [0, 𝜔] ,

𝑢 (0) − 𝑢 (𝜔) = 0, 𝑢
󸀠

(0) − 𝑢
󸀠

(𝜔) = 0,

𝑢
󸀠󸀠

(0) − 𝑢
󸀠󸀠

(𝜔) = 1

(8)

has a unique solution.We denote the solution by Φ(𝑡). By [16,
Lemma 2.1], the 𝜔-periodic solution of (7) can be expressed
by Φ. By [16, Lemma 2.1] or a direct calculation, we easily
obtain the following lemma.

Lemma 1. Let 𝑀 > 0. Then, for every ℎ ∈ 𝐶
𝜔
(R), the linear

equation (7) has a unique 𝜔-periodic solution 𝑢(𝑡) which is
given by

𝑢 (𝑡) = ∫

𝑡

𝑡−𝜔

Φ (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠 := 𝑃ℎ (𝑡) , 𝑡 ∈ R. (9)

Moreover, 𝑃 : 𝐶
𝜔
(R) → 𝐶

2

𝜔
(R) is a completely continuous

linear operator.

Lemma 2. Let 0 < 𝑀 < (2𝜋/√3𝜔)
3. Then, the solution Φ of

the linear third-order boundary value (8) is positive on [0, 𝜔].

Proof. Let 𝜌 =
3

√𝑀. It is easy to prove that the linear second-
order boundary value problem

𝑢
󸀠󸀠

(𝑡) − 𝜌𝑢
󸀠

(𝑡) + 𝜌
2
𝑢 (𝑡) = 0, 𝑡 ∈ [0, 𝜔] ,

𝑢 (0) − 𝑢 (𝜔) = 0, 𝑢
󸀠

(0) − 𝑢
󸀠

(𝜔) = 1

(10)

has a unique solutionΦ
2
(𝑡) which is given by

Φ
2
(𝑡)

=

𝑒
(𝜌/2)𝑡

(𝑒
𝜌𝜔/2 sin (√3𝜌/2) (𝜔 − 𝑡) + sin (√3𝜌/2) 𝑡)

(√3𝜌/2) ((𝑒
𝜌𝜔/2

− 1)
2

+ 2𝑒
𝜌𝜔/2

(1 − cos (√3𝜌/2) 𝜔))
,

(11)

and the linear first-order boundary value problem

𝑢
󸀠

(𝑡) + 𝜌𝑢 (𝑡) = 0, 𝑡 ∈ [0, 𝜔] ,

𝑢 (0) − 𝑢 (𝜔) = 1.

(12)

has a unique solution given by

Φ
1
(𝑡) =

𝑒
−𝜌𝑡

1 − 𝑒
−𝜌𝜔

. (13)

By a direct calculation, we can verify that

Φ (𝑡) = ∫

𝑡

0

Φ
2
(𝑡 − 𝑠)Φ

1
(𝑠) 𝑑𝑠

+ ∫

𝜔

𝑡

Φ
2
(𝜔 + 𝑡 − 𝑠)Φ

1
(𝑠) 𝑑𝑠

(14)

is the unique solution of the linear third-order boundary
value (8). When 0 < 𝑀 < (2𝜋/√3𝜔)

3, 0 < 𝜌 < 2𝜋/√3𝜔

and, by (11), Φ
2
(𝑡) > 0 on [0, 𝜔]. Since Φ

1
(𝑡) > 0 on [0, 𝜔],

from (14), we see that Φ(𝑡) > 0 for every 𝑡 ∈ [0, 𝜔].
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Let 0 < 𝑀 < (2𝜋/√3𝜔)
3. Then, the solution of (8)Φ(𝑡) >

0 for every 𝑡 ∈ [0, 𝜔]. If ℎ ∈ 𝐶
+

𝜔
(R) and ℎ(𝑡) ̸≡ 0, by (9), the

𝜔-periodic solution 𝑢 = 𝑃ℎ of (7) is positive. We will show
that the 𝜔-periodic solution has stronger positivity. Let

𝜎 =

min
𝑡∈𝐼
Φ (𝑡)

max
𝑡∈𝐼
Φ (𝑡)

, 𝐶
1
=

max
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
Φ
󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

min
𝑡∈𝐼
Φ (𝑡)

,

𝐶
2
=

max
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
Φ
󸀠󸀠
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

min
𝑡∈𝐼
Φ (𝑡)

,

(15)

where 𝐼 = [0, 𝜔]. Choose a cone𝐾 in 𝐶
2

𝜔
(R) by

𝐾 = {𝑢 ∈ 𝐶
2

𝜔
(R) ∩ 𝐶

+

𝜔
(R) | 𝑢 (𝑡) ≥ 𝜎‖𝑢‖

𝐶
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

(𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
1
𝑢 (𝑡) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠

(𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
2
𝑢 (𝑡) , 𝑡, 𝜏 ∈ R} .

(16)

We have the following lemma.

Lemma 3. Let 0 < 𝑀 < (2𝜋/√3𝜔)
3. Then, for every ℎ ∈

𝐶
+

𝜔
(R), the 𝜔-periodic solution of (7) 𝑢 = 𝑃ℎ ∈ 𝐾.

Proof. Let ℎ ∈ 𝐶
+

𝜔
(R) and let 𝑢 = 𝑃ℎ. For every 𝑡 ∈ R, from

(9), it follows that

𝑢 (𝑡) = ∫

𝑡

𝑡−𝜔

Φ (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠 ≤ max
𝑟∈𝐼

Φ (𝑟) ∫

𝑡

𝑡−𝜔

ℎ (𝑠) 𝑑𝑠

= max
𝑟∈𝐼

Φ (𝑟) ∫

𝜔

0

ℎ (𝑠) 𝑑𝑠,

(17)

and, therefore,

‖𝑢‖
𝐶
≤ max
𝑟∈𝐼

Φ (𝑟) ∫

𝜔

0

ℎ (𝑠) 𝑑𝑠. (18)

Using (9) again, we obtain that

𝑢 (𝑡) = ∫

𝑡

𝑡−𝜔

Φ (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠 ≥ min
𝑟∈𝐼

Φ (𝑟) ∫

𝑡

𝑡−𝜔

ℎ (𝑠) 𝑑𝑠

= min
𝑟∈𝐼

Φ (𝑟) ∫

𝜔

0

ℎ (𝑠) 𝑑𝑠 ≥ 𝜎‖𝑢‖
𝐶
.

(19)

For every 𝜏 ∈ R, since

𝑢
(𝑖)

(𝜏) = ∫

𝑡

𝑡−𝜔

Φ
(𝑖)

(𝜏 − 𝑠) ℎ (𝑠) 𝑑𝑠, 𝑖 = 1, 2, (20)

we have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
(𝑖)

(𝜏)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ ∫

𝜏

𝜏−𝜔

󵄨
󵄨
󵄨
󵄨
󵄨
Φ
(𝑖)

(𝜏 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ (𝑠) 𝑑𝑠

≤ max
𝑟∈𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
Φ
(𝑖)

(𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

𝜏

𝜏−𝜔

ℎ (𝑠) 𝑑𝑠

= max
𝑟∈𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
Φ
(𝑖)

(𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

𝜔

0

ℎ (𝑠) 𝑑𝑠

= 𝐶
𝑖
min
𝑟∈𝐼

Φ (𝑟) ∫

𝜔

0

ℎ (𝑠) 𝑑𝑠

≤ 𝐶
𝑖
𝑢 (𝑡) , 𝑖 = 1, 2.

(21)

Hence, 𝑢 ∈ 𝐾.

Now, we consider the periodic solution problem of the
linear third-order differential equation with variable coeffi-
cient

𝑢
󸀠󸀠󸀠

(𝑡) + 𝑎 (𝑡) 𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ R. (22)

Let 𝑎 ∈ 𝐶
𝜔
(R) be a positive 𝜔-periodic function and satisfy

the assumption

(H0) 0 < 𝑎 (𝑡) < (

2𝜋

√3 𝜔

)

3

for 𝑡 ∈ [0, 𝜔] , (23)

and set
𝑚 = min
0≤𝑡≤𝜔

𝑎 (𝑡) , 𝑀 = max
0≤𝑡≤𝜔

𝑎 (𝑡) . (24)

Then, 0 < 𝑚 ≤ 𝑀 < (2𝜋/√3𝜔)
3, and the conclusion of

Lemma 3 holds. For (22), we have the following lemma:

Lemma 4. Let 𝑎 ∈ 𝐶
𝜔
(R) satisfy the assumption (H0). Then,

for every ℎ ∈ 𝐶
𝜔
(R), the linear equation (22) has a unique 𝜔-

periodic solution 𝑢 := 𝑆ℎ. Moreover, 𝑆 : 𝐶
𝜔
(R) → 𝐶

2

𝜔
(R) is a

completely continuous linear operator and 𝑆(𝐶+
𝜔
(R)) ⊂ 𝐾.

Proof. Let𝑀 and𝑚 be the positive constants defined by (24)
and let 𝑃 : 𝐶

𝜔
(R) → 𝐶

𝜔
(R) be the 𝜔-periodic solution

operator of (7) given by (9). By Lemma 3,𝑃(𝐶+
𝜔
(R)) ⊂ 𝐶

+

𝜔
(R),

and 𝑃 : 𝐶
𝜔
(R) → 𝐶

𝜔
(R) is a positive linear bounded

operator. We rewrite (22) into the form of

𝑢
󸀠󸀠󸀠

(𝑡) + 𝑀𝑢 (𝑡) = (𝑀 − 𝑎 (𝑡)) 𝑢 (𝑡) + ℎ (𝑡) , 𝑡 ∈ R. (25)

Then, it is easy to see that the 𝜔-periodic solution problem of
(22) is equivalent to the operator equation in Banach space
𝐶
𝜔
(R)

(𝐼 − 𝑃 ∘ 𝐵) 𝑢 = 𝑃ℎ, (26)

where 𝐼 is the identity operator in 𝐶
𝜔
(R) and 𝐵 : 𝐶

𝜔
(R) →

𝐶
𝜔
(R) is the product operator defined by

𝐵𝑢 (𝑡) = (𝑀 − 𝑎 (𝑡)) 𝑢 (𝑡) , 𝑢 ∈ 𝐶
𝜔
(R) , (27)

which is a positive linear bounded operator.We prove that the
norm of 𝑃 ∘ 𝐵 inL(𝐶

𝜔
(R), 𝐶

𝜔
(R)) satisfies ‖𝑃 ∘ 𝐵‖ < 1.

For every 𝑢 ∈ 𝐶
𝜔
(R) and 𝑡 ∈ R, by definition (9) of 𝑃 and

the positivity ofΦ, we have

|(𝑃 ∘ 𝐵) 𝑢 (𝑡)| = |𝑃 (𝐵𝑢) (𝑡)|

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡−𝜔

Φ (𝑡 − 𝑠) (𝑀 − 𝑎 (𝑠)) 𝑢 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

𝑡−𝜔

Φ (𝑡 − 𝑠) |(𝑀 − 𝑎 (𝑠)) 𝑢 (𝑠)| 𝑑𝑠

≤ (𝑀 − 𝑚) ‖𝑢‖
𝐶
∫

𝑡

𝑡−𝜔

Φ (𝑡 − 𝑠) 𝑑𝑠

= (𝑀 − 𝑚) ‖𝑢‖
𝐶
∫

𝜔

0

Φ (𝑠) 𝑑𝑠

= (1 −

𝑚

𝑀

) ‖𝑢‖
𝐶
.

(28)
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Therefore, ‖(𝑃 ∘ 𝐵)𝑢‖
𝐶
≤ (1 − (𝑚/𝑀))‖𝑢‖

𝐶
. By the arbitrari-

ness of 𝑢 ∈ 𝐶
𝜔
(R), we have ‖𝑃 ∘ 𝐵‖ ≤ 1 − (𝑚/𝑀) < 1.

Thus, 𝐼 − 𝑃 ∘ 𝐵 has a bounded inverse operator given by
the series

(𝐼 − 𝑃 ∘ 𝐵 )
−1

=

∞

∑

𝑛=0

(𝑃 ∘ 𝐵)
𝑛
. (29)

Consequently, (26), equivalently (22), has a unique 𝜔-
periodic solution

𝑢 = (𝐼 − 𝑃 ∘ 𝐵)
−1

(𝑃ℎ) := 𝑆ℎ, (30)

where

𝑆 = (𝐼 − 𝑃 ∘ 𝐵)
−1

∘ 𝑃. (31)

By this and (29), we have

𝑆 = (𝐼 − 𝑃 ∘ 𝐵)
−1

∘ 𝑃 =

∞

∑

𝑛=0

(𝑃 ∘ 𝐵)
𝑛
𝑃

= 𝑃 +

∞

∑

𝑛=1

(𝑃 ∘ 𝐵) (𝑃 ∘ 𝐵)
𝑛−1

𝑃

= 𝑃(𝐼 +

∞

∑

𝑛=1

𝐵(𝑃 ∘ 𝐵)
𝑛−1

𝑃) .

(32)

Hence, 𝑆 can be expressed in the form of

𝑆 = 𝑃 ∘ 𝑄, (33)

where

𝑄 = 𝐼 +

∞

∑

𝑛=1

𝐵(𝑃 ∘ 𝐵)
𝑛−1

𝑃, (34)

which is a linear bounded operator from 𝐶
𝜔
(R) into 𝐶

𝜔
(R).

By Lemma 1, 𝑃 : 𝐶
𝜔
(R) → 𝐶

2
(R) is completely continuous.

Thus, from (33), we see that 𝑆 : 𝐶
𝜔
(R) → 𝐶

2

𝜔
(R) is a

completely continuous linear operator.
By the positivity of𝑃 and𝐵, from the expression (34) of𝑄,

we see that𝑄 : 𝐶
𝜔
(R) → 𝐶

𝜔
(R) is a positive linear operator.

Hence, for every ℎ ∈ 𝐶
+

𝜔
(R), ℎ

1
= 𝑄ℎ ∈ 𝐶

+

𝜔
(R). By (33) and

Lemma 3, 𝑢 = 𝑆ℎ = 𝑃(𝑄ℎ) = 𝑃ℎ
1
∈ 𝐾. Thus, 𝑆(𝐶+

𝜔
(R)) ⊂ 𝐾.

The proof of Lemma 4 is completed.

Let 𝑓 : R × [0,∞) × R2 → [0,∞) be a continuous
function. For every 𝑢 ∈ 𝐾, set

𝐹 (𝑢) (𝑡) := 𝑓 (𝑡, 𝑢 (𝑡 − 𝜏
0
) , 𝑢
󸀠
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠
(𝑡 − 𝜏
2
)) ,

𝑡 ∈ R.
(35)

Then, 𝐹 : 𝐾 → 𝐶
+

𝜔
(R) is continuous. Now, we define a

mapping 𝐴 : 𝐾 → 𝐶
2

𝜔
(R) by

𝐴 = 𝑆 ∘ 𝐹, (36)

where 𝑆 : 𝐶
𝜔
(R) → 𝐶

2

𝜔
(R) is the periodic solution operator

of (22). By Lemma 4, we have the following lemma.

Lemma 5. Let 𝑎 ∈ 𝐶
𝜔
(R) satisfy the assumption (H0). Then,

the operator 𝐴 : 𝐾 → 𝐾 defined by (36) is completely
continuous.

By the definition of operator 𝑆 and Lemma 4, the positive
𝜔-periodic solution of (1) is equivalent to the nonzero fixed
point of𝐴. We will find the nonzero fixed point of𝐴 by using
the fixed-point index theory in cones.

We recall some concepts and conclusions on the fixed-
point index in [15, 16]. Let 𝐸 be a Banach space and 𝐾 ⊂ 𝐸

be a closed convex cone in 𝐸. Assume Ω is a bounded open
subset of 𝐸 with boundary 𝜕Ω and 𝐾 ∩ Ω ̸= 0. Let 𝐴 : 𝐾 ∩

Ω → 𝐾 be a completely continuous mapping. If 𝐴𝑢 ̸= 𝑢 for
any 𝑢 ∈ 𝐾∩𝜕Ω, then the fixed-point index 𝑖 (𝐴,𝐾∩Ω,𝐾) has
definition. One important fact is that if 𝑖 (𝐴,𝐾 ∩ Ω,𝐾) ̸= 0,
then 𝐴 has a fixed point in𝐾∩Ω. The following two lemmas
in [24, 25] are needed in our argument.

Lemma 6. Let Ω be a bounded open subset of 𝐸 with 𝜃 ∈ Ω,
and let 𝐴 : 𝐾 ∩ Ω → 𝐾 be a completely continuous mapping.
If 𝜆𝐴𝑢 ̸= 𝑢 for every 𝑢 ∈ 𝐾∩ 𝜕Ω and 0 < 𝜆 ≤ 1, then 𝑖 (𝐴,𝐾 ∩

Ω,𝐾) = 1.

Lemma 7. Let Ω be a bounded open subset of 𝐸 and let 𝐴 :

𝐾 ∩ Ω → 𝐾 be a completely continuous mapping. If there
exists an 𝑒 ∈ 𝐾\{𝜃} such that 𝑢−𝐴𝑢 ̸= 𝜇𝑒 for every 𝑢 ∈ 𝐾∩𝜕Ω

and 𝜇 ≥ 0, then 𝑖 (𝐴,𝐾 ∩ Ω,𝐾) = 0.

In next section, we will use Lemma 6 and Lemma 7 to
discuss the existence of positive 𝜔-periodic solutions of (1).

3. Main Results

Weconsider the the existence of positive𝜔-periodic solutions
of the third-order delay equation (1). Let 𝑎 ∈ 𝐶

𝜔
(R) satisfy

the assumption (H0) and let 𝑀,𝑚 be the positive constants
defined by (24). Let 𝑓 ∈ 𝐶(R × [0,∞) × R2, [0,∞)), and
𝑓(𝑡, 𝑥, 𝑦, 𝑧) be𝜔-periodic in 𝑡. Let𝐶

1
and𝐶

2
be the constants

defined by (15) and let 𝐼 = [0, 𝜔]. To be convenient, we
introduce the notations

𝑓
0
= lim inf
𝑥→0

+

min
𝑡∈𝐼,|𝑦|≤𝐶

1
𝑥,|𝑧|≤𝐶

2
𝑥

𝑓 (𝑡, 𝑥, 𝑦, 𝑧)

𝑥

,

𝑓
0
= lim sup
𝑥→0

+

max
𝑡∈𝐼,|𝑦|≤𝐶

1
𝑥,|𝑧|≤𝐶

2
𝑥

𝑓 (𝑡, 𝑥, 𝑦, 𝑧)

𝑥

,

𝑓
∞

= lim inf
𝑥→+∞

min
𝑡∈𝐼,|𝑦|≤𝐶

1
𝑥,|𝑧|≤𝐶

2
𝑥

𝑓 (𝑡, 𝑥, 𝑦, 𝑧)

𝑥

,

𝑓
∞

= lim sup
𝑥→+∞

max
𝑡∈𝐼,|𝑦|≤𝐶

1
𝑥,|𝑧|≤𝐶

2
𝑥

𝑓 (𝑡, 𝑥, 𝑦, 𝑧)

𝑥

.

(37)

Our main results are as follows.

Theorem 8. Let 𝑎 ∈ 𝐶
𝜔
(R) satisfy the assumption (H0), let

𝑓 : R × [0,∞) × R2 → R be continuous, and let 𝑓(𝑡, 𝑥, 𝑦, 𝑧)
be 𝜔-periodic in 𝑡. If 𝑓 satisfies the condition

(H1) 𝑓
0
< 𝑚, 𝑓

∞
> 𝑀, (38)

then (1) has at least one positive 𝜔-periodic solution.
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Theorem 9. Let 𝑎 ∈ 𝐶
𝜔
(R) satisfy the assumption (H0), let

𝑓 : R × [0,∞) × R2 → R be continuous, and let 𝑓(𝑡, 𝑥, 𝑦, 𝑧)
be 𝜔-periodic in 𝑡. If 𝑓 satisfies the condition

(H2) 𝑓
0
> 𝑀, 𝑓

∞
< 𝑚, (39)

then (1) has at least one positive 𝜔-periodic solution.

InTheorem 8, the condition (H1) allows that 𝑓(𝑡, 𝑥, 𝑦, 𝑧)
is superlinear growth on 𝑥, 𝑦, and 𝑧. For the application,
see Example 10. In Theorem 9, the condition (H2) allows
𝑓(𝑡, 𝑥, 𝑦, 𝑧) sublinear growth on 𝑥, 𝑦, and 𝑧. See Example 11.

Proof of Theorem 8. Choose working space 𝐸 = 𝐶
2

𝜔
(R). Let

𝐾 ⊂ 𝐶
2

𝜔
(R) be the cone in 𝐶

2

𝜔
(R) defined by (16) and

let 𝐴 : 𝐾 → 𝐾 be the completely continuous operator
defined by (36). Then, the positive 𝜔-periodic solution of (1)
is equivalent to nontrivial fixed point of 𝐴. Let 0 < 𝑟 < 𝑅 <

+∞ and set

Ω
1
= {𝑢 ∈ 𝐶

2

𝜔
(R) | ‖𝑢‖

𝐶
2 < 𝑟} ,

Ω
2
= {𝑢 ∈ 𝐶

2

𝜔
(R) | ‖𝑢‖

𝐶
2 < 𝑅} .

(40)

We show that the operator𝐴 has a fixed point in𝐾∩(Ω
2
\Ω
1
)

when 𝑟 is small enough and 𝑅 is large enough.
By the assumption of 𝑓0 < 𝑚 and the definition of 𝑓0,

there exist 𝜀 ∈ (0,𝑚) and 𝛿 > 0, such that

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) ≤ (𝑚 − 𝜀) 𝑥, 𝑡 ∈ 𝐼,

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
1
𝑥, |𝑧| ≤ 𝐶

2
𝑥, 0 < 𝑥 ≤ 𝛿.

(41)

Let 𝑟 ∈ (0, 𝛿). We now prove that 𝐴 satisfies the condition of
Lemma 6 in𝐾∩𝜕Ω

1
; namely, 𝜆𝐴𝑢 ̸= 𝑢 for every 𝑢 ∈ 𝐾∩𝜕Ω

1

and 0 < 𝜆 ≤ 1. In fact, if there exist 𝑢
0
∈ 𝐾 ∩ 𝜕Ω

1
and

0 < 𝜆
0
≤ 1 such that 𝜆

0
𝐴𝑢
0
= 𝑢
0
, since 𝑢

0
= 𝑆(𝜆

0
(𝑢
0
)), by

Lemma 4 and the definition of 𝑆 and 𝐹, 𝑢
0
∈ 𝐶
3

𝜔
(R) satisfies

the delay differential equation

𝑢
󸀠󸀠󸀠

0
(𝑡) + 𝑎 (𝑡) 𝑢

0
(𝑡)

= 𝜆
0
𝑓
1
(𝑡, 𝑢
0
(𝑡 − 𝜏
0
) , 𝑢
󸀠

0
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠

0
(𝑡 − 𝜏
2
)) ,

𝑡 ∈ R.

(42)

Since 𝑢
0
∈ 𝐾 ∩ 𝜕Ω

1
, by the definitions of 𝐾 andΩ

1
, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

0
(𝑡 − 𝜏
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
1
𝑢
0
(𝑡 − 𝜏
0
) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠

0
(𝑡 − 𝜏
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
2
𝑢
0
(𝑡 − 𝜏
0
) ,

0 < 𝜎
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐶

≤ 𝑢
0
(𝑡 − 𝜏
0
)

≤
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐶
2 = 𝑟 < 𝛿, 𝑡 ∈ R.

(43)

Hence, from (41), it follows that

𝑓
1
(𝑡, 𝑢
0
(𝑡 − 𝜏
0
) , 𝑢
󸀠

0
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠

0
(𝑡 − 𝜏
2
))

≤ (𝑚 − 𝜀) 𝑢
0
(𝑡 − 𝜏
0
) , 𝑡 ∈ R.

(44)

By this inequality and (42), we have

𝑢
󸀠󸀠󸀠

0
(𝑡) + 𝑎 (𝑡) 𝑢

0
(𝑡) ≤ 𝜆

0
(𝑚 − 𝜀) 𝑢

0
(𝑡 − 𝜏
0
)

≤ (𝑚 − 𝜀) 𝑢
0
(𝑡 − 𝜏
0
) , 𝑡 ∈ R.

(45)

Integrating both sides of this inequality from 0 to𝜔 and using
the periodicity of 𝑢

0
(𝑡), we have

∫

𝜔

0

𝑎 (𝑡) 𝑢
0
(𝑡) 𝑑𝑡 ≤ (𝑚 − 𝜀) ∫

𝜔

0

𝑢
0
(𝑡 − 𝜏
0
) 𝑑𝑡

= (𝑚 − 𝜀) ∫

𝜔

0

𝑢
0
(𝑡) 𝑑𝑡.

(46)

Hence, we obtain that

𝑚∫

𝜔

0

𝑢
0
(𝑡) 𝑑𝑡 ≤ ∫

𝜔

0

𝑎 (𝑡) 𝑢
0
(𝑡) 𝑑𝑡 ≤ (𝑚 − 𝜀) ∫

𝜔

0

𝑢
0
(𝑡) 𝑑𝑠.

(47)

Since ∫𝜔
0
𝑢
0
(𝑡)𝑑𝑡 ≥ 𝜔𝜎‖𝑢

0
‖
𝐶
> 0, from (47), it follows that

𝑚 ≤ 𝑚 − 𝜀, which is a contradiction. Hence, 𝐴 satisfies the
condition of Lemma 6 in 𝐾 ∩ 𝜕Ω

1
. By Lemma 6, we have

𝑖 (𝐴,𝐾 ∩ Ω
1
, 𝐾) = 1. (48)

On the other hand, since 𝑓
∞

> 𝑀, by the definition of
𝑓
∞
, there exist 𝜀

1
> 0 and𝐻 > 0 such that

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) ≥ (𝑀 + 𝜀
1
) 𝑥, 𝑡 ∈ 𝐼,

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
1
𝑥, |𝑧| ≤ 𝐶

1
𝑥, 𝑥 ≥ 𝐻.

(49)

Choose𝑅 > max{((1+𝐶
1
+𝐶
2
)/𝜎)𝐻, 𝛿} and 𝑒(𝑡) ≡ 1. Clearly,

𝑒 ∈ 𝐾\{𝜃}.We show that𝐴 satisfies the condition of Lemma 7
in 𝐾 ∩ 𝜕Ω

2
; namely, 𝑢 − 𝐴𝑢 ̸= 𝜇𝑒 for every 𝑢 ∈ 𝐾 ∩ 𝜕Ω

2
and

𝜇 ≥ 0. In fact, if there exist 𝑢
1
∈ 𝐾∩𝜕Ω

2
and 𝜇
1
≥ 0 such that

𝑢
1
− 𝐴𝑢
1
= 𝜇
1
𝑒, since 𝑢

1
− 𝜇
1
𝑒 = 𝑆(𝐹(𝑢

1
)), by Lemma 4 and

the definition of 𝑆 and 𝐹, 𝑢
1
∈ 𝐶
3

𝜔
(R) satisfies the differential

equation

𝑢
󸀠󸀠󸀠

1
(𝑡) + 𝑎 (𝑡) (𝑢

1
(𝑡) − 𝜇

1
)

= 𝑓
1
(𝑡, 𝑢
1
(𝑡 − 𝜏
0
) , 𝑢
󸀠

1
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠

1
(𝑡 − 𝜏
2
)) ,

𝑡 ∈ R.

(50)

Since 𝑢
1
∈ 𝐾 ∩ 𝜕Ω

2
, by the definition of𝐾 andΩ

2
, we have

𝑢
1
(𝑡) ≥ 𝜎

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

1
(𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
1
𝑢
1
(𝑡) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠

1
(𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
2
𝑢
1
(𝑡) , ∀ 𝑟, 𝑡 ∈ R.

(51)

By the latter inequalities of (51), we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠

1

󵄩
󵄩
󵄩
󵄩
󵄩𝐶

≤ 𝐶
1

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠

1

󵄩
󵄩
󵄩
󵄩
󵄩𝐶

≤ 𝐶
2

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶
. (52)

These inequalities mean that
󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶
2 =

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠

1

󵄩
󵄩
󵄩
󵄩
󵄩𝐶

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠

1

󵄩
󵄩
󵄩
󵄩
󵄩𝐶

≤ (1 + 𝐶
1
+ 𝐶
2
)
󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶
.

(53)
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Hence, we obtain that

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶

≥

1

1 + 𝐶
1
+ 𝐶
2

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶
2 . (54)

By (54) and the former inequality of (51), we have

𝑢
1
(𝑡) ≥ 𝜎

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶

≥

𝜎

1 + 𝐶
1
+ 𝐶
2

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶
2 =

𝜎𝑅

1 + 𝐶
1
+ 𝐶
2

> 𝐻,

𝑡 ∈ 𝐼.

(55)

From this, the latter inequalities of (51) and (49), it follows
that

𝑓
1
(𝑡, 𝑢
1
(𝑡 − 𝜏
0
) , 𝑢
󸀠

1
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠

1
(𝑡 − 𝜏
2
))

≥ (𝑀 + 𝜀
1
) 𝑢
1
(𝑡 − 𝜏
0
) , 𝑡 ∈ 𝐼.

(56)

By this inequality and (50), we have

𝑢
󸀠󸀠󸀠

1
(𝑡) + 𝑎 (𝑡) (𝑢

1
(𝑡) − 𝜇

1
) ≥ (𝑀 + 𝜀

1
) 𝑢
1
(𝑡 − 𝜏
0
) , 𝑡 ∈ 𝐼.

(57)

Integrating this inequality on 𝐼 and using the periodicity of
𝑢
1
, we have

∫

𝜔

0

𝑎 (𝑡) 𝑢
1
(𝑡) 𝑑𝑡 − 𝜇

1
𝜔 ≥ (𝑀 + 𝜀

1
) ∫

𝜔

0

𝑢
1
(𝑡 − 𝜏
0
) 𝑑𝑡

= (𝑀 + 𝜀
1
) ∫

𝜔

0

𝑢
1
(𝑡) 𝑑𝑡.

(58)

Hence, we obtain that

𝑀∫

𝜔

0

𝑢
1
(𝑡) 𝑑𝑡 ≥ ∫

𝜔

0

𝑎 (𝑡) 𝑢
1
(𝑡) 𝑑𝑡 − 𝜇

1
𝜔

≥ (𝑀 + 𝜀
1
) ∫

𝜔

0

𝑢
1
(𝑡) 𝑑𝑡.

(59)

Since ∫𝜔
0
𝑢
1
(𝑡)𝑑𝑡 ≥ 𝜔𝜎‖𝑢

1
‖
𝐶
> 0, from (59), it follows that

𝑀 ≥ 𝑀 + 𝜀
1
, which is a contradiction. This means that 𝐴

satisfies the condition of Lemma 7 in𝐾 ∩ 𝜕Ω
2
. By Lemma 7,

𝑖 (𝐴,𝐾 ∩ Ω
2
, 𝐾) = 0. (60)

Now, by the additivity of fixed-point index, (48), and (60),
we have

𝑖 (𝐴,𝐾 ∩ (Ω
2
\ Ω
1
) , 𝐾) = 𝑖 (𝐴,𝐾 ∩ Ω

2
, 𝐾)

− 𝑖 (𝐴,𝐾 ∩ Ω
1
, 𝐾) = −1.

(61)

Hence,𝐴 has a fixed point in𝐾∩(Ω
2
\Ω
1
), which is a positive

𝜔-periodic solution of (1).

Proof of Theorem 9. Let Ω
1
, Ω
2
⊂ 𝐶
2

𝜔
(R) be defined by (40).

We prove that the operator𝐴 defined by (36) has a fixed point
in𝐾 ∩ (Ω

2
\ Ω
1
) if 𝑟 is small enough and 𝑅 is large enough.

By the assumption of 𝑓
0
> 𝑀 and the definition of 𝑓

0
,

there exist 𝜀 > 0 and 𝛿 > 0, such that

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) ≥ (𝑀 + 𝜀) 𝑥, 𝑡 ∈ 𝐼,

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
1
𝑥, |𝑧| ≤ 𝐶

2
𝑥, 0 < 𝑥 ≤ 𝛿.

(62)

Let 𝑟 ∈ (0, 𝛿) and let 𝑒(𝑡) ≡ 1. We prove that 𝐴 satisfies the
condition of Lemma 7 in 𝐾 ∩ 𝜕Ω

1
; namely, 𝑢 − 𝐴𝑢 ̸= 𝜇𝑒 for

every 𝑢 ∈ 𝐾 ∩ 𝜕Ω
1
and 𝜇 ≥ 0. In fact, if there exist 𝑢

0
∈

𝐾∩𝜕Ω
1
and 𝜇
0
≥ 0 such that 𝑢

0
−𝐴𝑢
0
= 𝜇
0
𝑒, since 𝑢

0
−𝜇
0
𝑒 =

𝑆(𝐹(𝑢
0
)), by Lemma 4 and the definition of 𝑆 and 𝐹, 𝑢

0
(𝑡) ∈

𝐶
3

𝜔
(R) satisfies the differential equation

𝑢
󸀠󸀠󸀠

0
(𝑡) + 𝑎 (𝑡) (𝑢

0
(𝑡) − 𝜇

0
)

= 𝑓
1
(𝑡, 𝑢
0
(𝑡 − 𝜏
0
) , 𝑢
󸀠

0
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠

0
(𝑡 − 𝜏
2
)) ,

𝑡 ∈ R.

(63)

Since 𝑢
0
∈ 𝐾∩𝜕Ω

1
, by the definitions of𝐾 andΩ

1
, 𝑢
0
satisfies

(43). From (43) and (62), we see that

𝑓
1
(𝑡, 𝑢
0
(𝑡 − 𝜏
0
) , 𝑢
󸀠

0
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠

0
(𝑡 − 𝜏
2
))

≥ (𝑀 + 𝜀) 𝑢
0
(𝑡 − 𝜏
0
) , 𝑡 ∈ R.

(64)

From this and (63), it follows that

𝑢
󸀠󸀠󸀠

0
(𝑡) + 𝑎 (𝑡) (𝑢

0
(𝑡) − 𝜇

0
) ≥ (𝑀 + 𝜀) 𝑢

0
(𝑡 − 𝜏
0
) , 𝑡 ∈ R.

(65)

Integrating this inequality on 𝐼 and using the periodicity of
𝑢
0
(𝑡), we have

∫

𝜔

0

𝑎 (𝑡) 𝑢
0
(𝑡) 𝑑𝑡 − 𝜇

0
𝜔 ≥ (𝑀 + 𝜀) ∫

𝜔

0

𝑢
0
(𝑡 − 𝜏
0
) 𝑑𝑡

= (𝑀 + 𝜀) ∫

𝜔

0

𝑢
0
(𝑡) 𝑑𝑡.

(66)

Consequently,

𝑀∫

𝜔

0

𝑢
0
(𝑡) 𝑑𝑡 ≥ ∫

𝜔

0

𝑎 (𝑡) 𝑢
0
(𝑡) 𝑑𝑡 − 𝜇

0
𝜔

≥ (𝑀 + 𝜀) ∫

𝜔

0

𝑢
0
(𝑡) 𝑑𝑡.

(67)

Since ∫𝜔
0
𝑢
0
(𝑡)𝑑𝑡 ≥ 𝜔𝜎‖𝑢

0
‖
𝐶
> 0, from (67), it follows that

𝑀 ≥ 𝑀 + 𝜀, which is a contradiction. Hence, 𝐴 satisfies the
condition of Lemma 7 in𝐾 ∩ 𝜕Ω

1
. By Lemma 7, we have

𝑖 (𝐴,𝐾 ∩ Ω
1
, 𝐾) = 0. (68)

Since 𝑓∞ < 𝑚, by the definition of 𝑓∞, there exist 𝜀
1
∈

(0,𝑚) and𝐻 > 0 such that

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) ≤ (𝑚 − 𝜀
1
) 𝑥, 𝑡 ∈ 𝐼,

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
≤ 𝐶
1
𝑥, |𝑧| ≤ 𝐶

2
𝑥, 𝑥 ≥ 𝐻.

(69)



Abstract and Applied Analysis 7

Choosing 𝑅 > max{((1 + 𝐶
1
+ 𝐶
2
)/𝜎)𝐻, 𝛿}, we show that

𝐴 satisfies the condition of Lemma 6 in 𝐾 ∩ 𝜕Ω
2
; namely,

𝜆𝐴𝑢 ̸= 𝑢 for every 𝑢 ∈ 𝐾∩ 𝜕Ω
2
and 0 < 𝜆 ≤ 1. In fact, if there

exist 𝑢
1
∈ 𝐾 ∩ 𝜕Ω

2
and 0 < 𝜆

1
≤ 1 such that 𝜆

1
𝐴𝑢
1
= 𝑢
1
,

since 𝑢
1
= 𝑆(𝜆

1
(𝐹(𝑢
1
))), by Lemma 4 and the definition of 𝑆

and 𝐹, 𝑢
1
∈ 𝐶
3

𝜔
(Ω) satisfies the differential equation

𝑢
󸀠󸀠

1
(𝑡) + 𝑎 (𝑡) 𝑢

1
(𝑡)

= 𝜆
1
𝑓
1
(𝑡, 𝑢
1
(𝑡 − 𝜏
0
) , 𝑢
󸀠

1
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠

1
(𝑡 − 𝜏
2
)) , 𝑡 ∈ R.

(70)

Since 𝑢
1
∈ 𝐾 ∩ 𝜕Ω

2
, by the definition of 𝐾, 𝑢

1
satisfies (51).

By (51) we can show that 𝑢
1
satisfies (54). By (51) and (54), we

have,

𝑢
1
(𝑡) ≥ 𝜎

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶

≥

𝜎

1 + 𝐶
1
+ 𝐶
2

󵄩
󵄩
󵄩
󵄩
𝑢
1

󵄩
󵄩
󵄩
󵄩𝐶
2

=

𝜎𝑅

1 + 𝐶
1
+ 𝐶
2

> 𝐻, 𝑡 ∈ 𝐼.

(71)

Since 𝑢
1
satisfies (51) and (71), from (69), it follows that

𝑓
1
(𝑡, 𝑢
1
(𝑡 − 𝜏
0
) , 𝑢
󸀠

1
(𝑡 − 𝜏
1
) , 𝑢
󸀠󸀠

1
(𝑡 − 𝜏
2
))

≤ (𝑚 − 𝜀
1
) 𝑢
1
(𝑡 − 𝜏
0
) , 𝑡 ∈ 𝐼.

(72)

By this and (70), we have

𝑢
󸀠󸀠󸀠

1
(𝑡) + 𝑎 (𝑡) 𝑢

1
(𝑡) ≤ 𝜆

1
(𝑚 − 𝜀

1
) 𝑢
1
(𝑡 − 𝜏
0
)

≤ (𝑚 − 𝜀
1
) 𝑢
1
(𝑡 − 𝜏
0
) , 𝑡 ∈ R.

(73)

Integrating this inequality on 𝐼 and using the periodicity of
𝑢
1
(𝑡), we obtain that

∫

𝜔

0

𝑎 (𝑡) 𝑢
1
(𝑡) 𝑑𝑡 ≤ (𝑚 − 𝜀

1
) ∫

𝜔

0

𝑢
1
(𝑡 − 𝜏
0
) 𝑑𝑡

= (𝑚 − 𝜀
1
) ∫

𝜔

0

𝑢
1
(𝑡) 𝑑𝑡.

(74)

Hence, we have

𝑚∫

𝜔

0

𝑢
1
(𝑡) 𝑑𝑡 ≤ ∫

𝜔

0

𝑎 (𝑡) 𝑢
1
(𝑡) 𝑑𝑡 ≤ (𝑚 − 𝜀

1
) ∫

𝜔

0

𝑢
1
(𝑡) 𝑑𝑡.

(75)

Since ∫𝜔
0
𝑢
1
(𝑡)𝑑𝑡 ≥ 𝜔𝜎‖𝑢

1
‖
𝐶
> 0, from (75), it follows that

𝑚 ≤ 𝑚 − 𝜀
1
, which is a contradiction. This means that 𝐴

satisfies the condition of Lemma 6 in 𝐾 ∩ 𝜕Ω
2
. By Lemma 6,

𝑖 (𝐴,𝐾 ∩ Ω
2
, 𝐾) = 1. (76)

Now, from (68) and (76), it follows that

𝑖 (𝐴,𝐾 ∩ (Ω
2
\ Ω
1
) , 𝐾) = 𝑖 (𝐴,𝐾 ∩ Ω

2
, 𝐾)

− 𝑖 (𝐴,𝐾 ∩ Ω
1
, 𝐾) = 1.

(77)

Hence,𝐴 has a fixed point in𝐾∩(Ω
2
\Ω
1
), which is a positive

𝜔-periodic solution of (1).

Example 10. Consider the superlinear third-order delay dif-
ferential equation

𝑢
󸀠󸀠󸀠

(𝑡) + 𝑎 (𝑡) 𝑢 (𝑡) = 𝑏
0
(𝑡) 𝑢
2

(𝑡 − 𝜋) + 𝑏
1
(𝑡) (𝑢
󸀠

(𝑡 − 𝜋))

2

+ 𝑏
2
(𝑡) (𝑢
󸀠󸀠

(𝑡 − 𝜋))

2

, 𝑡 ∈ R,

(78)

where 𝑎, 𝑏
𝑖
∈ 𝐶
2𝜋
(R), 𝑖 = 0, 1, 2, and satisfy the conditions

0 < 𝑎 (𝑡) <

1

(3√3)

, 𝑏
0
(𝑡) , 𝑏
1
(𝑡) , 𝑏
2
(𝑡) > 0, 𝑡 ∈ R. (79)

It is easy to verify that 𝑎(𝑡) satisfies the assumption (H0) for
𝜔 = 2𝜋 and

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) = 𝑏
0
(𝑡) 𝑥
2
+ 𝑏
1
(𝑡) 𝑦
2
+ 𝑏
2
(𝑡) 𝑧
2 (80)

satisfies the assumption (H1) with 𝑓
0

= 0 and 𝑓
∞

=

+∞. Hence, by Theorem 8, (78) has at least one positive 2𝜋-
periodic solution.

Example 11. Consider the third-order delay differential equa-
tion

𝑢
󸀠󸀠󸀠

(𝑡) + (

1

6

−

1

7

sin2𝑡) 𝑢 (𝑡)

= 𝑐
0
(𝑡) √|𝑢 (𝑡 − 𝜋)| + 𝑐

1
(𝑡) √

󵄨
󵄨
󵄨
󵄨
𝑢
󸀠
(𝑡 − 𝜋)

󵄨
󵄨
󵄨
󵄨

+ 𝑐
2
(𝑡) √

󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠
(𝑡 − 𝜋)

󵄨
󵄨
󵄨
󵄨
, 𝑡 ∈ R,

(81)

where 𝑐
0
, 𝑐
1
, and 𝑐

2
∈ 𝐶
2𝜋
(R) are positive 2𝜋-periodic

functions. It is easy to verify that 𝑎(𝑡) = (1/6) − (1/7)sin2𝑡
satisfies the assumption (H0) for 𝜔 = 2𝜋. Let

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) = 𝑐
0
(𝑡) √|𝑥| + 𝑐

1
(𝑡) √

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ 𝑏
2
(𝑡) √|𝑧|. (82)

Then, 𝑓0 = +∞ and 𝑓
∞

= 0. Hence, 𝑓(𝑡, 𝑥, 𝑦, 𝑧) satisfies the
assumption (H2). ByTheorem 9, (81) has at least one positive
2𝜋-periodic solution.
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