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The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at
the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for
determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.

1. Introduction

The theoretical study of predator-prey systems in mathemat-
ical ecology has a long history beginning with the famous
Lotka-Volterra equations because of their universal existence
and importance. One of the ecological models proposed and
analyzed by Bazykin [1] is
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where 𝜀, 𝛾, and 𝑛 are positive constants and 𝑥
1
and 𝑥

2
are

functions of time representing population densities of prey
andpredator, respectively.This system can be used to describe
the dynamics of the prey-predator system when the non-
linearity of predator reproduction and prey competitive are
both taken into account. Bazykin [1] pointed out that for the
system (1) the degenerate Bogdanov-Takens bifurcation exists
when 𝛾 = 4/3, 𝑛 = 1/3, and 𝜀 = 1/4 and conjectured that it is
a nondegenerate codim 3 bifurcation. Kuznetsov [2] proved
the conjecture is correct by using critical (generalized) eigen-
vectors of the linearized matrix and its transpose. However,
time delays commonly exist in biological system, information
transfer system, and so on. Therefore, time delays of one
type or another have been incorporated into mathematical

models of population dynamics due to maturation time,
capturing time, or other reasons. In general, delay differential
equations exhibit much more complicated dynamics than
ordinary differential equations since a time delay may lead to
changes of stability of equilibrium and the fluctuation of the
populations. So far, a great deal of research has been devoted
to the delayed predator-prey system. See, for example, the
monographs of Cushing [3], Gopalsamy [4], and Kuang [5]
for general delayed biological systems and Beretta and Kuang
[6, 7], Faria [8], Gopalsamy [9, 10], May [11], Song et al.
[12–14], Xiao and Ruan [15], and Liu and Yuan [16] and the
references cited therein for studies on delayed prey-predator
systems. In the above references, normal form and center
manifold theory were one of important methods to study the
stability and Hopf bifurcation of the delayed predator-prey
systems. Considering the maturation time of the predator,
Bazykin [1] becomes the following delayed model:
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In this paper, we first discuss the effect of the time 𝜏 on
the stability of the positive equilibrium of the system (2).
Then we investigate the existence of the Hopf bifurcation,
the bifurcating direction, and the stability of the bifurcation

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 539684, 7 pages
http://dx.doi.org/10.1155/2014/539684

http://dx.doi.org/10.1155/2014/539684


2 Abstract and Applied Analysis

periodic solutions by the theory of normal form and center
manifold. Explicit expressions for determining the direction
of the Hopf bifurcations and the stability of the bifurcation
periodic solutions are derived.

2. The Existence of Hopf Bifurcations

In this section, we study the existence of theHopf bifurcations
of system (2). Clearly, when −1 < 𝑛 < 0, system (2) has only
one positive equilibrium, that is,
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then system (2) becomes
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By introducing the new variables 𝑧
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system (5) can be rewritten in a simpler form as
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system (2) at 𝐸 is
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The associated characteristic equation of (8) is given by
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The equilibrium 𝐸 is stable if all roots of (10) have negative
real parts. Clearly, when 𝜏 = 0, the characteristic equation
(10) becomes
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By directly computing, we known that 𝑟
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< 0 when −1 <

𝑛 < 0. Therefore all roots of (11) have negative real parts.
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Substituting (15) into (13), we obtain
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Proof. Differentiating both sides of (10) with respect to 𝜏, we
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Thus, the lemma follows.

Therefore, from Lemma 1 and the relations between roots
of (10) and (11) [17], we have the following conclusion.
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Furthermore, from Lemma 2, the following theorem
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where h.o.t denotes the higher order terms.
From the discussions above, we known that if 𝜇 = 0,
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(𝑗)
𝑒

−𝑖𝜔0𝜏
(𝑗)

}

= 1.

(34)

Thus, we can choose

𝐷 =

1

1 + 𝛼𝛼

∗
− 𝛼

2
𝛼𝜏

(𝑗)
𝑒

𝑖𝜔0𝜏
(𝑗) (35)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
Using the samenotations as inHassard et al. [18] and Song

et al. [19], we first compute the center manifold 𝐶
0
at 𝜇 = 0.

Let 𝑥
𝑡
be the solution of (21) when 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑥

𝑡
⟩,

𝑊 (𝑡, 𝜃) = 𝑥

𝑡
(𝜃) − (𝑥 (𝑡) 𝑞 (𝜃) + 𝑧 (𝑡) 𝑞 (𝜃))

= 𝑥

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(36)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (37)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊

20
(𝜃)

𝑧

2

2

+𝑊

11
(𝜃) 𝑧𝑧

+𝑊

02
(𝜃)

𝑧

2

2

+𝑊

30
(𝜃)

𝑧

3

6

+ ⋅ ⋅ ⋅ ,

(38)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0

in the direction of 𝑞∗ and 𝑞∗. Note that𝑊 is real if 𝑥
𝑡
is real.

Here we consider only real solutions. For the solution 𝑥
𝑡
∈ 𝐶

0

of (24), since 𝜇 = 0, we have

𝑧̇ = 𝑖𝜏

(𝑗)
𝜔

0
𝑧 + ⟨𝑞

∗
(𝜃) , 𝐹 (0,𝑊 (𝑧, 𝑧, 𝜃) + 2Re {𝑧𝑞 (𝜃)})⟩

= 𝑖𝜏

(𝑗)
𝜔

0
𝑧 + 𝑞

∗
(0) 𝐹 (0,𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧𝑞 (0)})

= 𝑖𝜏

(𝑗)
𝜔

0
𝑧 + 𝑞

∗
(0) 𝐹

0
(𝑧, 𝑧) .

(39)

We rewrite this equation as

𝑧̇ (𝑡) = 𝑖𝜏

(𝑗)
𝜔

0
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧)

(40)

with

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝐹

0
(𝑧, 𝑧)

= 𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

+ ⋅ ⋅ ⋅ .

(41)

By (36), we have 𝑥
𝑡
(𝜃) = (𝑥

1𝑡
(𝜃), 𝑥

2𝑡
(𝜃)) = 𝑊(𝑡, 𝜃) + 𝑧𝑞(𝜃) +

𝑧 𝑞(𝜃) and 𝑞(𝜃) = (1, 𝛼)𝑇𝑒𝑖𝜃𝜔0𝜏
(𝑗)

, and then

𝑥

1𝑡
(0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧

2

2

+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊

(1)

02
(0)

𝑧

2

2

+ 𝑜 (|(𝑧, 𝑧)|

3
) ,

𝑥

2𝑡
(0) = 𝑧𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

+ 𝑧 𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

+𝑊

(2)

20
(−1)

𝑧

2

2

+𝑊

(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧

2

2

+ 𝑜 (|(𝑧, 𝑧)|

3
) .

(42)

It follows, together with (23), that

𝑥

2𝑡
(0) = 𝛼𝑧 + 𝛼 𝑧 +𝑊

(2)

20
(0)

𝑧

2

2

+𝑊

(2)

02
(0)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

𝑔 (𝑧, 𝑧)

= 𝑞

∗
(0) 𝐹

0
(𝑧, 𝑧)

= 𝐷𝜏

(𝑗)
(1, 𝛼

∗
)(

−𝑥

1𝑡
(0) 𝑥

2𝑡
(−1) − 𝜀𝑥

2

1𝑡
(0) + h.o.t

Σ

1

𝑖!𝑗!

𝑐

𝑖𝑗
𝑥

2

1𝑡
(0) 𝑥

𝑗

2𝑡
(0) + h.o.t )

= 𝐷𝜏

(𝑗)
(−𝑥

1𝑡
(0) 𝑥

2𝑡
(−1) − 𝜀𝑥

2

1𝑡
(0)

+𝛼

∗
∑

1

𝑖!𝑗!

𝑐

𝑖𝑗
𝑥

2

1𝑡
(0) 𝑥

𝑗

2𝑡
(0) + h.o.t)
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= 𝐷𝜏

(𝑗)
{(−𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 𝜀 +

𝛼

∗

2!

(𝑐

20
+ 𝑐

02
𝛼

2
)) 𝑧

2

+ ( − 𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

− 2𝜀

+𝛼

∗
(𝑐

20
+

𝑐

02
𝛼𝛼

2

)) 𝑧𝑧

+ (−𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

− 𝜀 +

𝛼

∗
𝑐

20

2!

+

𝛼

2
𝛼

∗
𝑐

02

2!

) 𝑧

2

+ (−

𝛼

2

𝑒

𝑖𝜔0𝜏
(𝑗)

𝑊

(1)

20
(0) −

1

2

𝑊

(2)

20
(−1)

− 𝜀𝑊

(1)

20
(0) + 𝛼

∗
(

1

2

𝑐

20
𝑊

(1)

20
(0)

+

1

2

𝛼𝑐

02
𝑊

(2)

20
)

× 𝑐

20
𝑊

(1)

11
(0)

+𝛼𝑐

02
𝑊(2)

11
(0) ) 𝑧

2
𝑧 + ⋅ ⋅ ⋅ } .

(43)

Comparing the coefficients with (41), we have

𝑔

20
= 𝐷𝜏

(𝑗)
(−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 2𝜀 + 𝛼

∗
(𝑐

20
+ 𝑐

02
𝛼

2
)) ,

𝑔

11
= 𝐷𝜏

(𝑗)
(−𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

− 2𝜀

+𝛼

∗
(𝑐

20
+

𝑐

02
𝛼𝛼

2

)) ,

𝑔

02
= 𝐷𝜏

(𝑗)
(−2𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

− 2𝜀 + 𝛼 (𝑐

20
+ 𝛼𝑐

02
)) ,

𝑔

21
= −𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

𝑊

(1)

20
(0) − 𝑊

(2)

20
(−1) − 2𝜀𝑊

(1)

20
(0)

+ 𝛼

∗
(𝑐

20
𝑊

(1)

20
(0) + 𝑐

02
𝛼𝑊

(2)

20
(0)) + 2𝑐

20
𝑊

(1)

11
(0)

+ 2𝑐

02
𝛼𝑊

(2)

11
(0) .

(44)

In order to determine 𝑔
21
, we need to compute 𝑊

20
(𝜃) and

𝑊

11
(𝜃). From (28) and (36), we have

̇

𝑊 = 𝑥̇

𝑡
− 𝑧̇𝑞 −

̇

𝑧 𝑞

=

{

{

{

𝐴𝑊 − 2𝑅 {𝑞 ∗ (0)𝐹

0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0] ,

𝐴𝑊 − 2𝑅 {𝑞 ∗ (0)𝐹

0
𝑞 (𝜃)} + 𝐹

0
, 𝜃 = 0

≡ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(45)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻

20
(𝜃)

𝑧

2

2

+ 𝐻

11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(46)

Expanding the above series and comparing the correspond-
ing coefficients, we obtain

(𝐴 − 2𝑖𝜏

(𝑗)
𝜔

0
)𝑊

20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊

11
(𝜃) = −𝐻

11
(𝜃) , . . . .

(47)

Following (45), we know that for 𝜃 ∈ [−1, 0],

𝐻(𝑧, 𝑧, 𝜃) = −𝑞

∗
(0)𝐹

0
𝑞 (𝜃) − 𝑞

∗
(0) 𝐹

0
𝑞(𝜃)

= −𝑔𝑞 (𝜃) − 𝑔𝑞(𝜃).

(48)

Comparing the coefficients with (46), we get

𝐻

20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃),

𝐻

11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞(𝜃).

(49)

Substituting these relations into (47), we obtain

̇

𝑊

20
(𝜃) = 2𝑖𝜏

(𝑗)
𝜔

0
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞(𝜃).

(50)

Solving𝑊
20
(𝜃), we obtain

𝑊

20
(𝜃) =

𝑖𝑔

20
𝑞 (0)

𝜏

(𝑗)
𝜔

0

𝑒

𝑖𝜏
(𝑗)
𝜔0𝜃

+

𝑖𝑔

02
𝑞(0)

3𝜏

(𝑗)
𝜔

0

𝑒

−𝑖𝜏
(𝑗)
𝜔0𝜃

+ 𝐸

1
𝑒

2𝑖𝜏
(𝑗)
𝜔0𝜃
,

(51)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸

(2)

1
) ∈ 𝑅

2 is a constant vector.
Similarly, we can obtain

𝑊

11
(𝜃) =

−𝑖𝑔

11
𝑞 (0)

𝜏

(𝑗)
𝜔

0

𝑒

𝑖𝜏
(𝑗)
𝜔0𝜃

+

𝑖𝑔

11
𝑞(0)

𝜏

(𝑗)
𝜔

0

𝑒

−𝑖𝜏
(𝑗)
𝜔0𝜃

+ 𝐸

2
,

(52)

where 𝐸
2
= (𝐸

(1)

2
, 𝐸

(2)

2
) ∈ 𝑅

2 is also a constant vector.
Inwhat follows, we determine the constant vectors𝐸

1
and

𝐸

2
. From (47) and the definition of 𝐴, we obtain

∫

0

−1

𝑑𝜂 (𝜃)𝑊

20
(𝜃) = 2𝑖𝜏

(𝑗)
𝜔

0
𝑊

20
(0) − 𝐻

20
(0) ,

(53)

∫

0

−1

𝑑𝜂 (𝜃)𝑊

11
(𝜃) = −𝐻

11
(𝜃) ,

(54)

where 𝜂(𝜃) = 𝜂(0, 𝜃). From (45) and (46), we have

𝐻

20
(0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞(0) + 2𝜏

(𝑗)
(

−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 2𝜀

𝑐

20
+ 𝑐

02
𝛼

2
) ,

(55)

𝐻

11
(0) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞(0)

+ 2𝜏

(𝑗)
(

−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

− 2𝜀

𝑐

20
+ 𝑐

02
𝛼𝛼

) .

(56)
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Substituting (51) and (55) into (53) and noticing that

(𝑖𝜏

(𝑗)
𝜔

0
𝐼 − ∫

0

−1

𝑒

𝑖𝜃𝜔0𝜏
(𝑗)

𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜏

(𝑗)
𝜔

0
𝐼 − ∫

0

−1

𝑒

−𝑖𝜃𝜔0𝜏
(𝑗)

𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(57)

we get

(2𝑖𝜏

(𝑗)
𝜔

0
𝐼 − ∫

0

−1

𝑒

2𝑖𝜃𝜔0𝜏
(𝑗)

𝑑𝜂 (𝜃))𝐸

1

= 2𝜏

(𝑗)
(

−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 2𝜀

𝑐

20
+ 𝑐

02
𝛼

2
) ;

(58)

that is,

(

2𝑖𝜔

0
+ 𝛼

1
−𝛼

2
𝑒

−2𝑖𝜔0𝜏
(𝑗)

−𝑟

1
2𝑖𝜔

0

)𝐸

1
= 2(

−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 2𝜀

𝑐

20
+ 𝑐

02
𝛼

2
) .

(59)

It follows that

𝐸

(1)

1
=

2

𝐴

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 2𝜀 −𝛼

2
𝑒

−2𝑖𝜔0𝜏
(𝑗)

𝑐

20
+ 𝑐

02
𝛼

2
2𝑖𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

,

𝐸

(2)

1
=

2

𝐴

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2𝑖𝜔

0
+ 𝛼

1
−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 2𝜀

−𝑟

1
𝑐

20
+ 𝑐

02
𝛼

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

,

(60)

where 𝐴 =

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2𝑖𝜔0+𝛼1 −𝛼2𝑒
−2𝑖𝜔0𝜏
(𝑗)

−𝑟1 2𝑖𝜔0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

.
Similarly, substituting (52) and (56) into (54), we have

(

𝛼

1
𝛼

2

−𝑟

1
−𝑟

2

)𝐸

2
= 2(

−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

− 2𝜀

𝑐

20
+ 𝑐

02
𝛼𝛼

) . (61)

Then we obtain

𝐸

(1)

2
=

2

𝐵

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

− 2𝜀 −𝛼

2

𝑐

20
+ 𝑐

02
𝛼𝛼 −𝑟

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

,

𝐸

(2)

2
=

2

𝐵

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝛼

1
−2𝛼𝑒

−𝑖𝜔0𝜏
(𝑗)

− 𝛼𝑒

𝑖𝜔0𝜏
(𝑗)

− 2𝜀

−𝑟

1
𝑐

20
+ 𝑐

02
𝛼𝛼

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

,

(62)

where 𝐵 = 󵄨󵄨󵄨
󵄨

𝛼1 𝛼2
−𝑟1 −𝑟2

󵄨

󵄨

󵄨

󵄨

.
Therefore, all 𝑔

𝑖𝑗
in (41) have been expressed in terms

of the parameters and the delay given in (2). Substituting
expressions of 𝑔

02
, 𝑔
11
, 𝑔
20
, and 𝑔

21
into the following

relations,

𝐶

1
(0) =

𝑖

2𝜔

0
𝜏

0

(𝑔

20
𝑔

11
− 2

󵄨

󵄨

󵄨

󵄨

𝑔

11

󵄨

󵄨

󵄨

󵄨

2

−

1

3

󵄨

󵄨

󵄨

󵄨

𝑔

02

󵄨

󵄨

󵄨

󵄨

2

+

𝑔

21

2

) , (63)

we obtain

𝐾

2
= −

Re {𝑐
1
(0)}

Re {𝜆󸀠 (𝜏)}
, 𝛽

2
= 2Re {𝐶

1
(0)} ,

𝑇

2
= −

Im {𝐶

1
(0)} + 𝐾

2
Im {𝜆

󸀠
(𝜏

(𝑗)
)}

𝜏

(𝑗)
𝜔

0

.

(64)

We follow the idea in Hassard et al. [18] and Song et al.
[19], which implies that the direction of the Hopf bifurcation
is determined by the sign of 𝛽

2
, and the stability of the

bifurcating periodic solutions is determined by the sign of
𝐾

2
and 𝑇

2
determines the period of the bifurcating periodic

solution. Thus we have the following.

Theorem 4. (1) If 𝐾
2
> 0 (𝐾

2
< 0), then the Hopf bifurcation

is supercritical (subcritical) and the bifurcating periodic solu-
tions exist for 𝜏 > 𝜏(𝑗) (𝜏 < 𝜏(𝑗)).

(2) If 𝛽
2
< 0 (𝛽

2
> 0), then the bifurcating periodic solu-

tions are stable (unstable).
(3) If 𝑇

2
> 0 (𝑇

2
< 0), then the periodic of the bifurcating

periodic solutions increase (decrease).

4. Conclusions

In the paper, we focused on the effect of the maturation time
of the predator in Bazykin [1]. We first discussed the effect
of the time 𝜏 on the stability of the positive equilibrium of
the system (2), and then we investigated the existence of the
Hopf bifurcation, the bifurcating direction, and the stability
of the bifurcating periodic solutions by the normal form and
center manifold. In fact, we can also incorporate other time
delays such as capturing time into the mathematical model
and look at their dynamics by other methods. In this regard,
we can obtain other complicated and interesting results.
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