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Based on a fourth order compact difference scheme, a Richardson cascadic multigrid (RCMG) method for 2D Poisson equation is
proposed, in which the an initial value on the each grid level is given by the Richardson extrapolation technique (Wang and Zhang
(2009)) and a cubic interpolation operator. The numerical experiments show that the new method is of higher accuracy and less
computation time.

1. Introduction

Poisson equation is a partial differential equation (PDE) with
broad applications in theoretical physics, mechanical engi-
neering and other fields, such as groundwater flow [1, 2], fluid
pressure prediction [3], electromagnetics [4], semiconductor
modeling [5], and electrical power network modeling [6].

We consider the following two-dimensional (2D) Poisson
equation:

−

𝜕

2
𝑢 (𝑥, 𝑦)

𝜕𝑥

2
−

𝜕

2
𝑢 (𝑥, 𝑦)

𝜕𝑦

2
= 𝑓 (𝑥, 𝑦) , inΩ,

𝑢 (𝑥, 𝑦) = 0, on 𝜕Ω,

(1)

whereΩ ∈ 𝑅

2 is a rectangular domain or union of rectangular
domains with Dirichlet boundary 𝜕Ω. The solution 𝑢(𝑥, 𝑦)

and the forcing function𝑓(𝑥, 𝑦) are assumed to be sufficiently
smooth.

Multigrid (MG) method is one of the most effective
algorithms to solve the large scale problem. In 1996, cascadic
multigrid (CMG) method proposed by Bornemann and
Deuflhard [7] and then analyzed by Shi et al. (see [8–11])

and Shaidurov (see [12]). In the recent years, there have
been several theoretical analyses and the applications of
these methods for the plate bending problems (see [13]), the
parabolic problems (see [10]), the nonlinear problems (see
[14, 15]), and the Stokes problems (see [16]). In order to
improve the efficiency of the CMG, some new extrapolation
formulas and extrapolation cascadic multigrid (EXCMG)
methods are proposed by Chen et al. (see [17–20]). These
newmethods can provide a better initial value for smoothing
operator on the refined grid level to accelerate their conver-
gence rate.

Based on the Richardson extrapolation technique, Wang
and Zhang [21] presented a multiscale multigrid algorithm.
Numerical experiments show that the new method is of
higher accuracy solution and higher efficiency.

In this paper, in order to develop a more efficient
CMG method, we use the Richardson extrapolation tech-
nique presented in [21] and a new extrapolation formula; a
new Richardson extrapolation cascadic multigrid (RCMG)
method for 2D Poisson equation is proposed.

The sections are arranged as follows: the fourth order
compact difference scheme and Richardson extrapolation
technique are given in Section 2. Chen’s new extrapolation
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formula and EXCMG method are introduced in Section 3.
In Section 4, we present the RCMG method. In Section 5,
the numerical experiments show the effectiveness of the new
method.

2. Fourth Order Compact Difference Scheme
and Richardson Extrapolation Technique

For convenience, we consider the rectangular domain Ω =

[0, 𝐿

𝑥
] × [0, 𝐿

𝑦
]. We discretize Ω with uniform mesh sizes

ℎ

𝑥
= 𝐿

𝑥
/𝑁

𝑥
and ℎ

𝑦
= 𝐿

𝑦
/𝑁

𝑦
in the 𝑥 and 𝑦 coordinate

directions. The mesh points are (𝑥

𝑖
, 𝑦

𝑗
) with 𝑥

𝑖
= 𝑖ℎ

𝑥
and

𝑦

𝑗
= 𝑗ℎ

𝑦
, and 0 ≤ 𝑖 ≤ 𝑁

𝑥
, 0 ≤ 𝑗 ≤ 𝑁

𝑦
. Let’s denote the

mesh aspect ratio 𝛾 = ℎ

𝑥
/ℎ

𝑦
, and 𝑢

𝑖,𝑗
be the solution at the

grid point (𝑥
𝑖
, 𝑦

𝑗
), we can rewrite the fourth order compact

difference scheme of (1) into the following form [22]:

𝑎𝑢

𝑖𝑗
+ 𝑏 (𝑢

𝑖+1,𝑗
+ 𝑢

𝑖−1,𝑗
) + 𝑐 (𝑢

𝑖,𝑗+1
+ 𝑢

𝑖,𝑗−1
)

+ 𝑑 (𝑢

𝑖+1,𝑗+1
+ 𝑢

𝑖+1,𝑗−1
+ 𝑢

𝑖−1,𝑗+1
+ 𝑢

𝑖−1,𝑗−1
)

=

ℎ

2

𝑥

2

(8𝑓

𝑖,𝑗
+ 𝑓

𝑖+1,𝑗
+ 𝑓

𝑖−1,𝑗
+ 𝑓

𝑖,𝑗
+ 𝑓

𝑖,𝑗−1
) .

(2)

The coefficients in (2) are

𝑎 = −10 (1 + 𝛾

2
) , 𝑏 = 5 − 𝛾

2
,

𝑐 = 5𝛾

2
− 1, 𝑑 =

(1 + 𝛾

2
)

2

.

(3)

If the domainΩ is subdivided into a sequence of grids𝑍
𝑙ℎ
(or

𝑍

𝑙
), 𝑙 = 0, 1, 2, . . . , 𝐿 with step length ℎ

𝑙
= ℎ/2

𝑙
= ℎ

𝑙,𝑥
= ℎ

𝑙,𝑦

(namely, 𝛾 = 1), by using the fourth order compact difference
scheme (see (2)), a series of linear equations of the model
problem (1) are given as follows

𝐴

𝑙
𝑢

𝑙
= 𝐹

𝑙
, 𝑙 = 0, 1, 2, . . . , 𝐿.

(4)

Assume the fourth order accurate solutions𝑢2ℎ
𝑖,𝑗
and𝑢

ℎ

𝑖,𝑗
on

the𝑍
2ℎ
grid and the𝑍

ℎ
grid are given, respectively (Figure 1).

In 2009, Wang and Zhang [21] applied the Richardson
extrapolation (where 𝑝 = 4)

𝑢̃

2ℎ

𝑖,𝑗
=

(2

𝑝
𝑢

ℎ

2𝑖,2𝑗
− 𝑢

2ℎ

𝑖,𝑗
)

2

𝑝
− 1

=

(16𝑢

ℎ

2𝑖,2𝑗
− 𝑢

2ℎ

𝑖,𝑗
)

15

(5)

to get a sixth order accurate solution 𝑢̃

2ℎ

𝑖,𝑗
on 𝑍

2ℎ
.

The above extrapolation operator is rewritten as the
following iterative operator RET.

Algorithm 1. Consider 𝑢̃ℎ,new ← RET(𝑢̃ℎ, 𝑢̃2ℎ, 𝜀, 𝑘max
).

Step 1. Set 𝑢̃ℎ,old := 𝑢̃

ℎ, 𝑘 := 0.

Step 2. Update every (even, even) grid point on 𝑍

ℎ
by

Richardson extrapolation formula (see (5)); then use direct
interpolation to get 𝑢̃ℎ,new

2𝑖,2𝑗
∈ 𝑍

ℎ
. Consider

𝑢̃

ℎ,new
2𝑖,2𝑗

:=

(16𝑢

ℎ,old
2𝑖,2𝑗

− 𝑢

2ℎ

𝑖,𝑗
)

15

.

(6)

(even, even) points

(odd, odd) points

(odd, even) points

(even, odd) points

Figure 1: Four types of points on 4 × 4 grid.

Step 3. Update every (odd, odd) grid point on 𝑍

ℎ
. From (2),

for each (odd, odd) point (𝑖, 𝑗), the updated solution is

𝑢̃

ℎ,new
𝑖,𝑗

:=

1

𝑎

[𝐹

𝑖,𝑗
− 𝑏 (𝑢̃

ℎ,old
𝑖+1,𝑗

+ 𝑢̃

ℎ,old
𝑖−1,𝑗

)

− 𝑐 (𝑢̃

ℎ,old
𝑖,𝑗+1

+ 𝑢̃

ℎ,old
𝑖,𝑗−1

)

− 𝑑 (𝑢̃

ℎ,new
𝑖+1,𝑗+1

+ 𝑢̃

ℎ,new
𝑖+1,𝑗−1

+ 𝑢̃

ℎ,new
𝑖−1,𝑗+1

+ 𝑢̃

ℎ,new
𝑖−1,𝑗−1

)] .

(7)

Here, 𝐹
𝑖,𝑗
represents the right-hand side part of (2).

Step 4. Update every (odd, even) grid point on 𝑍

ℎ
. From (2),

for each (odd, even) grid point, the updated value is

𝑢̃

ℎ,new
𝑖,𝑗

:=

1

𝑎

[𝐹

𝑖,𝑗
− 𝑏 (𝑢̃

ℎ,new
𝑖+1,𝑗

+ 𝑢̃

ℎ,new
𝑖−1,𝑗

)

− 𝑐 (𝑢̃

ℎ,new
𝑖,𝑗+1

+ 𝑢̃

ℎ,new
𝑖,𝑗−1

)

− 𝑑 (𝑢̃

ℎ,old
𝑖+1,𝑗+1

+ 𝑢̃

ℎ,old
𝑖+1,𝑗−1

+ 𝑢̃

ℎ,old
𝑖−1,𝑗+1

+ 𝑢̃

ℎ,old
𝑖−1,𝑗−1

)] .

(8)

Step 5. Update every (even, odd) grid point on 𝑍

ℎ
. From (2),

the idea is similar to the (odd, even) grid point. Let 𝑘 := 𝑘+1.

Step 6. If ||𝑢̃ℎ,new − 𝑢̃

ℎ,old
|| ≤ 𝜀 or 𝑘 = 𝑘

max, stop. Else, let
𝑢̃

ℎ,old
:= 𝑢̃

ℎ,new and return to Step 3.

3. New Extrapolation Formula and
EXCMG Method

Based on an asymptotic expansion of finite element method,
a new extrapolation formula and an extrapolation cascadic
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multigrid (EXCMG)method are proposed by Chen et al. (see
[17–20]). The numerical experiments show that the EXCMG
method is of high accuracy and efficiency. Nowwe rewrite the
new extrapolation formula as follows.

Ex𝑢̃ℎ
2𝑖,2𝑗

:=

(5𝑢

ℎ

2𝑖,2𝑗
− 𝑢

2ℎ

𝑖,𝑗
)

4

,

Ex𝑢̃ℎ
2𝑖+1,𝑗

:= 𝑢

ℎ

2𝑖+1,𝑗
+

[(𝑢

ℎ

2𝑖,2𝑗
− 𝑢

2ℎ

𝑖,𝑗
) + (𝑢

ℎ

2𝑖+2,2𝑗
− 𝑢

2ℎ

𝑖+1,𝑗
)]

8

,

Ex𝑢̃ℎ
2𝑖,2𝑗+1

:= 𝑢

ℎ

2𝑖,2𝑗+1

+

[(𝑢

ℎ

2𝑖,2𝑗
− 𝑢

2ℎ

𝑖,𝑗
) + (𝑢

ℎ

2𝑖,2𝑗+2
− 𝑢

2ℎ

𝑖,𝑗+1
)]

8

,

Ex𝑢̃ℎ
2𝑖+1,2𝑗+1

:= 𝑢

ℎ

2𝑖+1,2𝑗+1

+ [(𝑢

ℎ

2𝑖,2𝑗
− 𝑢

2ℎ

𝑖,𝑗
) + (𝑢

ℎ

2𝑖+2,2𝑗
− 𝑢

2ℎ

𝑖+1,𝑗
)

+ (𝑢

ℎ

2𝑖,2𝑗+2
− 𝑢

2ℎ

𝑖,𝑗+1
)

+ (𝑢

ℎ

2𝑖+2,2𝑗+2
− 𝑢

2ℎ

𝑖+1,𝑗+1
)]

× 16

−1
.

(9)

Let us denote the above new extrapolation formula by
operator

Ex𝑢̃ℎ := 𝐹 (𝑢

2ℎ
, 𝑢

ℎ
) . (10)

Now let 𝑢𝑖, on 𝑍

𝑖
, 𝑖 = 0, 1 denote the exact solutions, the

EXCMGmethod is as following:

Algorithm 2 (EXCMG). For 𝑙 = 2, . . . , 𝐿, consider the
following

Step 1. Extrapolate by using the new extrapolation formula
(see (10))

Ex𝑢̃𝑙−1 := 𝐹 (𝑢

𝑙−2
, 𝑢

𝑙−1
) . (11)

Step 2. Compute the initial value

𝑢

𝑙,0
:= 𝐼

2
Ex𝑢̃𝑙−1 (12)

on 𝑍

𝑙
by using quadratic interpolation operator 𝐼

2
.

Step 3. Smooth𝑚

𝑙
times to get the iterative solution

𝑢

𝑙
:= 𝑆

𝑚𝑙

𝑙
𝑢

𝑙,0 (13)

on 𝑍

𝑙
by using some classical iterative operator 𝑆

𝑙
.

Step 4.Return to Step 1 if 𝑙 < 𝐿, until you get the final iterative
solution 𝑢

𝐿 on the finest grid 𝑍

𝐿
.

4. Richardson Cascadic Multigrid Method

One of the main tasks in cascadic multigrid method is
constructing a suitable interpolation. Based on a new ex-
trapolation-interpolation formula, Chen [17–20] proposed
the following extrapolation cascadic multigrid (EXCMG)
method, in which the new extrapolation and quadratic
interpolation are used to provide a better initial value on
refined grid.

In this section, we use RET operator and a cubic inter-
polation to interpolate the initial guess 𝑢̃

𝑙,0 on the refined
grid𝑍

𝑙ℎ
. Then a classical iterative operator (such as conjugate

gradientmethod) is used as a smoothing operator to compute
the high accuracy solution on the fine grid𝑍

𝑙ℎ
. Similar to the

standardCMGmethod,we propose the followingRichardson
cascadic multigrid (RCMG) method.

Algorithm 3 (RCMG).

Step 1. Exactly solve the equation 𝐴

𝑙
𝑢

𝑙
= 𝐹

𝑙 on coarsest grid
𝑍

𝑙
, 𝑙 = 1, 2.

Step 2. Run Algorithm 1; we have

𝑢

𝑙
= RET (𝑢

𝑙
, 𝑢

𝑙−1
, 𝜀, 𝑘

max
𝑙

) . (14)

Step 3.Use a cubic interpolation operator 𝐼
3
to have the initial

value

𝑢

𝑙+1,0
:= 𝐼

3
𝑢

𝑙 (15)

on the gird level 𝑍
𝑙+1

.

Step 4. Smoothing 𝑤

𝑙
times by using the classical iterative

operator 𝑆
𝑙
,

𝑢

𝑙+1
:= 𝑆

𝑤𝑙

𝑙
𝑢

𝑙+𝑙,0 (16)

on the level 𝑍
𝑙+1

. Set 𝑙 := 𝑙 + 1;

Step 5. Return to Step 2, if 𝑙 < 𝐿.
The difference between RCMG method and EXCMG

method is that

RCMG = RET + cubic interpolation

+ classical iterative operator + CMG,

EXCMG = new extrapolation + quadratic interpolation

+ classical iterative operator + CMG.

(17)

5. Numerical Experiment and Comparison

Numerical experiments are conducted to solve a 2D Poisson
equation (1) on the unit square domain [0, 1] × [0, 1].
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Figure 2: Example 4, grid 64 × 64, initial error of EXCMG ((a) scale 10

−4) and RCMG ((b) scale 10

−5).

Example 4. The exact solution 𝑢 = sin(𝑦)(1 − 𝑒

𝑥
)(1 − 𝑥

2
)(1 −

𝑦

2
); the forcing function

𝑓 = 2 sin (𝑦) (𝑒

𝑥
− 1) (𝑥

2
− 1) + 2 sin (𝑦) (𝑒

𝑥
− 1) (𝑦

2
− 1)

− sin (𝑦) (𝑒

𝑥
− 1) (𝑥

2
− 1) (𝑦

2
− 1)

+ 4𝑦 cos (𝑦) (𝑒𝑥 − 1) (𝑥

2
− 1)

+ 4𝑥𝑒

𝑥 sin (𝑦) (𝑦

2
− 1) + 𝑒

𝑥 sin (𝑦) (𝑥

2
− 1) (𝑦

2
− 1) .

(18)

Example 5. The exact solution 𝑢 = ln(1 +

sin(𝜋𝑥2))(cos(sin(𝑥)) − 1) sin(𝜋𝑦); the forcing function

𝑓 = 𝜋

2 sin (𝜋𝑦) log (sin (𝜋𝑥

2
) + 1) (cos (sin (𝑥)) − 1)

− sin (sin (𝑥)) sin (𝜋𝑦) log (sin (𝜋𝑥

2
) + 1) sin (𝑥)

+ cos (sin (𝑥)) sin (𝜋𝑦) log (sin (𝜋𝑥

2
) + 1) cos2 (𝑥)

−

2𝜋 sin (𝜋𝑦) cos (𝜋𝑥2) (cos (sin (𝑥)) − 1)

sin (𝜋𝑥

2
) + 1

+

(4𝜋

2
𝑥

2 sin (𝜋𝑦) cos2 (𝜋𝑥2) (cos (sin (𝑥)) − 1))

(sin (𝜋𝑥

2
) + 1)

2

+

4𝜋

2
𝑥

2 sin (𝜋𝑦) sin (𝜋𝑥

2
) (cos (sin (𝑥)) − 1)

sin (𝜋𝑥

2
) + 1

+

4𝜋𝑥 sin (sin (𝑥)) sin (𝜋𝑦) cos (𝑥) cos (𝜋𝑥2)
sin (𝜋𝑥

2
) + 1

.

(19)

We use the conjugate gradient (CG)method as a smooth-
ing iterative operator 𝑆 in EXCMG method and RCMG

0 1 2 3 4 5 6

EXCMG
RCMG

10
−5

10
−6

10
−7

10
−8

10
−9

cpu (s)

||
er

ro
r||

∞

Figure 3: Comparison of the maximum error ‖𝑢

𝐿
− 𝑢‖

∞
and cpu

time for Example 4 with 𝐿 = 3, taking step lengths ℎ
𝐿
= 1/𝑚, 𝑚 =

64, 128, 256, and 512, respectively.

method. In EXCMGmethod, the number of iterations 𝑚̂
𝑙
on

each grid level has to increase from finer to coarser grids; in
this paper let 𝑚̂

𝑙
= 8 × 2

𝐿−𝑙+1. And in RCMG, we set the
number of iteration 𝑘

max
𝑙

(Step 2) and 𝑤

𝑙
(Step 4) be 8 × 2

𝐿−𝑙.
We set 𝜀 = 10

−8 of RET in the RCMGmethod (on Step 2).

5.1. Comparison of the Initial Errors. Assume that the exact
solutions of the difference equation on grids 16×16 and 32×32

are given.We compare EXCMGmethodwith RCMGmethod
for the initial error ‖Err0

64
‖ = ‖𝑢

0

64
− 𝑢

64
‖ on grid 64 × 64.

From Figure 2, the accuracy of the initial error on the
next grid of RCMGmethod is higher than EXCMGmethod.
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Figure 4: Comparison of the maximum error ‖𝑢

𝐿
− 𝑢‖

∞
and cpu

time for Example 5 with 𝐿 = 3, taking step lengths ℎ
𝐿
= 1/𝑚, 𝑚 =

64, 128, 256, and 512, respectively.

Table 1: Numerical results of EXCMG and RCMG for Example 4.

𝐿 1/ℎ

𝐿

EXCMG RCMG
||𝑢

𝐿
− 𝑢||

∞
cpu ||𝑢

𝐿
− 𝑢||

∞
cpu

3
128 6.28𝐸 − 07 0.37 1.27𝐸 − 07 0.14
256 1.12𝐸 − 07 1.12 1.85𝐸 − 08 0.31
512 1.07𝐸 − 08 4.10 2.58𝐸 − 09 1.12

4
128 4.76𝐸 − 07 0.34 2.61𝐸 − 07 0.08
256 1.27𝐸 − 07 1.19 6.11𝐸 − 08 0.42
512 3.58𝐸 − 08 4.38 6.07𝐸 − 09 1.29

5
128 9.21𝐸 − 07 0.51 3.05𝐸 − 07 0.08
256 1.62𝐸 − 07 1.06 7.82𝐸 − 08 0.31
512 2.72𝐸 − 08 4.15 1.72𝐸 − 08 1.15

Namely, a better initial value on the fine grid can be got by
using RCMG method. Based on the results of the literature
[17–20], the RCMG method can obtain good convergence
rate.

5.2. Comparison between EXCMG Method and RCMG
Method. Let ‖Error‖

∞
= ‖𝑢

𝐿
− 𝑢‖

∞
denote the maximum

absolute error between the computed solution 𝑢

𝐿 and the
exact solution 𝑢 on the finest grid points. The “cpu” denotes
the computing time (unit: second) of EXCMG method and
RCMGmethod.

From Figures 3 and 4 and Tables 1 and 2, we see that,
under the same conditions, the RCMG method can obtain
higher computational precision and spend less computing
time than EXCMGmethod.

Table 2: Numerical results of EXCMG and RCMG for Example 5.

𝐿 1/ℎ

𝐿

EXCMG RCMG
||𝑢

𝐿
− 𝑢||

∞
cpu ||𝑢

𝐿
− 𝑢||

∞
cpu

3
128 2.80𝐸 − 06 0.39 1.77𝐸 − 06 0.16
256 4.50𝐸 − 07 1.22 2.50𝐸 − 07 0.50
512 4.18𝐸 − 08 4.17 3.16𝐸 − 08 1.23

4
128 1.07𝐸 − 05 0.25 4.29𝐸 − 06 0.11
256 1.92𝐸 − 06 1.00 9.28𝐸 − 07 0.30
512 1.71𝐸 − 07 4.23 1.39𝐸 − 07 1.17

5
128 1.74𝐸 − 05 0.28 2.56𝐸 − 06 0.09
256 5.29𝐸 − 06 1.01 2.00𝐸 − 06 0.31
512 7.94𝐸 − 07 4.07 3.35𝐸 − 07 1.06

6. Conclusion

In this paper, based on a fourth order compact scheme,
we present a Richardson cascadic multigrid method for 2D
Poisson problem by using Richardson technique presented
by [21]. The numerical results show that RCMG method has
higher computational accuracy and higher efficiency.
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