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We discuss and develop the convex approximation for robust joint chance constraints under uncertainty of first- and second-
order moments. Robust chance constraints are approximated by Worst-Case CVaR constraints which can be reformulated by a
semidefinite programming. Then the chance constrained problem can be presented as semidefinite programming. We also find
that the approximation for robust joint chance constraints has an equivalent individual quadratic approximation form.

1. Introduction

Chance constraints, also called probabilistic constraints in the
literature, have a long history in stochastic programming and
are the direct way to treat stochastic data uncertainty. With
a large class problem involved, it can be formulated in the
following form:

min
x∈R𝑛

c𝑇x

s.t. P𝜉 (𝑤
0

𝑖
(x) + w

𝑖
(x)𝑇𝜉 ≤ 0, ∀𝑖 = 1, 2, . . . , 𝑚) ≥ 1 − 𝜖,

x ∈ 𝜒,
(1)

where 𝜉 is undetermined vector, x ∈ 𝜒 is the decision vector,
𝜒 ∈ R𝑛 is a bounded, convex closed set which can be
represented by a set of additional deterministic semidefinite
constraints, and c ∈ R𝑛 is the deterministic cost vector.
The chance constraint in the above problem requires all the
𝑚 uncertainty-affected constraints to be jointly feasible with
probability at least 1 − 𝜖, where 𝜖 is a desired safety factor
given by the decision-maker. Problem (1) can be classified as
an individual chance constrained problem when𝑚 = 1 and a
joint chance constrained problem when𝑚 ≥ 2.

This problem has been considered by Charnes et al. [1],
Miller and Wagnet [2], and Prékopa [3]. Due to the feasible

set of problems, (1) is typically nonconvex and sometimes
even disconnected; at the same time, the full and accurate
information about the probability distribution P𝜉 cannot
be required; the problem has not found interest and wide
application in theory and practice for a long time.

One interesting issue on the chance constrained problem
is to determine the distributional condition under which
the problem can be reformulated as tractable convex pro-
gramming. Alizadeh and Goldfarb [4], Calafiore and EI
Ghaoui [5], Erdoğan and Iyengar [8], and Zymler et al. [6]
showed that the chance constraint can be reformulated as
tractable convex and cone constraints under some special
exact information, respectively. However, the computation of
chance constrained problems for general case is intractable.
Nemirovski and Shapiro [7] pointed out that computing the
probability of a weighted sum of uniformly distributed vari-
ables being nonpositive is already NP-hard.The intractability
of a chance constrained problem using exact information has
spurred recent interest in robust optimization in which data
uncertainties are controlled in several types of uncertainty
sets [9, 10]. Moreover, robust optimization generally needs
segmental information on probability distributions such as
known supports and covariances. Zymler et al. [6] showed
an exact LMIS reformulation for chance constrained problem
which can be computed by solving a tractable SDP under
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known first- and second-order moments information. Usu-
ally, in practice, one only has limited information about the
probability distribution driving the uncertain parameters,
involved in the decision-making process. It implies that we
cannot obtain the exact moments information. In this paper,
we extend the framework of Zymler et al. [6] to the case of
inexact known moments information. We use the following
two constraints parameterized by 𝜂 ≥ 0 which rely on
empirical estimates of the mean 𝜇

0
and covariance matrix

Σ
0
of the random vector to construct the distributional

information:

𝜇
0
− 𝜂 ≤ E [𝜉] ≤ 𝜇

0
+ 𝜂,

Σ
0
+ (𝜇
0
− 𝜂) (𝜇

0
− 𝜂)
𝑇

⪯ E [𝜉𝜉
𝑇

] ⪯ Σ
0
+ (𝜇
0
+ 𝜂) (𝜇

0
+ 𝜂)
𝑇

.

(2)

It describes how likely 𝜉 is to be close to 𝜇
0
controlled by the

vector 𝜂. At the same time, the parameter 𝜂 provides natural
means of quantifying one’s confidence in 𝜇

0
and Σ

0
. In what

follows, we consider the latest problem in this paper under
the distributional set

D (R
𝐿

,𝜇
0
,Σ
0
, 𝜂)

= {P ∈ P : P (𝜉 ∈ R
𝐿

) = 1 and satisfies (2)} ,
(3)

where D is the set of all probability distributions on the
measurable space (R𝐿,B) andB is the Borel 𝜎-algebra onR𝐿.
To this end, let P denote the set of all probability measures
corresponding to D.

Now let us consider the following distributionally robust
chance constrained program:

inf
P∈P

P (𝑤
0

𝑖
(x) + w

𝑖
(x)𝑇𝜉 ≤ 0, ∀𝑖 = 1, 2, . . . , 𝑚) ≥ 1 − 𝜖. (4)

It is easy to verify that the feasible set of the above
inequality is a subset of the feasible set of problem (1).
This yields the following distributionally robust chance con-
strained program:

min
x∈R𝑛

𝑐

𝑇

𝑥

s.t. inf
P∈P

P (𝑤
0

𝑖
(x) + w

𝑖
(x)𝑇𝜉 ≤ 0, ∀𝑖 = 1, 2, . . . , 𝑚) ≥ 1 − 𝜖,

x ∈ 𝜒,
(5)

which constitutes a conservative approximation for problem
(1) in the sense that it has the same objective functions but a
smaller feasible set.

In this paper, we discuss approximations for distribution-
ally robust joint chance constraints under inexact informa-
tion of first- and second-order moments, which extends the
framework of Zymler et al. [6] from exact known first- and
second-ordermoments.Weprove that it can be approximated
by a Worst-Case CVaR constraint which can be represented
as a semidefinite programming. Then, we show that distri-
butionally robust joint chance constrained problem has an

equivalent quadratic approximation form. The advantage of
the new framework lies on the limited information about
distribution and the tractable convex approximation.

2. Distributionally Robust Joint Chance
Constraints for LP

Let 𝑔(x, 𝜉) be the chance constraint with the decision vector x
and the randomvector 𝜉. Now,we consider the general robust
individual chance constraint

inf
P∈P

P (𝑔 (x, 𝜉) ≤ 0) ≥ 1 − 𝜖, (6)

whose feasible set is denoted by Π
𝑔
= {𝑥 ∈ R𝑛 :

infP∈PP(𝑔(𝑥, 𝜉) ≤ 0) ≥ 1 − 𝜖}. Shapiro et al. [11] showed
that the feasible set is convex if the probability distribution
function is 𝛼-concave and 𝑔(x, 𝜉) are quasiconcave jointly in
both arguments. Unfortunately, the above chance constraint
is not necessarily convex in the decision variables x.

It is well-known thatCVaRmethod, popularized byRock-
afellar and Uryasev [12], is the tightest convex approximation
to the general individual probabilistic constraint (see, e.g.,
[7, 13]). Then, using the CVaRmethod, we get the tractability
and convex approximation of the individual above chance
constraint. The corresponding conditional value-at-value is
defined as follows:

P-CVaR
𝜖
(𝑔 (x, 𝜉)) = inf

𝛽∈R
{𝛽 +

1

𝜖

EP [(𝑔(x, 𝜉) − 𝛽)
+

]} . (7)

Next, we show that CVaR can be used to construct convex
approximation for general chance constraint. By definition
(7), we have

P (𝑔 (x, 𝜉) ≤ P-CVaR
𝜖
(𝑔 (x, 𝜉))) ≥ 1 − 𝜖. (8)

Then

P-CVaR
𝜖
(𝑔 (x, 𝜉)) ≤ 0 ⇒ P (𝑔 (x, 𝜉) ≤ 0) ≥ 1 − 𝜖. (9)

Thus, from (9), we obtain

sup
P∈P

P-CVaR
𝜖
(𝑔 (x, 𝜉)) ≤ 0 ⇒ inf

P∈P
P (𝑔 (x, 𝜉) ≤ 0) ≥ 1 − 𝜖.

(10)

Therefore, the worst-case constraint on the left hand side
constitutes a conservative approximation for the distribution-
ally robust chance constraint on the right hand side. The
above discussion makes us define a feasible set as follows:
Θ

𝑔
= {x ∈ R𝑛 : supP∈PP-CVaR𝜖(𝑔(x, 𝜉)) ≤ 0}.

Theorem 1. The feasible set Θ
𝑔
constitutes a conservative

approximation for Π
𝑔
, in which Θ

𝑔
⊆ Π

𝑔
.

Lemma 2. For any fixed 𝑥, let 𝑔(𝑥, 𝜉) : R𝑛 × R𝐿 →

R be a measure function and F-integrable for all 𝐹 ∈

D (R𝐿,𝜇
0
,Σ
0
, 𝜂). We define the worst-case expectation prob-

lem as follows:

Ψ (x, 𝜂) = sup
𝐹∈D

∫

R𝐿
max (0, 𝑔 (x, 𝜉)) 𝑑𝐹 (𝜉) . (11)
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Consequently, the problem can be rewritten into the following:

inf
𝑦
0
,y
1
,y
2
,Y
1
,Y
2

⟨Ω

+
,(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)⟩

−⟨Ω

−
,(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)⟩

s.t. y
1
≥ 0, y

2
≥ 0, Y

1
⪰ 0, Y

2
⪰ 0,

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) ⪰ 0,

(

𝜉
1

)

𝑇

((

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

))

× (

𝜉
1

) ≥ 𝑔 (x, 𝜉) , ∀𝜉 ∈ R
𝐿

,

(12)

where

Ω

+
= (

Σ
0
+ (𝜇
0
+ 𝜂) (𝜇

0
+ 𝜂)
𝑇

𝜇
0
+ 𝜂

𝜇𝑇
0
+ 𝜂𝑇 1

) ,

Ω

−
= (

Σ
0
+ (𝜇
0
− 𝜂) (𝜇

0
− 𝜂)
𝑇

𝜇
0
− 𝜂

𝜇𝑇
0
− 𝜂𝑇 1

) .

(13)

Proof. Theworst-case expectationΨ(x, 𝜂) can equivalently be
unfolded as

sup
𝐹∈D

∫

R𝐿
max (0, 𝑔 (x, 𝜉)) 𝑑𝐹 (𝜉)

s.t. ∫

R𝐿
𝑑𝐹 (𝜉) = 1,

𝜇
0
− 𝜂 ≤ ∫

R𝐿
𝜉 𝑑𝐹 (𝜉) ≤ 𝜇

0
+ 𝜂,

Σ
0
+ (𝜇
0
− 𝜂) (𝜇

0
− 𝜂)
𝑇

⪯ ∫

R𝐿
𝜉𝜉
𝑇

𝑑𝐹 (𝜉) ⪯ Σ
0
+ (𝜇
0
+ 𝜂) (𝜇

0
+ 𝜂)
𝑇

.

(14)

We can formulate the Lagrangian dual problem of the above
problem which takes the following form:

inf
𝑦
0
,y
1
,y
2
,Y
1
,Y
2

𝑦

0
+ y𝑇
1
(𝜇
0
+ 𝜂) − y𝑇

2
(𝜇
0
− 𝜂)

+ ⟨Y
1
,Σ0 + (𝜇0 + 𝜂) (𝜇0 + 𝜂)

𝑇

⟩

− ⟨Y
2
,Σ0 + (𝜇0 − 𝜂) (𝜇0 − 𝜂)

𝑇

⟩

s.t. 𝑦

0
+ (y
1
− y
2
)

𝑇y
1
+ ⟨𝜉𝜉

𝑇

,Y
1
− Y
2
⟩

≥ max (0, 𝑔 (𝑥, 𝜉)) , ∀𝜉 ∈ R
𝐿

,

y
1
≥ 0, y

2
≥ 0, Y

1
⪰ 0, Y

2
⪰ 0,

(15)

where 𝑦
0
∈ R, y

1
, y
2
∈ R𝐿, and Y

1
,Y
2
∈ S𝐿 are the dual

variables for the constraints, respectively. It is obvious that the
conditions on 𝜂 and Σ

0
are sufficient to ensure that the Dirac

measure 𝛿𝜇
0

lies in the relative interior of the feasible set of the
above original problem. It implies that Ψ(x, 𝜂)must be equal
to the optimal value of the above dual problem. Rewriting the
above model into the form of LMIS, we have

inf
𝑦
0
,y
1
,y
2
,Y
1
,Y
2

⟨Ω

+
,(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)⟩

−⟨Ω

−
,(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)⟩

s.t. (

𝜉
1

)

𝑇

((

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

))

× (

𝜉
1

) ≥ max (𝑔 (x, 𝜉) , 0) , ∀𝜉 ∈ R
𝐿

,

y
1
≥ 0, y

2
≥ 0, Y

1
⪰ 0, Y

2
⪰ 0.

(16)

Actually, we complete this proof when we divide the first
inequality into two parts.

We define the feasible set ΠJCC of the distributionally
robust joint chance constraint as

Π

JCC
= {𝑥 ∈ R

𝑛

: inf
P∈P

P (𝑤
0

𝑖
(x) + w

𝑖
(x)𝑇𝜉 ≤ 0,

∀𝑖 = 1, 2, . . . , 𝑚) ≥ 1 − 𝜖} .

(17)

A popular approximation for ΠJCC is based on Bonferroni’
inequality, but this method can be overly conservative even if
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𝜖 is divided among the 𝑚 individual chance constraints, and
Chen et al. [14] give an example which highlights this short-
coming. In order to mitigate the potential overconservatism
of the Bonferroni approximation, we proposed the following
approximation based on a combined inequality:

inf
P∈P

P( max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉} ≤ 0) ≥ 1 − 𝜖. (18)

The problem becomes an individual chance constraint
which can be conservatively approximated by a Worst-Case
CVaR constraint. We define the approximated set as follows:

Θ

JCC
= {x ∈ R𝑛 : sup

P∈P

P-CVaR
𝜖

× ( max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉} ≤ 0)} ,

(19)

which is a tight approximation for ΠJCC. The following
theorem proves that the set ΘJCC has a tractable reformation
in terms of LMIS and therefore promises to get out a convex
approximation for ΠJCC.

Theorem 3. The feasible set ΘJCC can be written as

Θ

𝐽𝐶𝐶

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

∃𝑦

0
∈ R, y

1
, y
2
∈ R𝐿, Y

1
,Y
2
∈ S𝐿,

y
1
≥ 0, y

2
≥ 0, Y

1
⪰ 0, Y

2
⪰ 0,

𝛽 +

1

𝜖

(⟨Ω

+
,(

Y
1

1

2

y
1

1

2

yT
1
𝑦

0

)⟩−⟨Ω

−
,(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)⟩) ≤ 0

x ∈ R𝑛: (

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) ⪰ 0,

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) −(

0 1

2

w
𝑖
(x)

1

2

w𝑇
𝑖
(x) 𝑤0

𝑖
(x) − 𝛽

) ⪰ 0,

∀𝑖 = 1, 2, . . . , 𝑚.

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

. (20)

Proof. Wefind that the constraint x ∈ ΘICC is coinciding with
Υ(x) ≤ 0, where

Υ (x)

= sup
P∈P

P-CVaR
𝜖
( max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉})

= sup
P∈P

inf
𝛽∈R

{𝛽 +

1

𝜖

EP[( max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉} − 𝛽)

+

]} .

(21)

Actually, we know that 𝛽 + (1/𝜖)EP[(max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x)+

w
𝑖
(x)𝑇𝜉} − 𝛽)+] is real valued, convex in 𝛽 and linear in

P, where P is weakly compact [15]. Then, interchanging
the supP∈P and inf

𝛽∈R operators leads to an equivalent
formulation of the Worst-Case CVaR problem:

inf
𝛽∈R

{𝛽 +

1

𝜖

sup
P∈P

EP [( max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉} − 𝛽)

+

]} .

(22)

Firstly, we deal with the subordinate maximization problem
in (22); we can derive an SDP reformulation for the worst-
case expectation problem

sup
P∈P

EP [( max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉} − 𝛽)

+

] . (23)

For any fixed 𝑥 and 𝛽, as shown in Lemma 2, the above
subordinate maximization problem in (22) can be rewritten
into

inf
𝑦
0
,y
1
,y
2
,Y
1
,Y
2

⟨Ω

+
,(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)⟩

−⟨Ω

−
,(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)⟩
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s.t. y
1
≥ 0, y

2
≥ 0, Y

1
⪰ 0, Y

2
⪰ 0,

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) ⪰ 0,

(

𝜉
1

)

𝑇

((

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

))(

𝜉
1

)

≥ max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉} − 𝛽,

∀𝜉 ∈ R
𝐿

.

(24)

The last inequality constraint in the above problem can
be expanded into 𝑚 simpler inequality. Representing the
subordinate worst-case expectation problem in (22), we get

inf
𝑦
0
,y
1
,y
2
,Y
1
,Y
2

𝛽 +

1

𝜖

(⟨Ω

+
,(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)⟩

−⟨Ω

−
,(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)⟩)

s.t. y
1
≥ 0, y

2
≥ 0, Y

1
⪰ 0, Y

2
⪰ 0,

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) ⪰ 0,

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)

−(

0 1

2

w
𝑖
(x)

1

2

w𝑇
𝑖
(x) 𝑤0

𝑖
(x) − 𝛽

) ⪰ 0,

∀𝑖 = 1, 2, . . . , 𝑚.

(25)

Thus, we can easily get the exact representation of ΘJCC. This
completes the proof.

Remark 4. When𝑚 = 1, we set 𝜂 = 0, which implies that we
have the exact first- and second-order moments information
for the individual chance constrained problem.We can get an
exact approximation for ΠJCC:

Θ

JCC
=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

∃𝛽 ×M ∈ R × S𝐿+1,

x ∈ R𝑛 : M ⪰ 0, 𝛽 +

1

𝜖

⟨Ω
+
,M⟩ ≤ 0,

M −(

0 1

2

w (x)
1

2

w𝑇 (x) 𝑤0 (x) − 𝛽
) ⪰ 0

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

,

(26)

where we denote M = (

Y
1
−Y
2
(1/2)(y

1
−y
2
)

(1/2)(y
1
−y
2
)
𝑇

𝑦
0

) ∈ S𝐿. This
representation is exactly the one in [6]; then we can get the
exact result of problem (5) (where 𝑚 = 1) by computing the
above problem.

By now, we can compute the feasible setΘJCC by solving a
tractable SDP.We appreciate that manymodernmethods can
be used to solve such a convex problem to any precision 𝜖 in
polynomial time and we can use YALMIP [16] to solve it in
practice.

Consider the robust individual chance constraint (18)
which represents the robust joint chance constraint (17).
In convex programming, we use the max piecewise linear
function to approximate a convex function frequently; there,
we use a quadratic function to approximate the max function
in the chance constraint (18) inversely. Note that h(𝜉) =

𝜉
𝑇H𝜉 + 𝜉𝑇h + ℎ0 that satisfies

(i) h (𝜉) ≥ max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉} , ∀𝜉 ∈ R

𝐿

,

⇐⇒ h (𝜉) ≥ 𝑤
0

𝑖
(x) + w

𝑖
(x)𝑇𝜉, ∀𝜉 ∈ R

𝐿

, 𝑖 = 1, 2, . . . , 𝑚,

(27)

(ii) inf
P∈P

P (h (𝜉) = 𝜉
𝑇H𝜉 + 𝜉𝑇h + ℎ0 ≤ 0) ≥ 1 − 𝜖. (28)

For better argumentation, we define

Θ

JCC
𝑄

= {x ∈ R𝑛:∃H ∈ S
𝐿

, h ∈ R𝐿, ℎ0 ∈ R,

h (𝜉) = 𝜉
𝑇H𝜉 + 𝜉𝑇h + ℎ0 satisfies (27) and (28)} .

(29)

Actually, it is easy to find that the feasible set ΘJCC
𝑄

constitutes a conservative approximation for ΘJCC, which
means ΘJCC

𝑄
⊆ Θ

JCC.

Theorem 5. The feasible set ΘICC
𝑄

can be written as
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Θ

𝐼𝐶𝐶

𝑄
=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

∃𝑦

0
, ℎ

0
∈ R, y

1
, y
2
, h ∈ R𝐿, Y

1
,Y
2
,H ∈ S𝐿,

y
1
≥ 0, y

2
≥ 0, Y

1
⪰ 0, Y

2
⪰ 0,

𝛽 +

1

𝜖

⟨Ω

+
,(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)⟩−⟨Ω

−
,(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)⟩ ≤ 0

x ∈ R𝑛 : (

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) ⪰ 0,

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) −(

H 1

2

h
1

2

h𝑇 ℎ
0
− 𝛽

) ⪰ 0,

(

H 1

2

(h − w
𝑖
(x))

1

2

(h − w
𝑖
(x))𝑇 ℎ

0
− 𝑤

0

𝑖
(x)

) ⪰ 0

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

. (30)

Moreover, we find ΘJCC
𝑄
= Θ

ICC.

Proof. By a similar discussion as before, we get that the robust
quadratic chance constraint (28) is equivalent to the Worst-
Case CVaR constraint:

sup
P∈P

P-CVaR
𝜖
(𝜉
𝑇H𝜉 + 𝜉𝑇h + ℎ0)

= inf
𝛽∈R

{𝛽 +

1

𝜖

sup
P∈P

EP [(𝜉
𝑇H𝜉 + 𝜉𝑇h + ℎ0 − 𝛽)

+

]} ≤ 0.

(31)

We know that the above inequality can be reformulated as

sup
P∈P

P-CVaR
𝜖
(𝜉
𝑇H𝜉 + 𝜉𝑇h + ℎ0)

= inf
𝑦
0
,y
1
,y
2
,Y
1
,Y
2

𝛽 +

1

𝜖

⟨Ω

+
,(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)⟩

−⟨Ω

−
,(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)⟩

s.t. y
1
≥ 0, y

2
≥ 0, Y

1
⪰ 0, Y

2
⪰ 0,

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) ⪰ 0,

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

)

−(

H 1

2

h
1

2

h𝑇 ℎ
0
− 𝛽

) ⪰ 0.

(32)

Note that the constraints in (27) are equivalent to

(

H 1

2

(h − w
𝑖
(x))

1

2

(h − w
𝑖
(x))𝑇 ℎ

0
− 𝑤

0

𝑖
(x)

) ⪰ 0,

∀𝑖 = 1, 2, . . . , 𝑚.

(33)

Thus, we can get the tractable form ofΘJCC
𝑄

inTheorem 5.The
LMIs inTheorem 5 can be represented as

(

Y
1

1

2

y
1

1

2

y𝑇
1
𝑦

0

)−(

Y
2

1

2

y
2

1

2

y𝑇
2

0

) + (

0 0
0 𝛽

)

⪰ (

H h
h𝑇 ℎ0) ⪰ (

0 1

2

w
𝑖
(x)

1

2

w
𝑖
(x)𝑇 𝑤

0

𝑖
(x)
) .

(34)

Finally, we getΘJCC
𝑄

= Θ

ICC with vanishing themiddlematrix
which is formed by the components of h(𝜉).

This theorem presents that the approximation of a dis-
tributionally robust joint chance constraint by a Worst-Case
CVaR constraint is equivalent to the approximation of the
max function implied by the joint chance constraint by a
quadratic majorant.

Let us consider the case that 𝜉 have finite support
information which can be present as the matrix 𝜁 =

(𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
). Let the measures p = (𝑝

1

, . . . , 𝑝

𝑁

) and p =
(𝑝

1
, . . . , 𝑝

𝑁
) be two known vectors which give the bounds

of the probability measure with p < p. The ambiguity
distributional set can be defined as

D
1
(R
𝐿

,𝜇
0
, 𝜂)

= {p : p𝑇e = 1, p ≤ p ≤ p,𝜇
0
− 𝜂 ≤ 𝜁p ≤ 𝜇

0
+ 𝜂} .

(35)
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Consider the minimax problem (22) with the above
ambiguity distributional set; we have the following results.

Theorem 6. ΘJCC has the following tractable reformulation in
terms of LMIs:

Θ

𝐽𝐶𝐶

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

∃𝜆

0
∈ R, 𝜆

1
,𝜆
2
,𝜆
3
,𝜆
4
∈ R𝐿,

𝜆
1
≥ 0, 𝜆

2
≥ 0, 𝜆

3
≥ 0, 𝜆

4
≥ 0,

x ∈ R𝑛 : u − 𝜆
0
e + 𝜆
1
− 𝜆
2
+ 𝜁𝑇 (𝜆

3
− 𝜆
4
) ≥ 0,

𝛽 +

1

𝜖

(𝜆

0
+ p𝑇𝜆

2
− p𝑇𝜆

1
+ (𝜇
0
+ 𝜂)
𝑇

𝜆
4
− (𝜇
0
− 𝜂)
𝑇

𝜆
3
) ≤ 0,

𝑢

𝑖
≥ 0, 𝑢

𝑖
≥ 𝑤

0

𝑗
(x) + w

𝑗
(x)𝑇𝜉
𝑖
− 𝛽, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑚

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

, (36)

where e denotes the vector of ones.

Proof. Consider the subordinate maximization problem in
(22); we can derive a reformulation for the worst-case
expectation problem:

sup
P∈D
1

EP [( max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉} − 𝛽)

+

]

= sup
P∈D
1

𝑁

∑

𝑖=1

𝑝

𝑖
( max
𝑖=1,2,...,𝑚

{𝑤

0

𝑖
(x) + w

𝑖
(x)𝑇𝜉
𝑖
} − 𝛽)

+

.

(37)

For any fixed 𝑥 and 𝛽, we can formulate the Lagrangian
dual problem of the above linear programming. Actually, the
standard duality theory guarantees that there is no duality gap
between the above problem and its dual problem as

min
𝜆
0
,𝜆
1
,𝜆
2
,𝜆
3
,𝜆
4

𝛽 +

1

𝜖

(𝜆

0
+ p𝑇𝜆

2
− p𝑇𝜆

1

+ (𝜇
0
+ 𝜂)
𝑇

𝜆
4
− (𝜇
0
− 𝜂)
𝑇

𝜆
3
)

s.t. u − 𝜆
0
e + 𝜆
1
− 𝜆
2
+ 𝜁𝑇 (𝜆

3
− 𝜆
4
) ≥ 0,

𝑢

𝑖
≥ 0, 𝑢

𝑖
≥ 𝑤

0

𝑗
(x) + w

𝑗
(x)𝑇𝜉
𝑖
− 𝛽,

𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑚.

(38)
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