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The aim of this paper was to first extend the model describing the nonlinear wave movement to the concept of noninteger order
derivative.The extended equationwas investigatedwithin the scope of an iterativemethod.The stability and convergence analysis of
the iterationmethod for this extended equationwas presented in detail.The uniqueness of the special solutionwas also investigated.
A resume of the method for solving this equation was provided. The algorithm was used to derive the unique special solution for
given initial conditions.

1. Introduction

The Kadomtsev-Petviashvili equation (or basically the KP
equation) is a nonlinear partial differential equation in two
spatial and one temporal coordinates that illustrate the
development of nonlinear, extended waves of diminutive
amplitude with sluggish reliance on the crosswise coordinate.
There are two dissimilar descriptions of the KP equation.
Nevertheless the version we are interesting in is given below
as

𝜕
𝑥
(𝜕
𝑡
𝑢 + 𝑢𝜕

𝑥
𝑢 + 𝜀
2

𝜕
𝑥𝑥𝑥

𝑢) + 𝜆𝜕
𝑦𝑦
𝑢 = 0. (1)

The case 𝜆 = 1 is known as the KPII equation and models,
for instance, water waves with small surface tension.The case
𝜆 = 𝑖 is known as the KPI equation and may be used to
model waves in thin filmswith high surface tension [1–4].The
equation is frequently in black andwhite with dissimilar coef-
ficients in front of the various terms, but the particular values
are inessential, since they can be modified by appropriately
rescaling the dependent and independent variables [5]. The
KP equation is a worldwide integrable structure in two spatial
dimensions in the similar line of attack that the KdV equation
can be looked upon as a widespread integrable system in one
spatial dimension, sincemany other integrable systems can be

obtained as reductions [5]. Per se, the KP equation has been
comprehensively considered in the mathematical society in
the last forty years. The KP equation is also one of the
generally common models in nonlinear wave theory, which
arises as a reduction of system with quadratic nonlinearity,
which admits weakly dispersive waves, in a paraxial wave
approximation [3]. The equation unsurprisingly comes into
view as awell-knownboundary in the asymptotic explanation
of such systems in which merely the most important order
terms are engaged and an asymptotic equilibrium flanked
by weak scattering, quadratic nonlinearity and diffraction
is supposed. The poles separately acted by the two spatial
variables accounts for the asymmetric way in that they appear
in the equation [4].

In the last decade, many physical problems have been
with great success described within differential equations
with both integer order and fractional order. More impor-
tantly it was observed most of the time that, all physical
problems described or modelled within the folder of the
fractional order derivative were more predictable than the
conventional order derivative, for instance, in the study of
groundwater problems [6–10] and others [11–15]. One aspect
of this study is to revert the conventional KP equation to
the concept of fractional order derivative. However one of
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the big problems encountered in modelling real world
problems is perhaps to find the solution of these nonlinear
equations, especially when it came to fractional differential
equation. Another aspect of this paper will therefore be
devoted to the derivation of approximation of the generalized
KP equation; we will also present the convergence and the
uniqueness of the special solution. The generalised equation
under study here is given as

𝜕
𝛼+1

𝑡𝑥
𝑢 + (𝜕

𝑥
𝑢)
2

+ 𝑢𝜕
𝑥𝑥
𝑢 + 𝜀
2

𝜕
4

𝑥𝑥𝑥𝑥
𝑢 + 𝜆𝜕

2

𝑦𝑦
𝑢 = 0,

0 < 𝛼 ≤ 1.

(2)

We will present some basic formulas of the noninteger
derivative in the following sections.

2. Basic Knowledge about
Fractional Derivatives

One can find nowadays in the literature different definitions
of fractional derivatives. However the furthermost well-liked
ones are the Riemann-Liouville and the Caputo derivatives.
For Caputo we have

𝐶

0
𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑑
𝑛

𝑓 (𝑡)

𝑑𝑡𝑛
𝑑𝑡. (3)

For the case of Riemann-Liouville we have the following
definition:

𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑡) 𝑑𝑡. (4)

Each one of these fractional derivatives presents some com-
pensations and weakness [16–18].

Definition 1. Let Ω = [𝑎, 𝑏] (−∞ ≤ 𝑎 < 𝑏 ≤ ∞) be a finite
or infinite interval of real axis R = (−∞,∞). We denote by
𝐿
𝑝
(𝑎, 𝑏) (1 ≤ 𝑝 ≤ ∞) the set of those Lebesgue complex-

valued measurable functions 𝑓 on Ω for which ‖𝑓‖
𝑝
< ∞,

where

𝑓
𝑝 = (∫

𝑏

𝑎

𝑓(𝑡)

𝑝

𝑑𝑡)

1/𝑝

(1 ≤ 𝑝 ≤ ∞) . (5)

We will, in addition to the above definition, present the
following useful theorem.

Theorem 2. If ℎ(𝑡) ∈ 𝐿
1
(R) and ℎ

1
(𝑡) ∈ 𝐿

𝑝
(R), then their

convolution (ℎ ∗ ℎ
1
)(𝑥) ∈ 𝐿

𝑝
(R) (1 ≤ 𝑝 ≤ ∞), and the

following inequality holds [16]:
𝑓 (ℎ ∗ ℎ

1
) (𝑥)

𝑝 < ‖ℎ‖
1

ℎ1
𝑝. (6)

In particular, if ℎ(𝑡) ∈ 𝐿
1
(R) and ℎ

1
(𝑡) ∈ 𝐿

2
(R), then their

convolution (ℎ ∗ ℎ
1
)(𝑥) ∈ 𝐿

2
(R); then,

𝑓 (ℎ ∗ ℎ
1
) (𝑥)

2 < ‖ℎ‖
1

ℎ1
2. (7)

Lemma 3 (see [16]). The fractional integration operators with
R(𝛼) > 0 are bounded in 𝐿

𝑝
(𝑎, 𝑏) (1 ≤ 𝑝 ≤ ∞):

𝐼
𝛼

𝑎
𝑓
𝑝 ≤ 𝐾

𝑓
𝑝, 𝐾 =

(𝑏 − 𝑎)
R(𝛼)

R (𝛼) |Γ (𝛼)|
. (8)

3. Derivation of the Special Solution

The real problem with nonlinear equation is to find a
suitable analytical method that can be used to derive their
exact or special solutions. No wonder, many scholars have
devoted their attention in developing methods to solve these
equations analytically or numerically, but when the partial
differential equation with mixed derivative is concerned no
well-accurate approach has been proposed. We will in this
paper propose an iteration method to derive the fractional
Kadomtsev-Petviashvili equation.

The method proposed here consists of applying first the
inverse operator of 𝜕𝛼+1

𝑡𝑥
on both sides of (2) to obtain the

following:

𝑢 (𝑥, 𝑦, 𝑡)

= 𝑢 (𝑥, 𝑦, 0) + 𝑢 (0, 𝑦, 𝑡) − 𝑢 (0, 𝑦, 0)

+
1

Γ (𝛼)
∫

𝑥

0

∫

𝑡

0

(𝑡 − 𝑙)
𝛼−1

((𝜕V𝑢)
2

+ 𝑢𝜕VV𝑢

+ 𝜀
2

𝜕
4

VVVV𝑢 + 𝜆𝜕
2

𝑦𝑦
𝑢) 𝑑V 𝑑𝑙.

(9)

To solve the above equation, we assume that its solution is in
series form as

𝑢 (𝑥, 𝑦, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑦, 𝑡) . (10)

Secondly we introduce an artificial parameter according to
the concept of the homotopy, now after substituting (10) into
(9) and putting together terms of same power of the artificial
parameter 𝑝, we arrive at the following equations:

𝑢
0
(𝑥, 𝑦, 𝑡) = 𝑢 (𝑥, 𝑦, 0) + 𝑢 (0, 𝑦, 𝑡) − 𝑢 (0, 𝑦, 0)

𝑢
1
(𝑥, 𝑦, 𝑡)

=
1
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𝑡

0

(𝑡 − 𝑙)
𝛼−1

((𝜕V𝑢0)
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𝑢
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𝑢
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(𝑥, 𝑦, 𝑡)
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1

Γ (𝛼)
∫
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0

∫

𝑡

0

(𝑡 − 𝑙)
𝛼−1

(𝐻
1

𝑛−1
+ 𝐻
2

𝑛−1
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2

𝜕
4

VVVV𝑢𝑛−1

+𝜆𝜕
2

𝑦𝑦
𝑢
𝑛−1

) 𝑑V 𝑑𝑙, 𝑛 ≥ 1,

𝐻
1

𝑛−1
=

𝑛−1

∑

𝑘=0

𝜕V𝑢𝑘𝜕V𝑢𝑛−𝑘−1,

𝐻
2

𝑛−1
=

𝑛−1

∑

𝑘=0

𝜕V𝑢𝑘𝑢𝑛−𝑘−1.

(11)

The iteration formula in (11) can be used to derive all terms
providing that the initial conditions are given. We will put
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the above procedure in a resume usually called algorithm
to help readers of the numerical method field implement
method via computer.

Algorithm 4. Consider

(i) input: 𝐼(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 0) + 𝑢(0, 𝑦, 𝑡) − 𝑢(0, 𝑦, 0) as
early boarder,

(ii) 𝑘—number terms in the series calculation,
(iii) output: 𝑢part(𝑥, 𝑦, 𝑡), the special solution.

Step 1. Put 𝑢
0
(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡) and 𝑢part(𝑥, 𝑦, 𝑡) =

𝑢
0
(𝑥, 𝑦, 𝑡).

Step 2. For 𝑘 = 0 to 𝑛 − 1 do Steps 3, 4, and 5.

Step 3. Compute

𝐻
1

𝑛−1
=

𝑛−1

∑

𝑘=0

𝜕V𝑢𝑘𝜕V𝑢𝑛−𝑘−1,

𝐻
2

𝑛−1
=

𝑛−1

∑

𝑘=0

𝜕V𝑢𝑘𝑢𝑛−𝑘−1,

𝑏
𝑛
=

1

Γ (𝛼)

× ∫

𝑥

0

∫

𝑡

0

(𝑡 − 𝑙)
𝛼−1

(𝐻
1

𝑛−1
+ 𝐻
2

𝑛−1
+ 𝜀
2

𝜕
4

VVVV𝑢𝑛−1

+𝜆𝜕
2

𝑦𝑦
𝑢
𝑛−1

) 𝑑V 𝑑𝑙, 𝑛 ≥ 1.

(12)

Step 4. Compute

𝑢
𝑛+1

(𝑥, 𝑡) = V
𝑛
+ 𝑢
𝑛
. (13)

Step 5. Compute

𝑢part (𝑥, 𝑦, 𝑡) = 𝑢part (𝑥, 𝑦, 𝑡) + 𝑢
𝑛+1

(𝑥, 𝑦, 𝑡) . (14)

Stop.

4. Convergence and Uniqueness Analysis of
the Proposed Method

In recent years, many papers have been published in which
iterations methods are used to give approximate solution to
the nonlinear equations. However in these papers, no study
of stability, the convergence, and the uniqueness analysis has
been done. This has become nowadays a routine whereas
the study of convergence is very important and very difficult
because the proof of convergence shows the strength of the
method. We therefore devote this section to the study of
the convergence of the scheme used here and applied to

the fractional nonlinear wave motion. To achieve this we will
think about the following fractional sub-Hilbert space𝐻

𝛼
of

the Hilbert space 𝐻 = 𝐿
2

((𝑎, 𝑏) × (0, 𝑇)) [19] that can be
defined as the set of those functions:

V : (𝑎, 𝑏) × [0, 𝑇] → R,

1

Γ (𝛼)
∫∫ (𝑡 − 𝑙)

𝛼−1V2𝑑𝑙 𝑑𝑠 < ∞.

(15)

We correspondingly undertake that the differential operatives
are circumscribed under the 𝐿

2 norms. We consider the
fractional Kadomtsev-Petviashvili equation in the light of
the above assumptions and then the operator form of the
equation is

𝐵 (𝑢) = −𝜕
𝛼+1

𝑡𝑥
(𝑢) = (𝜕

𝑥
𝑢)
2

+ 𝑢𝜕
𝑥𝑥
𝑢 + 𝜀
2

𝜕
4

𝑥𝑥𝑥𝑥
𝑢 + 𝜆𝜕

2

𝑦𝑦
𝑢.

(16)

The homotopy decomposition method used here is conver-
gent if the shadowing two suggestions are fulfilled (see [20]
and references therein).

(H1) (𝐵(𝑢)−𝐵(V), 𝑢−V) ≤ 𝑞‖𝑢−V‖, 𝑞 > 0 for all (𝑢, V) ∈ 𝐻
𝛼
.

(H2) For any positive constant 𝑀 > 0 there exists a
constant 𝑃 > 0 such that, for 𝑢, V ∈ 𝐻 with ‖𝑢‖ ≤

𝑀, ‖V‖ ≤ 𝑀.

We have

(𝐵 (𝑢) − 𝐵 (V) , 𝑤) ≤ 𝑃 ‖𝑢 − V‖ ‖𝑤‖ ∀𝑤 ∈ 𝐻
𝛼
. (17)

We will present some properties of the inner product.

4.1. Properties of the Inner Product [21, 22]. The commentary
on Hilbert space entertains numerous illustrations of the
inner product spaces wherein the metric produced by the
inner product profits a complete metric space. Inner product
spaces have an instinctively outlined norm grounded upon
the inner product of the space itself that does not the
parallelogram equality:

‖𝑥‖ = √(𝑥, 𝑥). (18)

It is well defined by the no negativity axiom of the definition
of the inner product space. The following properties can be
observed:

(𝑥, 𝑦)
 ≤ ‖𝑥‖

𝑦
 . (19)

The above is the well-known Cauchy-Schwarz inequality.
Also the following can be obtained:

‖𝑎 ⋅ 𝑥‖ = |𝑎| ⋅ ‖𝑥‖ . (20)

The above is called homogeneity. The last interesting one for
this paper will be given as

𝑥 + 𝑦
 ≤ ‖𝑥‖ +

𝑦
 . (21)

The above is called triangular inequality.
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Proof. Using the definition of our operator 𝐵, we have the
following:

𝐵 (𝑢) − 𝐵 (V) = (𝜕
𝑥
𝑢)
2

− (𝜕
𝑥
V)2 + 𝑢𝜕

𝑥𝑥
𝑢 − V𝜕

𝑥𝑥
V

+ 𝜀
2

𝜕
4

𝑥𝑥𝑥𝑥
(𝑢 − V) + 𝜆𝜕

2

𝑦𝑦
(𝑢 − V)

= 𝜕
𝑥
(𝑢𝜕
𝑥
𝑢 − V𝜕

𝑥
V) + 𝜀

2

𝜕
4

𝑥𝑥𝑥𝑥
(𝑢 − V)

+ 𝜆𝜕
2

𝑦𝑦
(𝑢 − V)

= 𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
) + 𝜀
2

𝜕
4

𝑥𝑥𝑥𝑥
(𝑢 − V)

+ 𝜆𝜕
2

𝑦𝑦
(𝑢 − V) .

(22)

With the above reduction in hand, we can now proceed to
compute

(𝐵 (𝑢) − 𝐵 (V) , 𝑢 − V)

= (𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
) , 𝑢 − V) + (𝜀

2

𝜕
4

𝑥𝑥𝑥𝑥
(𝑢 − V) , 𝑢 − V)

+ (𝜆𝜕
2

𝑦𝑦
(𝑢 − V) , 𝑢 − V) .

(23)

We will consider case by case the components of the above
equation:

(𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
) , 𝑢 − V) . (24)

Regarding the bodily problem under examination, we are
required to point out that the wave can only be propagated
in finite space; therefore, 𝑢, V are bordered, as a result, we
can find a positive constant 𝑁 such that (𝑢, 𝑢), (V, V) < 𝑁

2.
It follows by making use of Schwartz inequality that

(𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
) , 𝑢 − V) ≤



𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
)



‖𝑢 − V‖ .

(25)

Using the properties of the norm and the derivative, we can
possibly find a positive real number, say, for instance, 𝑂

1
,

satisfying


𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
)



≤ 𝑂
1



𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2



. (26)

Using the same properties, we can get hold of a second
positive real constant, say, for instance, 𝑂

2
, that will allow us

to have


𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
)



≤
𝑂
1
𝑂
2

2


𝑢
2

− V2

. (27)

We can now further extend this to the following:


𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
)



≤
𝑂
1
𝑂
2

2
‖𝑢 − V‖ ‖𝑢 + V‖ . (28)

Now we can use the fact that the nonlinear wave is propagat-
ing in the finite space to obtain ‖𝑢 − V‖‖𝑢 + V‖ ≤ 4𝑁

4 such
that

(𝜕
𝑥
(
𝜕
𝑥
𝑢
2

− 𝜕
𝑥
V2

2
) , 𝑢 − V) ≤ 4𝑁

4
𝑂
1
𝑂
2

2
‖𝑢 − V‖ . (29)

We will continue our investigation with the following case:

(𝜀
2

𝜕
4

𝑥𝑥𝑥𝑥
(𝑢 − V) , 𝑢 − V) . (30)

Without doubt, we can find four position real numbers, say,
for instance, 𝑂

3
, 𝑂
4
, 𝑂
5
and 𝑂

4
, allowing us to have the

following relation:

(𝜀
2

𝜕
4

𝑥𝑥𝑥𝑥
(𝑢 − V) , 𝑢 − V) ≤ 𝜀

2

𝑂
3
𝑂
4
𝑂
5
𝑂
4
‖𝑢 − V‖ ‖𝑢 − V‖ .

(31)

We can further use the fact that (𝑢, 𝑢), (V, V) < 𝑁
2 to obtain

(𝜀
2

𝜕
4

𝑥𝑥𝑥𝑥
(𝑢 − V) , 𝑢 − V) ≤ 2𝑁

2

𝜀
2

𝑂
3
𝑂
4
𝑂
5
𝑂
4
‖𝑢 − V‖ . (32)

And also

(𝜆𝜕
2

𝑦𝑦
(𝑢 − V) , 𝑢 − V) ≤ 2𝑁

2

𝜆𝑂
6
𝑂
7
‖𝑢 − V‖ . (33)

However, by inserting (33), (32), and (29) into (23), we arrive
at the following result:

(𝐵 (𝑢) − 𝐵 (V) , 𝑢 − V)

≤(2𝑁
2

𝜀
2

𝑂
3
𝑂
4
𝑂
5
𝑂
4
+2𝑁
2

𝜆𝑂
6
𝑂
7
+4𝑁
4
𝑂
1
𝑂
2

2
) ‖𝑢 − V‖ .

(34)

It is obvious that we can take

𝑞 = 2𝑁
2

𝜀
2

𝑂
3
𝑂
4
𝑂
5
𝑂
4
+ 2𝑁
2

𝜆𝑂
6
𝑂
7
+ 4𝑁
4
𝑂
1
𝑂
2

2
. (35)

And hypothesis (H1) is verified.
It is also easier to prove hypothesis two just by realizing

that
(𝐵 (𝑢) − 𝐵 (V) , 𝑤) ≤ 𝑃 ‖𝑢 − V‖ ‖𝑤‖ ,

𝑃 = 2𝑀
2
𝑂
8
𝑂
9

2
+ 𝜀
2

𝑂
10
𝑂
11
𝑂
12
𝑂
13
+ 𝜆𝑂
14
𝑂
15
.

(36)

And then hypothesis (H2) is also verified.Therefore following
with hypotheses (H1) and (H2) verified, we can without
reservation establish the following theorem.

Theorem 5. Let us consider

𝐵 (𝑢) = (𝜕
𝑥
𝑢)
2

+ 𝑢𝜕
𝑥𝑥
𝑢 + 𝜀
2

𝜕
4

𝑥𝑥𝑥𝑥
𝑢 + 𝜆𝜕

2

𝑦𝑦
𝑢 (37)

and consider the initial and boundary condition for (2); then
the proposed method leads to a special solution of (2).

The proof of the above theorem follows directly from
hypotheses (H1) and (H2) and also Lemma 3.

Theorem 6. Taking into account the initial conditions for (2),
then the special solution of (2) 𝑢esp to which 𝑢 converges is
unique.
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5. Derivation of the Special Solution

Wemake use of Algorithm 4 to derive the special solution for
(2). Here we assume that the initial condition is given as

𝑢 (𝑥, 𝑦, 0) = 𝑥𝑦. (38)

Then using the algorithm we obtain the following:

𝑢
1
(𝑥, 𝑦, 𝑡) = 𝑡

𝛼

(− Sin [2𝑦] + Sin [2 (𝑥 + 𝑦)]

+2 (𝑥 + Sin [𝑥] Sin [𝑥 + 2𝑦]))

× (4𝛼Gamma [𝛼])−1,

𝑢
2
(𝑥, 𝑦, 𝑡)

=
1

24Gamma[1 + 𝛼]
2
𝑡
2𝛼

× (−3 cos [𝑥 − 𝑦] + 12 cos [𝑦] + 4 cos [3𝑦]

− 9 cos [𝑥 + 𝑦] − 7 cos [3 (𝑥 + 𝑦)]

+ 3 cos [𝑥 + 3𝑦] + 3 sin [𝑥 − 𝑦]

− 36 sin [𝑦] − 4 sin [3𝑦] + 39 sin [𝑥 + 𝑦]

+12𝑥 (−2 cos [2𝑦]+2 sin [2𝑦]+sin [𝑥+𝑦])

+ sin [3 (𝑥 + 𝑦)]

+ 72 sin [𝑥] (− cos [𝑥 + 2𝑦] + sin [𝑥 + 2𝑦])

+ 3 sin [𝑥 + 3𝑦]) ,

𝑢
3(𝑥,𝑦,𝑡)

=
1

96Gamma[1 + 𝛼]
3
𝑡
3𝛼

× 6 (15 + 38𝑥 + 6𝑥
2

− 12 cos [𝑥]

−3 cos [2𝑥] + 4 sin [𝑥] )

+ 48 cos [𝑦] ((−4 + 𝑥) (−1+cos [𝑥])−(9 + 𝑥) sin [𝑥])

+ 4 cos [2𝑦] (−189 − 135𝑥 + 48𝑥
2

+ 16 cos [𝑥] + (173 − 9𝑥) cos [2𝑥]

+8 sin [𝑥] + (−190 + 9𝑥) sin [2𝑥] )

− 24 cos [3𝑦] (−8 + 6𝑥 + (3 + 2𝑥) cos [𝑥]+5 cos [3𝑥]

+ (5 + 2𝑥) sin [𝑥] + 35 sin [3𝑥])

+ cos [4𝑦] (21 + 8 cos [𝑥] − 29 cos [4𝑥] + 8 sin [𝑥]

+18 sin [2𝑥] − 14 sin [4𝑥])

+ 48 (8+3𝑥+(−8+𝑥) cos [𝑥]+(11+𝑥) sin [𝑥]) sin [𝑦]

+ 4 (186 − 153𝑥 − 48𝑥
2

+ 4 cos [𝑥]

+ (−190 + 9𝑥) cos [2𝑥] − 20 sin [𝑥]

+ (−173 + 9𝑥) sin [2𝑥] ) sin [2𝑦]

− 24 (−40 − 6𝑥 + (5 + 2𝑥) cos [𝑥] + 35 cos [3𝑥]

− (3 + 2𝑥) sin [𝑥] −5 sin [3𝑥]) sin [3𝑦]

+ (8 cos [𝑥]+18 cos [2𝑥]−2 (6+7 cos [4𝑥]+4 sin [𝑥])

+29 sin [4𝑥]) sin [4𝑦] ,

𝑢
4
(𝑥, 𝑦, 𝑡)

=
1

2880Gamma [1 + 𝛼]
4

× 𝑡
4𝛼

(−120 cos [2𝑦]

× (1173 + 2𝑥 (−351 + 𝑥 (−123 + 32𝑥))

− 96 cos [𝑥] + 3 (−359 + 24𝑥) cos [2𝑥]

+ 24 (2 + 𝑥 + 6𝑥 cos [𝑥]) sin [𝑥]

−489 sin [2𝑥])

+ 360 (−39 − 36𝑥 + (26 + 6𝑥) cos [𝑥]

+ (13 + 6𝑥) cos [2𝑥]

− 2 (1 + 𝑥) sin [𝑥] − 5 sin [2𝑥])

− 30 cos [𝑦] (892 − 24 (−5 + 𝑥) 𝑥

+ 12 (−83 + 66𝑥 + 8𝑥
2

) cos [𝑥]

+ 84 cos [2𝑥] + 20 cos [3𝑥]

− 3 (−405+4𝑥 (62+13𝑥)) sin [𝑥]

+36 sin [2𝑥] + 15 sin [3𝑥] )

+ 5 cos [3𝑦] (8 (−15883 + 18𝑥 (−71 + 27𝑥))

+ 36 (45 + 𝑥 (53 + 16𝑥)) cos [𝑥]

+ 216 cos [2𝑥]

+ 4 (31307 − 105𝑥) cos [3𝑥]

+ 9 (−37 + 4𝑥 (85 + 16𝑥)) sin [𝑥]

+ 432 sin [2𝑥]

+5 (−3665 + 12𝑥) sin [3𝑥])

− 180 cos [4𝑦] (111+ 56𝑥+12 (7 + 𝑥) cos [𝑥]

+ 6 cos [2𝑥] − 201 cos [4𝑥]

+ 4 (7 + 3𝑥) sin [𝑥]

+ 2 (13 + 6𝑥) sin [2𝑥]

+ 417 sin [4𝑥])
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+ 3 cos [5𝑦] (288 + 90 cos [𝑥] − 150 cos [3𝑥]

− 228 cos [5𝑥] + 105 sin [𝑥]

+ 120 sin [2𝑥] + 200 sin [3𝑥]

−369 sin [5𝑥])

− 30 ( (609 + 12𝑥 (−41 + 3𝑥)) cos [𝑥]

+ 36 cos [2𝑥] + 15 cos [3𝑥]

+ 12 (−55 + 50𝑥 + 6𝑥
2

+ (105 + 𝑥 (51 + 8𝑥)) sin [𝑥]

−5 sin [2𝑥] )

−20 sin [3𝑥] ) sin [𝑦]

+ 120 (−453 − 630𝑥 + 330𝑥
2

+ 64𝑥
3

+ 12 (−3 + 𝑥) cos [𝑥]

+ (489 − 72𝑥) cos [2𝑥]

+ 12 (19 + 3𝑥) sin [𝑥]

+3 (−359 + 24𝑥) sin [2𝑥] ) sin [2𝑦]

+ 5 (9 (−51 + 4𝑥 (85 + 16𝑥)) cos [𝑥]

+ 432 cos [2𝑥] + 5 (−3665 + 12𝑥) cos [3𝑥]

+ 4 (4588 − 36𝑥 (361 + 27𝑥)

− 9 (48 + 𝑥 (53 + 16𝑥)) sin [𝑥]

− 54 sin [2𝑥]

+ (−31307 + 105𝑥) sin [3𝑥])) sin [3𝑦]

− 180 (4 (7 + 3𝑥) cos [𝑥] + 2 (13 + 6𝑥) cos [2𝑥]

− 3 (157 + 12𝑥 − 139 cos [4𝑥]

+ 4 (7 + 𝑥) sin [𝑥] + 2 sin [2𝑥]

−67 sin [4𝑥])) sin [4𝑦]

+ 3 (−56 + 105 cos [𝑥] + 120 cos [2𝑥]

+ 200 cos [3𝑥] − 369 cos [5𝑥]

− 90 sin [𝑥]

+ 150 sin [3𝑥] + 228 sin [5𝑥]) sin [5𝑦]) .
(39)

By using the proposed algorithm, one can obtain the remain-
ing terms but for simplicity we stopped at 5 terms. The
numerical solution is depicted in Figures 1 and 2.
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Figure 1: Solution for alpha equals 0.5 and 𝑦 = 0.
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Figure 2: Solution for alpha equals 0.05 and 𝑦 = Pi.

6. Conclusion

In the recent years several physical phenomena were
explained with great success in the light of the concept of
noninteger order derivatives. More importantly to truthfully
photocopy the nonlocal, frequency- and history-dependent
possessions of power law phenomena, selected dissimilar
modelling apparatuses constructed upon fractional opera-
tors have to be initiated. Especially, the remunerations of
fractional calculus and fractional order models and their
applications in the field of nonlinear wave motion have
previously been intensively reconsidered during the last few
eras with outstanding outcome. With this in mind, we have
investigated and considered the motion of nonlinear wave
within the folder of fractional derivative. A careful investi-
gation of the stability, convergence, and uniqueness analysis
has been done.
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[21] E. Prugovečki, Quantum Mechanics in Hilbert Space, vol. 92 of
Pure and Applied Mathematics, Academic Press, New York, NY,
USA, 2nd edition, 1981.

[22] G. B. Arfken and H. J. Weber, Mathematical Methods for
Physicists, Academic Press, Boston, Mass, USA, 5th edition,
2001.


