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This paper studies the existence and uniqueness of solutions for a coupled system of nonlinear fractional differential equations of
order , 8 € (4,5] with antiperiodic boundary conditions. Our results are based on the nonlinear alternative of Leray-Schauder
type and the contraction mapping principle. Two illustrative examples are also presented.

1. Introduction

In this paper, we consider the existence and uniqueness
of solutions for the following coupled system of nonlinear
fractional differential equations:

Dxt)+ f(tLx(®),y®) =0,

‘DPy(t)+g(tx(t),y(®) =0, te[0,T],

tel0,T],

6 () M
xV(0)=-x"(T), i=0,1,2,3,4,

Yy ©0) = -y (T), i=0,1,2,3,4,

where 4 < «, < 5, and “D” denotes the Caputo fractional
derivative of order at. Here our nonlinearity f, g : [0, T] xR x
R — R are given continuous functions.

Fractional differential equations have recently been
addressed by many researchers in various fields of science
and engineering, such as rheology, porous media, fluid flows,
chemical physics, and many other branches of science; see
[1-4]. As a matter of fact, fractional-order models become
more realistic and practical than the classical integer-order
models; as a consequence, there are a large number of papers

and books dealing with the existence and uniqueness of
solutions to nonlinear fractional differential equations; see
[5-14]. The study of a coupled system of fractional order is
also very significant because this kind of system can often
occur in applications; see [15-17].

Antiperiodic boundary value problems arise in the math-
ematical modeling of a variety of physical process; many
authors have paid much attention to such problems; for
examples and details of Antiperiodic boundary conditions,
see [5, 18-22]. In [5], Alsaedi et al. study an Antiperiodic
boundary value problem of nonlinear fractional differential
equations of order g € (4, 5].

It should be noted that, in [23], Ntouyas and Obaid
have researched a coupled system of fractional differential
equations with nonlocal integral boundary conditions, but
this paper researches a coupled system of fractional dif-
ferential equations with Antiperiodic boundary conditions.
On the other hand, in [5, 19], the authors have discussed
some existence results of solutions for Antiperiodic bound-
ary value problems of fractional differential equation but
not the coupled system. The rest of the papers above for
the coupled systems have been devoted to the case of
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Riemann-Liouville fractional derivatives but not the Caputo
fractional derivatives.

This paper is organized as follows. In Section 2, we
recall some basic definitions and preliminary results. In
Section 3, we give the existence results of (1) by means of the
Leray-Schauder alternative; then we obtain the uniqueness
of solutions for system (1) by the contraction mapping
principle. We give two examples in Section 4 to illustrate the
applicability of our results.

2. Background Materials

For the convenience of the readers, we present here some
necessary definitions and lemmas which are used throughout
this paper.

Definition 1 (see [2, 3]). The Riemann-Liouville fractional
integral of order &« > 0 of a function y : (0,00) — R is
given by

t
Iy () = ﬁ L (t— 9%y (s)ds, 2)

provided the right hand side is pointwise defined on (0, 00).

Definition 2 (see [2, 3]). The Caputo fractional derivative of
order « > 0 of a continuous function y : (0,00) — R is
given by

NS T P A O
Dy = ['(n-a) Jo (t- s)“_"“ds’ )

where n = [a] + 1 and [«] denotes the integer part of number
«, provided that the right side is pointwise defined on (0, c0).

Lemma 3 (see [19]). Consider I* ‘D" x(t) = x(t) + Cy + C,t +
Cot? + -+ C, t"", forsome ¢, € R, i = 0,1,2,...,n— 1,
where n = [a] + 1 and [«] denotes the integer part of number
a.

Lemma 4 (see [5]). For any y € C[0,T], the unique solution
of the boundary value problem

‘Dix(t)=y(t), te[0,T], 4<q<5,

(4)

£ 0) = -x"(T), i=0,1,2,3,4

T
x(t) = J G(t,s) y(s)ds, (5)

0
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where G(t, s) is the Green function given by

G (t,s)
[ 2(t—s)T ' = (T =)' (T -2t) (T —s)T?
2I'(q) ar(q-1)
t(T —t)(T -s)T° (6T1‘2 — 41 - T3) (T -s)T™*
+
4T (g -2) 48T (g - 3)
(2T —¢T° =) (T - 57
, 0<s<t<T,
B 48T (q - 4)
T @ -9T (T-2)(T-9)"
2r'(q) 4ar(q-1)
t(T —t)(T —s)17 (6Tt2 — 4t - T3) (T -s)T*
+
4T (g -2) 48T (g - 3)
(2TF —¢1° = ¢*) (T - 51
, 0<t<s<T.
48T (g —4)
(6)
Let
G, (t,s)
(-9 -/ (T -9 (T-20)(T-5""
T'(x) I (- 1)
t(T —1t) (T —5)* (6Tt2 -4 - T3) (T —s)**
4T (o - 2) 48T (a - 3)
(278 =17 = *) (T - 5)*°
+ , O0<s<t<T,
_ ] 48T (a — 4) ,
1 w1 (T =20) (T = 5)*
Tl T e
t(T—t)(T —s)*7 (6Tt2 — 4t - T3) (T - s)**
4T (ax - 2) 48T (. — 3)
(2T —¢1° = ¢*) (T - 5)*°
+ , 0<t<s<T,
| 48T (a — 4)
G, (t,s)
(=9 -2 (T-9f" (T-20)(T -9
r(B) ar(p-1)
t(T —t) (T - 5)P3 (6Tt2 -4 — T3) (T - s)f*
4T (B-2) 48T (B-3)
(278 17 = ¢*) (T - 5}
, 0<s<t<T,
] 48T (B - 4)
- 1 g1 (T-20)(T-5)F7
et Y
t(T —1) (T -s)F? (6T1f2 — 4t - T3) (T - s)f ™
4T (B-2) 48T (B - 3)
(278 =17 = *) (T - 5P
+ , O<t<s<T.
k 48T (B—4)
7)

We call (G, G,) Green’s function for problem (1).
We define the space X = {x(t) | x(t) € C[0,T]}
endowed with [x[ly = max,¢rlx(#)]; for (x,y) € X x X,
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let [|(x, Wlixux = lxlx + lyly. Obviously, (X, ] -llx) is a
Banach space, and the product space (X x X, [|(5, )| xxx) 18
also a Banach space.

Consider the following coupled system of the integral
equations:

T
x(t) = L G, (t,s) f (s, x(s), y(s))ds,

(8)

T
y(t) = J G, (t,5) g (s, x(s), y(s))ds.

0

As a result, differential problem (1) turns into integral
problem (8), and here is a conclusion about the relationship
between their solutions.

Lemma 5. Assume that f,g : [0,T] x RxR — R are
continuous functions. Then (x, y) € (X, X) is a solution of (1)
if and only if (x, y) € (X, X) is a solution of system (8).

Proof. The proofis immediate from the discussion above, and
we omit the details here. O

Let F : X x X — X x X be an operator defined as
F(x, y)(t) = (Fy(x, y)(@), F,(x, y)(£)), where

T
F(62)©= ] (69 f(sx(),7 () ds,
)
T
F(x,y) () = J-o G, (t,5) g (s,x(s),y(s))ds.

It is obvious that a fixed point of the operator F is a solution
of problem (1).

3. Main Results

In this section, we will discuss the existence and uniqueness
of solutions for problem (1).

Lemma 6. One can conclude that the Green functions G, (t, s),
G, (t, s) satisfy the following estimates:

T
L |G1 (t, s)| ds

T 3 5af — 140 + 5507 + 146a
< -+ =U,,
F(a+1)\2 768
te[0,T],
(10)

T
L le (t, s)| ds

<

T# 3, 58* — 14> + 5567 + 1468\ U
r(B+1)\2 768 S
tel0,T],

(11)

3
J’T 0G, (t,s) ds
0 ot
a—1 3 2
ST §+oc—3oc + 14 — 12 _u, (12)
T(a)\2 48
te0,T],
J’T 0G, (t,s) ds
0 ot
B-1 3 a2 _
T <§+ﬁ 3B° + 14 12)=U4’ (13)
r(B)\2 48

tel0,T].
Proof. Foranyt € [0,T],

T
J |G1 (t, s)| ds
0

t el
J &dsl + l

<
0 T ((X) 2

T a—1
J &dsl
o I'(a)

LT -2t JT (T - 5)*2
4 Jo T(@-1)

t(T =) (T (T=9)*"
" 4 Jo I'(x—2)

ds (14)

|6Tt2 — 41 — T3| T(T -s)**
+
48 ,[o I'(x-23)

. |2Tt3 —tT° - t4| JT (T —5)*7

48 o I (06 - 4)
T* T T*
< + +
F'(e+1) 2I'(ax+1) 4I'(x)
T T 5T

+ + +
16T (o — 1) 48T (a—2) 768 (a — 3)

_ T (3, 5 — 140’ + 550 + 146a
S T(a+1)\2 768 ’
On the other hand,
T
J’ dG, (t,s) ds
0 ot
t _ a2
_ J =977 o
0 T (06 - 1)
) JT (T=9)*2 (T-2t)(T-9)*"
o | 2I'(x—1) 4T' (x - 2)

(Tt - ) (T - 5)**
4T (x — 3)

(6Tt - T —4£) (T - 57
487 (o — 4)

ds



B T(X—l N T(X—l |T _ 2t| TOC—Z
T T'(w) 2I'() 4T (- 1)

|t - 2|17 |61t — T - ar’| 7%
4T' (- 2) 48T (. — 3)
T“71 T“71 Totfl

< + +
') 2I'(x) 4T'(x-1)

T(X*l T“71
+ +
16T (a—2) ' 48T (a—3)

T (3 o -3a%+ 14— 12
< —+ :
T'(a) \2 48

Inequalities (11) and (13) can be proved in the same way. [

(15)

The first result is based on Leray-Schauder alternative.

Lemma 7 (see [24]). Let F : E — E be a completely
continuous operator (i.e., a map that is restricted to any
bounded set in E is compact). Let

e(F)={x € E:x=AF(x) forsome0<A<1}. (16)

Then either the set e(F) is unbounded or F has at least one fixed
point.

Theorem 8. Let f and g satisfy the following growth condi-
tion:

[ (6 )] <+ my [l + o],

m; >0 (i=1,2), my>0,
(17)
lg (t,x, y)| < ng +ny |x| +m, |y],
=20 (i=12), ny;>0.
In addition, it is assumed that
Um, +Uyn <1, Uym, +U,n, < 1. (18)

Then problem (1) has at least one solution.

For sake of convenience, we set U, = min{l — (U;m,; +
U,ny), 1 = (Uym, + U,n,)}.

Proof. First, we show that operator F : X x X — X x X is
completely continuous.

Step 1. In view of the continuity of f, g, x(¢), y(t) and G, (t, s),
G,(t,s), it is obvious that the operator F is continuous.

Step 2. Let QO ¢ X x X be bounded; then there exist positive
constants K; and K, such that

lftx®.y®) <K,  |gtx®),y®) <K, )

V(x,y)€Q, t€[0,T].
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Then for any (x, y) € Q, according to the inequalities (10) and
(11), we have

T
|Fy (x, ) (0] = “0 G, (t,s) f(s,x(s), y(s)) ds| < K,U,.
(20)
Similarly, we get
T
|E, (x, ) (0)] = L G, (t,5) g (s, x(s), y (s)) ds| < K,U,.
(21)

Thus, it follows from the above inequalities that the operator
F is uniformly bounded.

Step 3. We show that F is equicontinuous:

) Ta ,
'(Fl (%, %)), (t)| B “0 %f(s,x(s),y(s))ds
(22)
T10G, (t,
< K1 J() % ds < K1U3.

Hence, for 0 < t; < t, < T, by the inequalities (12) and (13),
we have

|Fy (% ) (£2) = Fy (%, 9) ()]

t , (23)
< L '(F1 (%, 9)), (s)| ds < K\Us |t, — 1].

Analogously, we can obtain
t
72 (69) () = B (e ) ()] = | [(Bs (e ), 0] ds
< KUty - t4].
(24)

Therefore, the operator F(x, y) is equicontinuous, and thus
the operator F(x, y) is completely continuous.

Finally, it will be verified that the set e = {(x, y) € X x X :
(x,y) = AF(x, ), 0 < A < 1} is bounded.

Let (x, y) € ¢, then (x, y) = AF(x, y). Forany t € [0,T],
we have x(t) = AF, (x, y)(t), y(t) = AE,(x, y)(¢); then,

Ix ()] < |Fy (x, y) (1)] < (mg + my |x ()] +m, |y (1)]) Uy,

ly )] < (ny +ny |x ()] + 1, |y (1)]) U,.

(25)
Hence, we have
Ixll < (mg +my x|l +m, |y]) Uy,
(26)
Iyl < (ng + ny llxll + 1, | ¥]) U,
which imply that
Ixll + Iyl < (Uimg + Uyng) + (Uymny + Uyny ) Il 27)

+(Uymy +Uyn,) ")’” .
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As a result,

U,my + U,n,

I(x )]l < o (28)

for any t € [0,T], which proves that € is bounded; thus by
Lemma 7, the operator F has at least one fixed point. Hence
the boundary value problem (1) has at least one solution; this
completes the proof. O

In the second result, we prove uniqueness of solutions
of the boundary value problem (1) via contraction mapping
principle.

Theorem 9. Let f and g satisfy the following growth condi-
tions:

(H,;) there exist two constants L; > 0 and A; > 0,1 = 1,2
such that

If (txp, 1) = f(t’xz’)’z)l <L, |x1 - le +L, |)’1 —)’zl)

|g (t,xy, 1) = g(t,xz,y2)| <A le - le +A, l)’l - )’2| >

t€[0,T], x;,%0 ¥, ¥, €R;
(29)

(H,) Consider
max {L,U,; + \,U,,L,U; + A,U,} =L<1.  (30)
Then problem (1) has a unique solution.
Proof. Let (x, 1), (%3, ¥,) € X X X; then

|F1 (%2, 3,) (®) = Fy (x1, 1) (t)l

T
L G, (63) f (5%, (), y, () ds

T
- L G, (£,5) f (8, %, (s), 3, (s)) ds

(31)
T
< L |G1 (t 5)| |f (8%, (8), 7, (9))
~f (%1 (s), 31 (9))| ds
<UL (Ly [, =1 + Ly [l y2 = D) -
Analogously,
|F, (x5, y,) (6) = Fy (x1, 1) (8)]

(32)

< Uy (A [l = [+ A5 [l = ) -
Thus,
IF (x5, 2) = F (31, )|
= [y (x2 32) = Fy (x1, 1)

+ ”Fz (%2, 5) = Fy ('xl’yl)"

5
< (LU + MU,) ||x, — x|
+(LoU; + AU5) 2 = |
< L(floey = x| + [y = 31
= L2 ) = (xp, 1)
(33)

Hence, we conclude that problem (1) has a unique
solution by (H,) and the contraction mapping principle; this
ends the proof.

4. Examples

In this section, two examples are given in order to verify the
validity of Theorems 8 and 9.

Example 1. Consider the system
1
CD17/4x(t)+5(t+X(t)+)’(t)):O> 0<t<1,
CDg/Zy(t)+%(\/Z+x(t)+y(t)):0’ 0<t<1,

(34)

0 =-x (1), i=0,1,234,

Y =), i=01,234,
where T =1, | f(t, x, )| < 1+|x|+|yl, |g(t, x, )| < 2+2|x|+
2lyl,a=17/4,0=9/2,my =m; =m, = 1L, ny, =n, =n, = 2.
Consider

T t - 140’ 2414
U, - §+ 5« o + 55 + 146« ~ 0.1229,
T(a+1)\2 768
Tk 3 581 —148% + 5582 + 146
U, = i P P P P ~ 0.0920.
r(B+1)\2 768
(35)

Then U;m, + U,n, < 1 and U;m, + U,n, < 1; by Theorem 8,
the existence of the solution for the system (34) is obvious.

Example 2. Consider the system

ly @)

DM (t) +t +sinx () + 2 =0, O0<t<l,
L+]y @)
3]
cp’/? t+t2+2L+arctan =0, O0<t<l,
y () T+ x ()] y (1)
(i) _ :
X (O) - X (1) > 1= 0) 1)2a 3) 4)
Y0 =y 1), i=01,234,
(36)

where T =1, f(t,x, y) =t +sinx(t) + 2(|y(O)]|/(1 + | y(D)])),
gt,x,y) = 2 4+ 2(]x(0)]/(1 + |x(£)])) + arctan y(t). 0 = 17/4,
B=9]/2.
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Noting that
|(sinx)'| =|cosx| <1, |(arctany)’| -1 . 1,
- 1+y2
(37)
we have
|f (t. x5, ) _f(t>x1))’1)|
. . |J’2 (t)l |y1 (f)|
= |sinx, (t) —sinx; ()| + 2 -
| ’ 1 0 L+ |y, (0)] L+ |y ()]
< Iy = x| + 232 = 3l
|9 (t:x2,32) = g (t 21, y1)| < 2|2 = x| + [y, = ]
o 4 3 2
U, - T <§+ 5ot — 140’ + 5507 + 1460() - 0.1229,
T(a+1)\2 768
8 4 1403 2
U, = T §+ 58" — 14 + 555" + 1463 - 0.0920.
r(B+1)\2 768
(38)
Obviously,
max {L,U; + A,U,, L,U; + L,U,} < I (39)

then we can conclude from Theorem 9 that system (36) has a
unique solution.
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