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We aim in this paper to apply a sinc-Gaussian technique to compute the eigenvalues of a Dirac system which has a discontinuity at
one point and contains a spectral parameter in all boundary conditions. We establish the needed properties of eigenvalues of our
problem.The error of this method decays exponentially in terms of the number of involved samples. Therefore the accuracy of the
new technique is higher than the classical sinc-method. Numerical worked examples with tables and illustrative figures are given
at the end of the paper.

1. Introduction

Problems with a spectral parameter in equations and bound-
ary conditions form an important part of spectral theory
of linear differential operators. A bibliography of papers in
which such problems were considered in connection with
specific physical processes can be found in [1, 2]. Let 𝜎 > 0.
The Paley-Wiener spaceB2

𝜎
is the space of all entire functions

of exponential type 𝜎which lie in 𝐿
2
(R)when restricted toR,

that is,

B
2

𝜎
:= {𝑓 : 𝑓 entire, 


𝑓 (𝜇)





≤ 𝐶𝑒
𝜎|I𝜇|

,

∫

R





𝑓 (𝜇)






2

𝑑𝜇 < ∞} .

(1)

Assume that 𝑓 ∈ B2
𝜎
, and Whittaker-Kotel’nikov-Shannon

sampling theorem (WKS) states that any function 𝑓 can be
reconstructed via the classical sampling expansion, [3–5],

𝑓 (𝜆) = ∑

𝑛∈Z

𝑓(

𝑛𝜋

𝜎

) sinc (𝜎𝜆 − 𝑛𝜋) , 𝜆 ∈ C, (2)

where

sinc (𝜆) :=
{

{

{

sin (𝜆)

𝜆

, 𝜆 ̸= 0,

1, 𝜆 = 0.

(3)

In (2), the series is convergent uniformly on R and is
convergent absolutely and uniformly on compact subsets
of C, cf. [6]. The WKS sampling series is widely used in
approximation theory. It is used to approximate functions
and their derivatives, solutions of differential and integral
equations, and integral transforms (Fourier, Laplace, Hankel
and Mellin) and to approximate the eigenvalues of boundary
value problems; see, for example, [7–10]. The use of WKS
sampling theory is called sinc methods, cf. [11–14]. The sinc-
method has a slow rate of decay at infinity, which is as slow
as 𝑂(|𝜆

−1
|). There are several attempts to improve the rate

of decay. One of the interesting ways is to multiply the sinc-
function in (2) by a kernel function, see, for example, [15–17].
Let ℎ ∈ (0, 𝜋/𝜎] and 𝛾 ∈ (0, 𝜋 − ℎ𝜎). Assume that Φ ∈ B2

𝛾
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such that Φ(0) = 1, then for 𝑓 ∈ B2
𝜎
we have the expansion,

[18]

𝑓 (𝜆) =

∞

∑

𝑛=−∞

𝑓 (𝑛ℎ) sinc (ℎ−1𝜋𝜆 − 𝑛𝜋)Φ (ℎ
−1
𝜆 − 𝑛) . (4)

The speed of convergence of the series in (4) is determined
by the decay of |Φ(𝜆)|. But the decay of an entire function
of exponential type cannot be as fast as 𝑒−𝑐|𝑥| as |𝑥| → ∞,
for some positive 𝑐, [18]. For 𝜎 > 0, ℎ ∈ (0, 𝜋/𝜎], and 𝜔 :=

(𝜋−ℎ𝜎)/2, Schmeisser and Stenger, [18], defined the operator

(G
ℎ,𝑁

𝑓) (𝜆) := ∑

𝑛∈Z𝑁(𝜆)

𝑓 (𝑛ℎ) sinc (ℎ−1𝜋𝜆 − 𝑛𝜋)

× 𝐺(

√𝜔 (𝜆 − 𝑛ℎ)

√𝑁ℎ

) ,

(5)

where 𝐺(𝑡) := exp(−𝑡2), which is called the Gaussian
function, Z

𝑁
(𝜆) := {𝑛 ∈ Z : |[ℎ

−1R𝜆 + 1/2] − 𝑛| ≤ 𝑁},
𝑁 ∈ N, and [𝜆] denotes the integer part of 𝜆 ∈ R, see also
[19–21]. Note that the summation limits in (5) depend on the
real part of 𝜆. The authors, [18], proved that if 𝑓 is an entire
function such that





𝑓 (𝜉 + 𝑖𝜂)





≤ 𝜙 (





𝜉




) 𝑒
𝜎|𝜂|

, 𝜉, 𝜂 ∈ R, (6)

where 𝜙 is a nondecreasing, nonnegative function on [0,∞)

and 𝜎 ≥ 0, then for ℎ ∈ (0, 𝜋/𝜎), 𝜔 := (𝜋 − ℎ𝜎)/2,𝑁 ∈ N, and
|I𝜆| < 𝑁, we have





𝑓 (𝜆) − (G

ℎ,𝑁
𝑓) (𝜆)






≤ 2






sin (ℎ

−1
𝜋𝜆)






𝜙 (|R𝜆| + ℎ (𝑁 + 1))

×

𝑒
−𝜔𝑁

√𝜋𝜔𝑁

𝛽
𝑁
(ℎ
−1
I𝜆) , 𝜆 ∈ 𝐶,

(7)

where

𝛽
𝑁
(𝑡) := cosh (2𝜔𝑡) +

2𝑒
𝜔𝑡
2
/𝑁

√𝜋𝜔𝑁[1 − (𝑡/𝑁)
2
]

+

1

2

[

𝑒
2𝜔𝑡

𝑒
2𝜋(𝑁−𝑡)

− 1

+

𝑒
−2𝜔𝑡

𝑒
2𝜋(𝑁+𝑡)

− 1

] .

(8)

In [22], the authors derived an estimate for amplitude
error: They proved that if

sup
𝑛∈Z𝑛(𝜆)






𝑓 (𝑛ℎ) −

̃
𝑓 (𝑛ℎ)






< 𝜀 (9)

holds, then for |I𝜆| < 𝑁, we have





(G
ℎ,𝑁

𝑓) (𝜆) − (G
ℎ,𝑁

̃
𝑓) (𝜆)






≤ 𝐴
𝜀,𝑁

(I𝜆) , (10)

where ̃
𝑓(𝑛ℎ) is the approximations of the exact values 𝑓(𝑛ℎ)

of (5), 𝜀 > 0 is sufficiently small,

𝐴
𝜀,𝑁

(I𝜆) = 2𝜀𝑒
−𝜔/4𝑁

(1 + √
𝑁

𝜔𝜋

) exp ((𝜔 + 𝜋) ℎ
−1

|I𝜆|) .

(11)

Consider the Dirac system which consists of the system
of differential equations

(
u
2
(𝑥) − 𝑝

1
(𝑥)u
1
(𝑥)

u
1
(𝑥) + 𝑝

2
(𝑥)u
2
(𝑥)

) = 𝜆(
u
1
(𝑥)

−u
2
(𝑥)

) ,

𝑥 ∈ [−1, 0) ∪ (0, 1] ,

(12)

with boundary conditions

L
1
(u) := (𝛼

1
+ 𝜆 sin 𝜃

1
)u
1
(−1)

− (𝛼
2
+ 𝜆 cos 𝜃

1
)u
2
(−1) = 0,

(13)

L
2
(u) := (𝛽

1
+ 𝜆 sin 𝜃

2
)u
1
(1)

− (𝛽
2
+ 𝜆 cos 𝜃

2
)u
2
(1) = 0,

(14)

and transmission conditions

L
3
(u) := u

1
(0
−
) − 𝛿u

1
(0
+
) = 0,

L
4
(u) := u

2
(0
−
) − 𝛿u

2
(0
+
) = 0.

(15)

Here 𝜆 is the spectral parameter, u = (
u1
u2 ), the real valued

function 𝑝
1
(⋅) and 𝑝

2
(⋅) are continuous in [−1, 0) and (0, 1]

and have finite limits 𝑝
1
(0
±
) := lim

𝑥→0
±𝑝
1
(𝑥), 𝑝

2
(0
±
) :=

lim
𝑥→0

±𝑝
2
(𝑥); 𝛼

1
, 𝛼
2
, 𝛽
1
, 𝛽
2
, 𝛿 ∈ R, 𝜃

1
, 𝜃
2
∈ [0, 𝜋), and 𝛿 ̸= 0.

Throughout the following, we assume that

𝜌
1
:= 𝛼
2
sin 𝜃
1
− 𝛼
1
cos 𝜃
1
> 0,

𝜌
2
:= 𝛽
1
cos 𝜃
2
− 𝛽
2
sin 𝜃
2
> 0.

(16)

The aim of the present work is to compute the eigenvalues
of (12)–(15) numerically by the sinc-Gaussian technique
with errors analysis, truncation error, and amplitude error.
In [23], Annaby and Tharwat computed the eigenvalues of
a second-order operator pencil by sinc-Gaussian method.
Also, the authors introduced some examples illustrating the
sinc-Gaussian method accompanied by comparison with
the sinc-method which explained that the sinc-Gaussian
method gives remarkably better results; see also [24, 25].
Tharwat and Al-Harbi [26] computed the eigenvalues of
discontinuous Dirac system but with eigenparameter in one
boundary condition. In [14, 27] Tharwat et al. computed
the eigenvalues of discontinuousDirac system approximately,
with eigenparameter appears in any of boundary conditions,
by Hermite interpolations and regularized sinc-methods,
respectively. In regularized sinc-method, also the same in
Hermite interpolations method, the basic idea is that the
eigenvalues are characterised as the zeros of an analytic
function 𝑓(𝜆) which can be written in the form 𝑓(𝜆) =

𝑘(𝜆) + 𝑢(𝜆), where 𝑘(𝜆) is known part. The ingenuity of the
approach is in trying to choose the function 𝑓(𝜆) so that
𝑢(𝜆) ∈ B2

𝜎
(unknown part) and can be approximated by the

sampling theorem if its values at some equally spaced points
are known; see [11–14]. Recall that, in regularized sinc and
Hermite interpolations methods, it is necessary that 𝑢(𝜆) is
𝐿
2-function. In this paper wewill use sinc-Gaussian sampling

formula (5) to compute eigenvalues of (12)–(15) numerically.
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The proposed method reduces the error bounds remarkably
(see examples of Section 4). The basic idea is to write the
function of eigenvalues as the sum of two terms, one known
and the other unknown but an entire function of exponential
type which satisfies (6). In other words, the unknown term
is not necessarily an 𝐿

2-function. Then we approximate the
unknown part using (5) and obtain better results. We would
like to mention that the papers in computing eigenvalues
by sinc-Gaussian method are few; see [22–26]. In Sections
2 and 3, we discuss some properties of the eigenvalues of
the boundary value problems (12)–(15) and also, we derive
the sinc-Gaussian technique to compute the eigenvalues of
(12)–(15) with error estimates. The last section involves some
illustrative examples.

2. Some Important Results

In the following, we study some properties of the eigenvalues
of the problems (12)–(15) which need in our method; see [26,
28]. For functions u(𝑥), which defined on [−1, 0) ∪ (0, 1] and
has finite limitu(±0) := lim

𝑥→±0
u(𝑥), byu

(1)
(𝑥) andu

(2)
(𝑥),

we denote the functions

u
(1)

(𝑥) = {

u (𝑥) , 𝑥 ∈ [−1, 0) ;

u (0
−
) , 𝑥 = 0,

u
(2)

(𝑥) = {

u (𝑥) , 𝑥 ∈ (0, 1] ;

u (0
+
) , 𝑥 = 0,

(17)

which are defined on Γ
1

:= [−1, 0] and Γ
2

:= [0, 1],
respectively.

In the following lemma, wewill prove that the eigenvalues
of the problems (12)–(15) are real; see [29, 30].

Lemma 1. The eigenvalues of the problems (12)–(15) are real.

Proof. Assume the contrary that 𝜆
0
is a nonreal eigenvalue of

problems (12)–(15). Let ( u1(𝑥)

u2(𝑥)
) be a corresponding (nontriv-

ial) eigenfunction. By (12), we have

𝑑

𝑑𝑥

{u
1
(𝑥)u
2
(𝑥) − u

1
(𝑥)u
2
(𝑥)}

= (𝜆
0
− 𝜆
0
) {





u
1
(𝑥)






2

+




u
2
(𝑥)






2

} ,

𝑥 ∈ [−1, 0) ∪ (0, 1] .

(18)

Integrating the above equation through [−1, 0] and [0, 1], we
obtain

(𝜆
0
− 𝜆
0
) [∫

0

−1

(




u
1
(𝑥)






2

+




u
2
(𝑥)






2

) 𝑑𝑥]

= u
1
(0
−
) 𝑢
2
(0
−
) − u
1
(0
−
)u
2
(0
−
)

− [u
1
(−1)u

2
(−1) − u

1
(−1)u

2
(−1)] ,

(𝜆
0
− 𝜆
0
) [∫

1

0

(




u
1
(𝑥)






2

+




u
2
(𝑥)






2

) 𝑑𝑥]

= u
1
(1)u
2
(1) − u

1
(1)u
2
(1)

− [u
1
(0
+
)u
2
(0
+
) − u
1
(0
+
)u
2
(0
+
)] .

(19)

Then from (13), (14), and transmission conditions, we have,
respectively,

u
1
(−1)u

2
(−1) − u

1
(−1)u

2
(−1)

=

𝜌
1
(𝜆
0
− 𝜆
0
)




u
2
(−1)






2





𝛼
1
+ 𝜆
0
sin 𝜃
1






2
,

u
1
(1)u
2
(1) − u

1
(1)u
2
(1)

= −

𝜌
2
(𝜆
0
− 𝜆
0
)




u
2
(1)






2





𝛽
1
+ 𝜆
0
sin 𝜃
2






2
,

u
1
(−0) 𝑢

2
(−0) − u

1
(−0)u

2
(−0)

= 𝛿
2
[u
1
(+0) 𝑢

2
(+0) − u

1
(+0)u

2
(+0)] .

(20)

Since 𝜆
0

̸= 𝜆
0
, it follows from the last three equations and (19)

that

∫

0

−1

(




u
1
(𝑥)






2

+




u
2
(𝑥)






2

) 𝑑𝑥

+ 𝛿
2
∫

1

0

(




u
1
(𝑥)






2

+




u
2
(𝑥)






2

) 𝑑𝑥

= −

𝜌
1





u
2
(−1)






2





𝛼
1
+ 𝜆
0
sin 𝜃
1






2
−

𝜌
2
𝛿
2


u
2
(1)






2





𝛽
1
+ 𝜆
0
sin 𝜃
2






2
.

(21)

This contradicts the conditions ∫0
−1
(|u
1
(𝑥)|
2
+ |u
2
(𝑥)|
2
)𝑑𝑥 +

𝛿
2
∫

1

0
(|u
1
(𝑥)|
2
+ |u
2
(𝑥)|
2
)𝑑𝑥 > 0 and 𝜌

𝑖
> 0, 𝑖 = 1, 2.

Consequently, 𝜆
0
must be real.

Now, we shall construct a special fundamental system of
solutions of (12) for 𝜆 not being an eigenvalue. Let us consider
the next initial value problem:

u


2
(𝑥) − 𝑝

1
(𝑥)u
1
(𝑥) = 𝜆u

1
(𝑥) ,

u


1
(𝑥) + 𝑝

2
(𝑥)u
2
(𝑥) = −𝜆u

2
(𝑥) ,

𝑥 ∈ (−1, 0) ,

(22)

u
1
(−1) = 𝛼

2
+ 𝜆 cos 𝜃

1
, u

2
(−1) = 𝛼

1
+ 𝜆 sin 𝜃

1
. (23)

By virtue of Theorem 1.1 in [31] this problem has a unique
solution u = (

𝜑11(𝑥,𝜆)

𝜑21(𝑥,𝜆)
), which is an entire function of 𝜆 ∈ C

for each fixed 𝑥 ∈ [−1, 0]. Similarly, employing the same
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method as in proof of Theorem 1.1 in [31], we see that the
problem

u


2
(𝑥) − 𝑝

1
(𝑥)u
1
(𝑥) = 𝜆u

1
(𝑥) ,

u


1
(𝑥) + 𝑝

2
(𝑥)u
2
(𝑥) = −𝜆u

2
(𝑥) ,

𝑥 ∈ (0, 1) ,

u
1
(1) = 𝛽

2
+ 𝜆 cos 𝜃

2
, u

2
(1) = 𝛽

1
+ 𝜆 sin 𝜃

2
,

(24)

has a unique solution u = (
𝜓12(𝑥,𝜆)

𝜓22(𝑥,𝜆)
) which is an entire

function of parameter 𝜆 for each fixed 𝑥 ∈ [0, 1].
Now the functions 𝜑

𝑖2
(𝑥, 𝜆) and 𝜓

𝑖1
(𝑥, 𝜆) are defined in

terms of 𝜑
𝑖1
(𝑥, 𝜆) and 𝜓

𝑖2
(𝑥, 𝜆), 𝑖 = 1, 2, respectively, as

follows: the initial-value problem,

u


2
(𝑥) − 𝑝

1
(𝑥)u
1
(𝑥) = 𝜆u

1
(𝑥) ,

u


1
(𝑥) + 𝑝

2
(𝑥)u
2
(𝑥) = −𝜆u

2
(𝑥) ,

𝑥 ∈ (0, 1) ,

(25)

u
1
(0) =

1

𝛿

𝜑
11

(0, 𝜆) , u
2
(0) =

1

𝛿

𝜑
21

(0, 𝜆) , (26)

has unique solution u = (
𝜑12(𝑥,𝜆)

𝜑22(𝑥,𝜆)
) for each 𝜆 ∈ C.

Similarly, the following problem also has a unique solu-
tion u = (

𝜓11(𝑥,𝜆)

𝜓21(𝑥,𝜆)
):

u


2
(𝑥) − 𝑝

1
(𝑥)u
1
(𝑥) = 𝜆u

1
(𝑥) ,

u


1
(𝑥) + 𝑝

2
(𝑥)u
2
(𝑥) = −𝜆u

2
(𝑥) ,

𝑥 ∈ (−1, 0) ,

(27)

u
1
(0) = 𝛿𝜓

12
(0, 𝜆) , u

2
(0) = 𝛿𝜓

22
(0, 𝜆) . (28)

Let us construct two basic solutions of (12) as

𝜑 (⋅, 𝜆) = (
𝜑
1
(⋅, 𝜆)

𝜑
2
(⋅, 𝜆)

) , 𝜓 (⋅, 𝜆) = (
𝜓
1
(⋅, 𝜆)

𝜓
2
(⋅, 𝜆)

) , (29)

where

𝜑
1
(𝑥, 𝜆) = {

𝜑
11

(𝑥, 𝜆) , 𝑥 ∈ [−1, 0) ,

𝜑
12

(𝑥, 𝜆) , 𝑥 ∈ (0, 1] ,

𝜑
2
(𝑥, 𝜆) = {

𝜑
21

(𝑥, 𝜆) , 𝑥 ∈ [−1, 0) ,

𝜑
22

(𝑥, 𝜆) , 𝑥 ∈ (0, 1] ,

(30)

𝜓
1
(𝑥, 𝜆) = {

𝜓
11

(𝑥, 𝜆) , 𝑥 ∈ [−1, 0) ,

𝜓
12

(𝑥, 𝜆) , 𝑥 ∈ (0, 1] ,

𝜓
2
(𝑥, 𝜆) = {

𝜓
21

(𝑥, 𝜆) , 𝑥 ∈ [−1, 0) ,

𝜓
22

(𝑥, 𝜆) , 𝑥 ∈ (0, 1] .

(31)

By virtue of (26) and (28) these solutions satisfy both
transmission conditions (15). These functions are entire in 𝜆

for all 𝑥 ∈ [−1, 0) ∪ (0, 1].

Let W(𝜑, 𝜓)(⋅, 𝜆) denote the Wronskian of 𝜑(⋅, 𝜆) and
𝜓(⋅, 𝜆) defined in [32, page 194], that is,

W (𝜑, 𝜓) (⋅, 𝜆) :=










𝜑
1
(⋅, 𝜆) 𝜑

2
(⋅, 𝜆)

𝜓
1
(⋅, 𝜆) 𝜓

2
(⋅, 𝜆)










. (32)

It is obvious that the Wronskians,

Ω
𝑖
(𝜆) := W (𝜑, 𝜓) (𝑥, 𝜆)

= 𝜑
1𝑖
(𝑥, 𝜆) 𝜓

2𝑖
(𝑥, 𝜆)

− 𝜑
2𝑖
(𝑥, 𝜆) 𝜓

1𝑖
(𝑥, 𝜆) , 𝑥 ∈ Γ

𝑖
, 𝑖 = 1, 2,

(33)

are independent on variable 𝑥 ∈ Γ
𝑖
(𝑖 = 1, 2) and 𝜑

𝑖
(𝑥, 𝜆)

and 𝜓
𝑖
(𝑥, 𝜆) are entire functions of the parameter 𝜆 for each

𝑥 ∈ Γ
𝑖
(𝑖 = 1, 2). Taking into account (26) and (28), a short

calculation gives

Ω
1
(𝜆) = 𝛿

2
Ω
2
(𝜆) , (34)

for each 𝜆 ∈ C.

Corollary 2. The zeros of the functions Ω
1
(𝜆) and Ω

2
(𝜆)

coincide.

Then, we may introduce to the consideration the charac-
teristic functionΩ(𝜆) as

Ω (𝜆) := Ω
1
(𝜆) = 𝛿

2
Ω
2
(𝜆) . (35)

Note that all eigenvalues of problems (12)–(15) are just zeros
of the function Ω(𝜆). Indeed, since the functions 𝜑

1
(𝑥, 𝜆)

and 𝜑
2
(𝑥, 𝜆) satisfy the boundary condition (13) and both

transmission conditions (15), to find the eigenvalues of
the (12)–(15), we have to insert the functions 𝜑

1
(𝑥, 𝜆) and

𝜑
2
(𝑥, 𝜆) in the boundary condition (14) and find the roots

of this equation. In the following lemma, we show that all
eigenvalues of the problems (12)–(15) are simple.

Lemma 3. The eigenvalues of the boundary value problems
(12)–(15) form an at most countable set without finite limit
points. All eigenvalues of the boundary value problems (12)–
(15) (of Ω(𝜆)) are simple.

Proof. The eigenvalues are the zeros of the entire function
occurring on the left-hand side in; see (35),

(𝛽
1
+ 𝜆 sin 𝜃

2
) 𝜑
12

(1, 𝜆) − (𝛽
2
+ 𝜆 cos 𝜃

2
) 𝜑
22

(1, 𝜆) = 0.

(36)

We have shown (see Lemma 1) that this function does
not vanish for nonreal 𝜆. In particular, it does not vanish
identically. Therefore, its zeros form an at most countable set
without finite limit points.

By (12) we obtain for 𝜆, 𝜇 ∈ C, 𝜆 ̸= 𝜇,

𝑑

𝑑𝑥

{𝜑
1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜇) − 𝜑

1
(𝑥, 𝜇) 𝜑

2
(𝑥, 𝜆)}

= (𝜇 − 𝜆) {𝜑
1
(𝑥, 𝜆) 𝜑

1
(𝑥, 𝜇) + 𝜑

2
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜇)} .

(37)
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Integrating the above equation through [−1, 0] and [0, 1], and
taking into account the initial conditions (23), (26), and (28),
we obtain

𝛿
2
(𝜑
12

(1, 𝜆) 𝜑
22

(1, 𝜇) − 𝜑
12

(1, 𝜇) 𝜑
22

(1, 𝜆))

− (𝜇 − 𝜆) 𝜌
1

= (𝜇 − 𝜆) (∫

0

−1

(𝜑
11

(𝑥, 𝜆) 𝜑
11

(𝑥, 𝜇)

+ 𝜑
21

(𝑥, 𝜆) 𝜑
21

(𝑥, 𝜇)) 𝑑𝑥

+ 𝛿
2
∫

1

0

(𝜑
12

(𝑥, 𝜆) 𝜑
12

(𝑥, 𝜇)

+ 𝜑
22

(𝑥, 𝜆) 𝜑
22

(𝑥, 𝜇)) 𝑑𝑥) .

(38)

Dividing both sides of (38) by (𝜆 − 𝜇) and by letting 𝜇 → 𝜆,
we arrive to the relation

𝛿
2
(𝜑
22

(1, 𝜆)

𝜕𝜑
12

(1, 𝜆)

𝜕𝜆

− 𝜑
12

(1, 𝜆)

𝜕𝜑
22

(1, 𝜆)

𝜕𝜆

) + 𝜌
1

= −(∫

0

−1

(




𝜑
11

(𝑥, 𝜆)





2

+




𝜑
21

(𝑥, 𝜆)





2

) 𝑑𝑥

+ 𝛿
2
∫

1

0

(




𝜑
12

(𝑥, 𝜆)





2

+




𝜑
22

(𝑥, 𝜆)





2

) 𝑑𝑥) .

(39)

We show that equation

Ω (𝜆) = W (𝜑, 𝜓) (1, 𝜆)

= 𝛿
2
((𝛽
1
+ 𝜆 sin 𝜃

2
) 𝜑
12

(1, 𝜆)

− (𝛽
2
+ 𝜆 cos 𝜃

2
) 𝜑
22

(1, 𝜆)) = 0,

(40)

has only simple roots. Assume the converse, that is, (40) has
a double root 𝜆∗. Then the following two equations hold:

(𝛽
1
+ 𝜆
∗ sin 𝜃

2
) 𝜑
12

(1, 𝜆
∗
) − (𝛽

2
+ 𝜆
∗ cos 𝜃

2
) 𝜑
22

(1, 𝜆
∗
) = 0,

sin 𝜃
2
𝜑
12

(1, 𝜆
∗
) + (𝛽

1
+ 𝜆
∗ sin 𝜃

2
)

𝜕𝜑
12

(1, 𝜆
∗
)

𝜕𝜆

− cos 𝜃
2
𝜑
22

(1, 𝜆
∗
) − (𝛽

2
+ 𝜆
∗ cos 𝜃

2
)

𝜕𝜑
22

(1, 𝜆
∗
)

𝜕𝜆

= 0.

(41)

Since 𝜌
2

̸= 0 and 𝜆
∗ is real, then (𝛽

1
+ 𝜆
∗ sin 𝜃

2
)
2

+

(𝛽
2
+ 𝜆
∗ cos 𝜃

2
)
2

̸= 0. Let 𝛽
1
+ 𝜆
∗ sin 𝜃

2
̸= 0. From (41)

𝜑
12

(1, 𝜆
∗
) =

(𝛽
2
+ 𝜆
∗ cos 𝜃

2
)

(𝛽
1
+ 𝜆
∗ sin 𝜃

2
)

𝜑
22

(1, 𝜆
∗
) ,

𝜕𝜑
12

(1, 𝜆
∗
)

𝜕𝜆

=

𝜌
2
𝜑
22

(1, 𝜆
∗
)

(𝛽
1
+ 𝜆
∗ sin 𝜃

2
)
2

+

(𝛽
2
+ 𝜆
∗ cos 𝜃

2
)

(𝛽
1
+ 𝜆
∗ sin 𝜃

2
)

𝜕𝜑
22

(1, 𝜆
∗
)

𝜕𝜆

.

(42)

Combining (42) and (39) with 𝜆 = 𝜆
∗, we obtain

𝜌
2
𝛿
2
(𝜑
22

(1, 𝜆
∗
))
2

(𝛽
1
+ 𝜆
∗ sin 𝜃

2
)
2

+ 𝜌
1

= −(∫

0

−1

(




𝜑
11

(𝑥, 𝜆)





2

+




𝜑
21

(𝑥, 𝜆)





2

) 𝑑𝑥

+ 𝛿
2
∫

1

0

(






𝜑
12

(𝑥, 𝜆) |
2
+






𝜑
22

(𝑥, 𝜆) |
2
) 𝑑𝑥) ,

(43)

contradicting the assumption 𝜌
𝑖
> 0, 𝑖 = 1, 2. The other case,

when 𝛽
2
+𝜆
∗ cos 𝜃

2
̸= 0 can be treated similarly and the proof

is complete.

Recall that boundary value problems (12)–(15) have denu-
merable set of real and simple eigenvalues; see the above
section. From (23) and (26), the solution of (12),

𝜑 (⋅, 𝜆) = (
𝜑
1
(⋅, 𝜆)

𝜑
2
(⋅, 𝜆)

) ,

𝜑
𝑖
(𝑥, 𝜆) = {

𝜑
𝑖1
(𝑥, 𝜆) , 𝑥 ∈ [−1, 0) ,

𝜑
𝑖2
(𝑥, 𝜆) , 𝑥 ∈ (0, 1] ,

𝑖 = 1, 2,

(44)

satisfies the following initial conditions

(
𝜑
11

(−1, 𝜆) 𝜑
12

(0
+
, 𝜆)

𝜑
21

(−1, 𝜆) 𝜑
22

(0
+
, 𝜆)

)

= (
𝛼
2
+ 𝜆 cos 𝜃

1
𝛿
−1
𝜑
11

(0
−
, 𝜆)

𝛼
1
+ 𝜆 sin 𝜃

1
𝛿
−1
𝜑
21

(0
−
, 𝜆)

) .

(45)

Since 𝜑(⋅, 𝜆) satisfies (13), then the eigenvalues of the prob-
lems (12)–(15) are the zeros of the function

Ω (𝜆) = 𝛿
2
((𝛽
1
+ 𝜆 sin 𝜃

2
) 𝜑
12

(1, 𝜆)

− (𝛽
2
+ 𝜆 cos 𝜃

2
) 𝜑
22

(1, 𝜆)) = 0.

(46)

We shall transform (12), (23), (26), and (30) into the integral
equations, see [32],

𝜑
11

(𝑥, 𝜆) = 𝛼
2
cos 𝜆 (𝑥 + 1) − 𝛼

1
sin 𝜆 (𝑥 + 1)

+ 𝜆 cos (𝜆 (𝑥 + 1) + 𝜃
1
) −T
−1,1

𝜑
11

(𝑥, 𝜆)

−
̃T
−1,2

𝜑
21

(𝑥, 𝜆) ,

(47)

𝜑
21

(𝑥, 𝜆) = 𝛼
1
cos 𝜆 (𝑥 + 1) + 𝛼

2
sin 𝜆 (𝑥 + 1)

+ 𝜆 sin (𝜆 (𝑥 + 1) + 𝜃
1
) +

̃T
−1,1

𝜑
11

(𝑥, 𝜆)

−T
−1,2

𝜑
21

(𝑥, 𝜆) ,

(48)

𝜑
12

(𝑥, 𝜆) =

1

𝛿

𝜑
11

(0
−
, 𝜆) cos (𝜆𝑥) − 1

𝛿

𝜑
21

(0
−
, 𝜆) sin (𝜆𝑥)

−T
0,1

𝜑
12

(𝑥, 𝜆) −
̃T
0,2

𝜑
22

(𝑥, 𝜆) ,

(49)
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𝜑
22

(𝑥, 𝜆) =

1

𝛿

𝜑
11

(0
−
, 𝜆) sin (𝜆𝑥) +

1

𝛿

𝜑
21

(0
−
, 𝜆) cos (𝜆𝑥)

+
̃T
0,1

𝜑
12

(𝑥, 𝜆) −T
0,2

𝜑
22

(𝑥, 𝜆) ,

(50)

where T
−1,𝑖

, ̃T
−1,𝑖

, T
0,𝑖

and ̃T
0,𝑖
, 𝑖 = 1, 2, are the Volterra

integral operators defined by

T
−1,𝑖

𝜑 (𝑥, 𝜆) := ∫

𝑥

−1

sin 𝜆 (𝑥 − 𝑡) 𝑝
𝑖
(𝑡) 𝜑 (𝑡, 𝜆) 𝑑𝑡,

̃T
−1,𝑖

𝜑 (𝑥, 𝜆) := ∫

𝑥

−1

cos 𝜆 (𝑥 − 𝑡) 𝑝
𝑖
(𝑡) 𝜑 (𝑡, 𝜆) 𝑑𝑡,

T
0,𝑖
𝜑 (𝑥, 𝜆) := ∫

𝑥

0

sin 𝜆 (𝑥 − 𝑡) 𝑝
𝑖
(𝑡) 𝜑 (𝑡, 𝜆) 𝑑𝑡,

̃T
0,𝑖
𝜑 (𝑥, 𝜆) := ∫

𝑥

0

cos 𝜆 (𝑥 − 𝑡) 𝑝
𝑖
(𝑡) 𝜑 (𝑡, 𝜆) 𝑑𝑡.

(51)

For convenience, we define the constants

𝑐
1
:= max {


𝛼
1





+




𝛼
2





,




sin 𝜃
1





+




cos 𝜃
1





} ,

𝑐
2
:= ∫

0

−1

[




𝑝
1
(𝑡)





+




𝑝
2
(𝑡)





] 𝑑𝑡, 𝑐

3
:= 𝑐
1
𝑐
2
exp (𝑐

2
) ,

𝑐
4
:= ∫

1

0

[




𝑝
1
(𝑡)





+




𝑝
2
(𝑡)





] 𝑑𝑡, 𝑐

5
:= 𝑐
3
+

2

|𝛿|

(𝑐
1
+ 𝑐
3
) ,

𝑐
6
:= max {


𝛼
1





+




𝛼
2





,




sin 𝜃
2





+




cos 𝜃
2





} .

(52)

Now we define y
−1,𝑖

(⋅, 𝜆) and y
0,𝑖
(⋅, 𝜆), 𝑖 = 1, 2, to be

y
−1,1

(𝑥, 𝜆) := T
−1,1

𝜑
11

(𝑥, 𝜆) +
̃T
−1,2

𝜑
21

(𝑥, 𝜆) ,

y
−1,2

(𝑥, 𝜆) :=
̃T
−1,1

𝜑
11

(𝑥, 𝜆) −T
−1,2

𝜑
21

(𝑥, 𝜆) ,

y
0,1

(𝑥, 𝜆) := T
0,1

𝜑
12

(𝑥, 𝜆) +
̃T
0,2

𝜑
22

(𝑥, 𝜆) ,

y
0,2

(𝑥, 𝜆) :=
̃T
0,1

𝜑
12

(𝑥, 𝜆) −T
0,2

𝜑
22

(𝑥, 𝜆) .

(53)

Lemma 4. The functions y
−1,1

(𝑥, 𝜆) and y
−1,2

(𝑥, 𝜆) are entire
in 𝜆 for any fixed 𝑥 ∈ [−1, 0) and satisfy the growth condition





y
−1,1

(𝑥, 𝜆)




,





y
−1,2

(𝑥, 𝜆)




≤ 2𝑐
3
(1 + |𝜆|) 𝑒

|I𝜆|(𝑥+1)
,

𝜆 ∈ C.

(54)

Proof. Since y
−1,1

(𝑥, 𝜆) = T
−1,1

𝜑
11
(𝑥, 𝜆) +

̃T
−1,2

𝜑
21
(𝑥, 𝜆),

then from (47) and (48) we obtain

y
−1,1

(𝑥, 𝜆)

= 𝛼
2
T
−1,1

cos 𝜆 (𝑥 + 1) − 𝛼
1
T
−1,1

sin 𝜆 (𝑥 + 1)

+ 𝜆T
−1,1

cos (𝜆 (𝑥 + 1) + 𝜃
1
) −T
−1,1

y
−1,1

(𝑥, 𝜆)

+ 𝛼
1
̃T
−1,2

cos 𝜆 (𝑥 + 1) + 𝛼
2
̃T
−1,2

sin 𝜆 (𝑥 + 1)

+ 𝜆
̃T
−1,2

sin (𝜆 (𝑥 + 1) + 𝜃
1
) +

̃T
−1,2

y
−1,2

(𝑥, 𝜆) .

(55)

Using the inequalities | sin 𝑧| ≤ 𝑒
|I𝑧| and | cos 𝑧| ≤ 𝑒

|I𝑧| for
𝑧 ∈ C leads for 𝜆 ∈ C to




y
−1,1

(𝑥, 𝜆)





≤




𝛼
2










T
−1,1

cos 𝜆 (𝑥 + 1)




+




𝛼
1
T
−1,1

sin 𝜆 (𝑥 + 1)





+ |𝜆|




T
−1,1

cos (𝜆 (𝑥 + 1) + 𝜃
1
)




+




T
−1,1

y
−1,1

(𝑥, 𝜆)





+




𝛼
1












̃T
−1,2

cos 𝜆 (𝑥 + 1)






+




𝛼
2












̃T
−1,2

sin 𝜆 (𝑥 + 1)







+ |𝜆|







̃T
−1,2

sin (𝜆 (𝑥 + 1) + 𝜃
1
)






+







̃T
−1,2

y
−1,2

(𝑥, 𝜆)







≤ 2𝑐
1
(1 + |𝜆|) 𝑒

|I𝜆|(𝑥+1)
∫

𝑥

−1

[




𝑝
1
(𝑡)





+




𝑝
2
(𝑡)





] 𝑑𝑡

+ 𝑒
|I𝜆|(𝑥+1)

∫

𝑥

−1

[




𝑝
1
(𝑡)










y
−1,1

(𝑡, 𝜆)





+




𝑝
2
(𝑡)










y
−1,2

(𝑡, 𝜆)




] 𝑒
−|I𝜆|(𝑡+1)

𝑑𝑡

≤ 2𝑐
1
𝑐
2
(1 + |𝜆|) 𝑒

|I𝜆|(𝑥+1)

+ 𝑒
|I𝜆|(𝑥+1)

∫

𝑥

−1

[




𝑝
1
(𝑡)










y
−1,1

(𝑡, 𝜆)





+




𝑝
2
(𝑡)










y
−1,2

(𝑡, 𝜆)




] 𝑒
−|I𝜆|(𝑡+1)

𝑑𝑡.

(56)

The above inequality can be reduced to

𝑒
−|I𝜆|(𝑥+1) 




y
−1,1

(𝑥, 𝜆)





≤ 2𝑐
1
𝑐
2
(1 + |𝜆|)

+ ∫

𝑥

−1

[




𝑝
1
(𝑡)










y
−1,1

(𝑡, 𝜆)





+




𝑝
2
(𝑡)










y
−1,2

(𝑡, 𝜆)




] 𝑒
−|I𝜆|(𝑡+1)

𝑑𝑡.

(57)

Similarly, we can prove that

𝑒
−|I𝜆|(𝑥+1) 




y
−1,2

(𝑥, 𝜆)





≤ 2𝑐
1
𝑐
2
(1 + |𝜆|)

+ ∫

𝑥

−1

[




𝑝
1
(𝑡)










y
−1,1

(𝑡, 𝜆)





+




𝑝
2
(𝑡)










y
−1,2

(𝑡, 𝜆)




] 𝑒
−|I𝜆|(𝑡+1)

𝑑𝑡.

(58)

Then from (57), (58), and Lemma 3.1 of [32, pp. 204], we
obtain (54).

In a similar manner, we will prove the following lemma
for y
0,1

(⋅, 𝜆) and y
0,2

(⋅, 𝜆).

Lemma 5. The functions y
0,1

(𝑥, 𝜆) and y
0,2

(𝑥, 𝜆) are entire in
𝜆 for any fixed 𝑥 ∈ (0, 1] and satisfy the growth condition





y
0,1

(𝑥, 𝜆)




,





y
0,2

(𝑥, 𝜆)




≤ 2𝑐
4
𝑐
5
(1 + |𝜆|) 𝑒

|I𝜆|(𝑥+1)
,

𝜆 ∈ C.

(59)
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Proof. Since y
0,1

(𝑥, 𝜆) = T
0,1

𝜑
12
(𝑥, 𝜆) +

̃T
0,2

𝜑
22
(𝑥, 𝜆), then

from (49) and (50) we obtain

y
0,1

(𝑥, 𝜆) =

1

𝛿

𝜑
11

(0
−
, 𝜆)T

0,1
cos (𝜆𝑥)

−

1

𝛿

𝜑
21

(0
−
, 𝜆)T

0,1
sin (𝜆𝑥)

−T
0,1
y
−1,2

(𝑥, 𝜆) +

1

𝛿

𝜑
11

(0
−
, 𝜆)

̃T
0,2

sin (𝜆𝑥)

+

1

𝛿

𝜑
21

(0
−
, 𝜆)

̃T
0,2

cos (𝜆𝑥) + ̃T
0,2
y
−1,2

(𝑥, 𝜆) .

(60)

Then from (47) and (48) and Lemma 4, we get





y
0,1

(𝑥, 𝜆)




≤

1

|𝛿|





𝜑
11

(0
−
, 𝜆)










T
0,1

cos (𝜆𝑥)


+

1

|𝛿|





𝜑
21

(0
−
, 𝜆)










T
0,1

sin (𝜆𝑥)





+




T
0,1
y
−1,2

(𝑥, 𝜆)





+

1

|𝛿|





𝜑
11

(0
−
, 𝜆)












̃T
0,2

sin (𝜆𝑥)







+

1

|𝛿|





𝜑
21

(0
−
, 𝜆)












̃T
0,2

cos (𝜆𝑥)


+







̃T
0,2
y
−1,2

(𝑥, 𝜆)







≤ 2𝑐
4
(1 + |𝜆|)

× (𝑐
3
+

2

|𝛿|

(𝑐
1
+ 𝑐
3
)) 𝑒
|I𝜆|(𝑥+1)

= 2𝑐
4
𝑐
5
(1 + |𝜆|) 𝑒

|I𝜆|(𝑥+1)
.

(61)

Similarly, we can prove that




y
0,2

(𝑥, 𝜆)




≤ 2𝑐
4
𝑐
5
(1 + |𝜆|) 𝑒

|I𝜆|(𝑥+1)
. (62)

3. The Numerical Scheme

In this section we derive the method of computing eigen-
values of problems (12)–(15) numerically. The basic idea of
the scheme is to split Ω(𝜆) into two parts a known part
K(𝜆) and an unknown oneU(𝜆).Thenwe approximateU(𝜆)

using (5) to get the approximate Ω(𝜆) and then compute the
approximate zeros. We first splitΩ(𝜆) into two parts:

Ω (𝜆) := K (𝜆) +U (𝜆) , (63)

whereU(𝜆) is the unknown part involving integral operators

U (𝜆) := 𝛿 [(𝛽
2
+ 𝜆 cos 𝜃

2
) sin 𝜆

− (𝛽
1
+ 𝜆 sin 𝜃

2
) cos 𝜆] y

−1,1
(0
−
, 𝜆)

− 𝛿 [(𝛽
1
+ 𝜆 sin 𝜃

2
) sin 𝜆

+ (𝛽
2
+ 𝜆 cos 𝜃

2
) cos 𝜆] y

−1,2
(0
−
, 𝜆)

− 𝛿
2
[(𝛽
1
+ 𝜆 sin 𝜃

2
) y
0,1

(1, 𝜆)

+ (𝛽
2
+ 𝜆 cos 𝜃

2
) y
0,2

(1, 𝜆)] ,

(64)

andK(𝜆) is the known part

K (𝜆) := 𝛿 (𝛽
1
+ 𝜆 sin 𝜃

2
)

× [𝛼
2
cos 2𝜆 − 𝛼

1
sin 2𝜆 + 𝜆 cos (2𝜆 + 𝜃

1
)]

− 𝛿 (𝛽
2
+ 𝜆 cos 𝜃

2
)

× [𝛼
2
sin 2𝜆 + 𝛼

1
cos 2𝜆 + 𝜆 sin (2𝜆 + 𝜃

1
)] .

(65)

Then, from Lemmas 4 and 5, we have the following result.

Lemma 6. The function U(𝜆) is entire in 𝜆 and the following
estimate holds:

|U (𝜆)| ≤ 𝜙 (𝜆) 𝑒
2|I𝜆|

, (66)

where

𝜙 (𝜆) := 𝑀(1 + |𝜆|)
2
,

𝑀 := 4 |𝛿| 𝑐6 (2𝑐3 + |𝛿| 𝑐4𝑐5) .

(67)

Proof. From (64), we have

|U (𝜆)| ≤ |𝛿| [(




𝛽
2





+ |𝜆|





cos 𝜃
2





) |sin 𝜆|

+ (




𝛽
1





+ |𝜆|





sin 𝜃
2





) |cos 𝜆|] 


y
−1,1

(0
−
, 𝜆)






+ |𝛿| [(




𝛽
1





+ |𝜆|





sin 𝜃
2





) |sin 𝜆|

+ (




𝛽
2





+




𝜆 cos 𝜃

2





) |cos 𝜆|] 


y
−1,2

(0
−
, 𝜆)






+ 𝛿
2
[(




𝛽
1





+ |𝜆|





sin 𝜃
2





)




y
0,1

(1, 𝜆)





+ (




𝛽
2





+ |𝜆|





cos 𝜃
2





)




y
0,2

(1, 𝜆)




] .

(68)

Using the inequalities | sin 𝜆| ≤ 𝑒
|I𝜆| and | cos 𝜆| ≤ 𝑒

|I𝜆| for
𝜆 ∈ C, and Lemmas 4 and 5 imply (66).

ThusU(𝜆) is an entire function of exponential type 𝜎 = 2.
In the following we let 𝜆 ∈ R since all eigenvalues are real.
Now we approximate the function U(𝜆) using the operator
(5) where ℎ ∈ (0, 𝜋/2) and 𝜔 := (𝜋 − 2ℎ)/2 and then, from
(7), we obtain





U (𝜆) − (G

ℎ,𝑁
U) (𝜆)





≤ 𝑇
ℎ,𝑁

(𝜆) , (69)

where

𝑇
ℎ,𝑁

(𝜆) := 2






sin (ℎ

−1
𝜋𝜆)







× 𝜙 (|R𝜆| + ℎ (𝑁 + 1))

𝑒
−𝜔𝑁

√𝜋𝜔𝑁

𝛽
𝑁
(0) , 𝜆 ∈ R.

(70)

The samples,U(𝑛ℎ) = Ω(𝑛ℎ) −K(𝑛ℎ), 𝑛 ∈ Z
𝑁
(𝜆), cannot be

computed explicitly in the general case.We approximate these
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samples numerically by solving the initial-value problems
defined by (12) and (45) to obtain the approximate values
̃U(𝑛ℎ), 𝑛 ∈ Z

𝑁
(𝜆), that is, ̃U(𝑛ℎ) = Ω̃(𝑛ℎ) − K(𝑛ℎ).

Here we use a computer algebra system, mathematica, to
obtain the approximate solutions with the required accuracy.
However, a separate study for the effect of different numerical
schemes and the computational costs would be interesting.
Accordingly we have the explicit expansion

(G
ℎ,𝑁

̃U) (𝜆) := ∑

𝑛∈Z𝑁(𝜆)

̃U (𝑛ℎ) sinc (ℎ−1𝜋𝑥 − 𝑛𝜋)

× 𝐺(

√𝜔 (𝜆 − 𝑛ℎ)

√𝑁ℎ

) .

(71)

Therefore we get, cf. (10),





(G
ℎ,𝑁

U) (𝜆) − (G
ℎ,𝑁

̃U) (𝜆)






≤ 𝐴
𝜀,𝑁

(0) , 𝜆 ∈ R. (72)

Now let Ω̃
𝑁
(𝜆) := K(𝜆) + (G

ℎ,𝑁
̃U)(𝜆). From (69) and (72)

we obtain





Ω (𝜆) − Ω̃

𝑁
(𝜆)






≤ 𝑇
ℎ,𝑁

(𝜆) + 𝐴
𝜀,𝑁

(0) , 𝜆 ∈ R. (73)

Let 𝜆∗ be an eigenvalue and 𝜆
𝑁
its desired approximation,

that is, Ω(𝜆
∗
) = 0 and Ω̃

𝑁
(𝜆
𝑁
) = 0. From (73) we have

|Ω̃
𝑁
(𝜆
∗
)| ≤ 𝑇

ℎ,𝑁
(𝜆
∗
) + 𝐴
𝜀,𝑁

(0). Define the curves

𝑎
±
(𝜆) = Ω̃

𝑁
(𝜆) ± 𝑇

ℎ,𝑁
(𝜆) + 𝐴

𝜀,𝑁
(0) . (74)

The curves 𝑎
+
(𝜆), 𝑎
−
(𝜆) enclose the curve ofΩ(𝜆) for suitably

large 𝑁. Hence the closure interval is determined by solving
𝑎
±
(𝜆) = 0, giving an interval

𝐼
𝜀,𝑁

:= [𝑎
−
, 𝑎
+
] . (75)

It is worthwhile to mention that the simplicity of the eigen-
values guarantees the existence of approximate eigenvalues,
that is, the 𝜆

𝑁
’s for which Ω̃

𝑁
(𝜆
𝑁
) = 0. Next we estimate the

error |𝜆∗ − 𝜆
𝑁
| for the eigenvalue 𝜆∗.

Theorem 7. Let 𝜆∗ be an eigenvalue of (12)–(15) and let 𝜆
𝑁

be its approximation. Then, for 𝜆 ∈ R, we have the following
estimate:





𝜆
∗
− 𝜆
𝑁





<

𝑇
ℎ,𝑁

(𝜆
𝑁
) + 𝐴
𝜀,𝑁

(0)

inf
𝜁∈𝐼𝜀,𝑁





Ω

(𝜁)






, (76)

where the interval 𝐼
𝜀,𝑁

is defined above.

Proof. Replacing 𝜆 by 𝜆
𝑁
in (73) we obtain





Ω (𝜆
𝑁
) − Ω (𝜆

∗
)




< 𝑇
ℎ,𝑁

(𝜆
𝑁
) + 𝐴
𝜀,𝑁

(0) , (77)

where we have used Ω̃
𝑁
(𝜆
𝑁
) = Ω(𝜆

∗
) = 0. Using the

mean value theorem yields that for some 𝜁 ∈ 𝐽
𝜀,𝑁

:=

[min(𝜆∗, 𝜆
𝑁
),max(𝜆∗, 𝜆

𝑁
)],






(𝜆
∗
− 𝜆
𝑁
)Ω

(𝜁)






≤ 𝑇
ℎ,𝑁

(𝜆
𝑁
) + 𝐴
𝜀,𝑁

(0) , 𝜁 ∈ 𝐽
𝜀,𝑁

⊂ 𝐼
𝜀,𝑁

.

(78)

Since 𝜆
∗ is simple and 𝑁 is sufficiently large, then

inf
𝜁∈𝐼𝜀,𝑁

|Ω

(𝜁)| > 0 and we get (76).

4. Numerical Examples

In this section, we introduce two examples illustrating the the
above method. Also, in the following examples, we observe
that the exact solutions 𝜆

𝑘
are all inside the interval [𝑎

−
, 𝑎
+
].

In these two examples, we indicate the effect of the amplitude
error in the method by determining enclosure intervals for
different values of 𝜀. We also indicate the effect of 𝑁 and ℎ

by several choices. The eigenvalues of the following examples
cannot computed concretely, then we use mathematica
to obtain the exact values. mathematica is also used in
rounding off the exact eigenvalues, which are square roots.
Both numerical results and the associated figures prove the
credibility of the method.

Example 1. Consider the system

𝑦


2
(𝑥) − 𝑝 (𝑥) 𝑦

1
(𝑥) = 𝜆𝑦

1
(𝑥) ,

𝑦


1
(𝑥) + 𝑝 (𝑥) 𝑦

2
(𝑥) = −𝜆𝑦

2
(𝑥) ,

𝑥 ∈ [−1, 0) ∪ (0, 1] ,

𝜆𝑦
1
(−1) − (√2 + 𝜆) 𝑦

2
(−1) = 0,

(√2 + 𝜆) 𝑦
1
(1) − 𝜆𝑦

2
(1) = 0,

𝑦
1
(0
−
) − 2𝑦

1
(0
+
) = 0, 𝑦

2
(0
−
) − 2𝑦

2
(0
+
) = 0.

(79)

Here

𝑝
1
(𝑥) = 𝑝

2
(𝑥) = 𝑟 (𝑥) = {

𝑥, 𝑥 ∈ [−1, 0) ,

1, (0, 1] ,

(80)

𝜃
1
= 𝜃
2
= 𝜋/4, 𝛼

1
= 𝛽
2
= 0, 𝛼

2
= 𝛽
1
= 1, and 𝛿 = 2. Direct

calculations give

K (𝜆) = 2 ((√2𝜆 + 1) cos (2𝜆) − 𝜆 (𝜆 + √2) sin (2𝜆)) ,

Ω (𝜆) = 2 ((√2𝜆 + 1) cos(2𝜆 +

1

2

)

−𝜆 (𝜆 + √2) sin(2𝜆 +

1

2

)) .

(81)

As is clearly seen, the eigenvalues cannot be computed
explicitly. Tables 1, 2, and 3 indicate the application of our
technique to this problem and the effect of 𝜀. By exact we
mean the zeros of Δ(𝜆) computed by Mathematica.

Figures 1 and 2 illustrate the enclosure intervals domi-
nating 𝜆

0
for 𝑁 = 25, ℎ = 0.1 and 𝜀 = 10

−2, 𝜀 = 10
−5,

respectively. The middle curve represents Δ(𝜆), while the
upper and lower curves represent the curves of 𝑎

+
(𝜆), 𝑎
−
(𝜆),

respectively. We notice that when 𝜀 = 10
−5, the two curves

are almost identical. Similarly, Figures 3 and 4 illustrate the
enclosure intervals dominating 𝜆

1
for ℎ = 0.1, 𝑁 = 25 and

𝜀 = 10
−2, 𝜀 = 10

−5, respectively.
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Table 1: The approximation 𝜆
𝑘,𝑁

and the exact solutions 𝜆
𝑘
for different choices of ℎ and𝑁.

𝜆
𝑘

𝜆
−2

𝜆
−1

𝜆
0

𝜆
1

Exact 𝜆
𝑘

−1.2061856254879546 −0.5151195632138896 0.34274095892547224 1.616237903407542

𝜆
𝑘,𝑁

ℎ = 0.6, 𝑁 = 15 −1.2061855965725146 −0.5151190347168934 0.34274053593937165 1.616237692038969
𝜔 = 0.9708 𝑁 = 25 −1.2061856254843495 −0.5151195631493376 0.342740958869788 1.6162379033820231
ℎ = 0.1, 𝑁 = 15 −1.2061856254844203 −0.5151195632158179 0.3427409589350932 1.6162379034134882

𝜔 = 1.4708 𝑁 = 25 −1.2061856254879548 −0.5151195632138894 0.34274095892547236 1.6162379034075425

Table 2: Absolute error |𝜆
𝑘
− 𝜆
𝑘,𝑁

|.

𝜆
𝑘

𝜆
−2

𝜆
−1

𝜆
0

𝜆
1

ℎ = 0.6
𝑁 = 15 2.89154 × 10

−8
5.28497 × 10

−7
4.22986 × 10

−7
2.11369 × 10

−7

𝑁 = 25 3.60512 × 10
−12

6.4552 × 10
−11

5.56842 × 10
−11

2.55189 × 10
−11

ℎ = 0.1
𝑁 = 15 3.53428 × 10

−12
1.92824 × 10

−12
9.62097 × 10

−12
5.94613 × 10

−12

𝑁 = 25 2.22045 × 10
−16

2.22045 × 10
−16

5.55112 × 10
−17

4.44089 × 10
−16

Table 3: For𝑁 = 25 and ℎ = 0.1, the exact solutions 𝜆
𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for different values of 𝜀.

𝜆
𝑘

𝜆
−2

𝜆
−1

𝜆
0

𝜆
1

Exact 𝜆
𝑘

−1.2061856254879546 −0.5151195632138896 0.34274095892547224 1.616237903407542
𝐼
𝜀,𝑁

, 𝜀 = 10
−2

[−1.2335696, −1.1771922] [−0.5486790, −0.4826816] [0.3246478, 0.3601346] [1.6100119, 1.6224066]

𝐼
𝜀,𝑁

, 𝜀 = 10
−5

[−1.2062137, −1.2061575] [−0.5151525, −0.5150867] [0.3427232, 0.3427586] [1.6162317, 1.6162441]

0.30 0.32 0.34 0.36 0.38

0.0

0.2

0.4

a−

a+

Ω(𝜆)

−0.2

−0.4

−0.6

Figure 1:The enclosure interval dominating 𝜆
0
for ℎ = 0.1,𝑁 = 25,

and 𝜀 = 10
−2.

Example 2. In this example we consider the system

𝑦


2
(𝑥) − 𝑝 (𝑥) 𝑦

1
(𝑥) = 𝜆𝑦

1
(𝑥) ,

𝑦


1
(𝑥) + 𝑝 (𝑥) 𝑦

2
(𝑥) = −𝜆𝑦

2
(𝑥) ,

𝑥 ∈ [−1, 0) ∪ (0, 1] ,

√3𝑦
1
(−1) − 𝑦

2
(−1) = 0,

(1 +

1

2

𝜆)𝑦
1
(1) − (1 +

√3

2

𝜆)𝑦
2
(1) = 0,

𝑦
1
(0
−
) − 3𝑦

1
(0
+
) = 0, 𝑦

2
(0
−
) − 3𝑦

2
(0
+
) = 0,

(82)

0.30 0.32 0.34 0.36 0.38

0.0

0.2

a−

a+

Ω(𝜆)

−0.2

−0.4

Figure 2:The enclosure interval dominating 𝜆
0
for ℎ = 0.1,𝑁 = 25,

and 𝜀 = 10
−5.

where

𝑝
1
(𝑥) = 𝑝

2
(𝑥) = 𝑝 (𝑥) = {

𝑥, 𝑥 ∈ [−1, 0) ,

𝑥
2
, (0, 1] ,

(83)

𝜃
1
= 𝜃
2
= 0, 𝛼

1
= 𝛽
2
= 1, 𝛼

2
= 𝛽
1
= 2, and 𝛿 = 1/2. Direct

calculations give

K (𝜆) =

1

2

((𝜆 + 3) cos (2𝜆) − (𝜆
2
+ 3𝜆 + 4) sin (2𝜆)) ,

Ω (𝜆) =

1

2

((𝜆
2
+ 3𝜆 + 4) sin(

1

6

− 2𝜆)

+ (𝜆 + 3) cos(1

6

− 2𝜆)) .

(84)
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Table 4: The approximation 𝜆
𝑘,𝑁

and the exact solutions 𝜆
𝑘
for different choices of ℎ and𝑁.

𝜆
𝑘

𝜆
−2

𝜆
−1

𝜆
0

𝜆
1

Exact 𝜆
𝑘

−3.0661256186938894 −1.0959703083466883 0.3689030343814017 1.8338437675275228

𝜆
𝑘,𝑁

ℎ = 0.8, 𝑁 = 15 −3.066123822200742 −1.0959640944020903 0.36890463046491767 1.8338437607680411
𝜔 = 0.0.7708 𝑁 = 25 −3.0661256172349627 −1.0959703026494807 0.36890303588091056 1.8338437676561417

ℎ = 0.2, 𝑁 = 15 −3.0661256186844446 −1.0959703083278305 0.3689030343916001 1.833843767517251
𝜔 = 1.3708 𝑁 = 25 −3.06612561869389 −1.095970308346688 0.3689030343814024 1.8338437675275225

Table 5: Absolute error |𝜆
𝑘
− 𝜆
𝑘,𝑁

|.

𝜆
𝑘

𝜆
−2

𝜆
−1

𝜆
0

𝜆
1

ℎ = 0.8
𝑁 = 15 1.79649 × 10

−6
6.21394 × 10

−6
1.59608 × 10

−6
6.75948 × 10

−9

𝑁 = 25 1.45893 × 10
−9

5.69721 × 10
−9

1.49951 × 10
−9

1.28619 × 10
−10

ℎ = 0.2
𝑁 = 15 9.44489 × 10

−12
1.88578 × 10

−12
1.01984 × 10

−11
1.02718 × 10

−11

𝑁 = 25 4.44089 × 10
−16

2.22045 × 10
−16

6.66134 × 10
−16

2.22045 × 10
−16

Table 6: For𝑁 = 25 and ℎ = 0.2, the exact solutions 𝜆
𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for different values of 𝜀.

𝜆
𝑘

𝜆
−2

𝜆
−1

𝜆
0

𝜆
1

Exact 𝜆
𝑘

−3.0661256186938894 −1.0959703083466883 0.3689030343814017 1.8338437675275228
𝐼
𝜀,𝑁

, 𝜀 = 10
−2

[−3.1098742, −3.0188665] [−1.1631502, −1.0339754] [0.3437434, 0.3933486] [1.8220764, 1.8454828]

𝐼
𝜀,𝑁

, 𝜀 = 10
−5

[−3.0661709, −3.0660803] [−1.0960346, −1.0959060] [0.3688783, 0.3689278] [1.8338321, 1.8338555]

1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65

0.0

0.5

1.0

−0.5

−1.0

a−

a+

Ω(𝜆)

Figure 3:The enclosure interval dominating 𝜆
1
for ℎ = 0.1,𝑁 = 25,

and 𝜀 = 10
−2.

Tables 4 and 6 give the exact eigenvalues {𝜆
𝑘
}
1

𝑘=−2
and their

approximate ones for different values of ℎ, 𝑁, and 𝜀. In
Table 5, we give the absolute error for different values of ℎ and
𝑁.

Here, Figures 5, 6, 7, and 8 illustrate the enclosure
intervals dominating 𝜆

−2
and 𝜆

−1
for ℎ = 0.2, 𝑁 = 25 and

𝜀 = 10
−2, 𝜀 = 10

−5, respectively.

1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65

0.0

0.5

−0.5

a−

a+

Ω(𝜆)

Figure 4:The enclosure interval dominating 𝜆
1
for ℎ = 0.1,𝑁 = 25,

and 𝜀 = 10
−5.

5. Conclusion

With a simple analysis and with values of solutions of
initial value problems computed at a few values of the
eigenparameter, we have computed the eigenvalues of a
Dirac system which has a discontinuity at one point and
contains a spectral parameter in all boundary conditions,
with a certain estimated error. The method proposed is
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0.0

0.5

1.0

−0.5

−3.3 −3.2 −3.1 −3.0 −2.9 −2.8

a−

a+

Ω(𝜆)

Figure 5: The enclosure interval dominating 𝜆
−2

for ℎ = 0.2, 𝑁 =

25, and 𝜀 = 10
−2.

0.0

0.5

1.0

−0.5

−3.3 −3.2 −3.1 −3.0 −2.9 −2.8

a−

a+

Ω(𝜆)

Figure 6: The enclosure interval dominating 𝜆
−2

for ℎ = 0.2, 𝑁 =

25, and 𝜀 = 10
−5.

a shooting procedure; that is, the problem is reformulated
as two initial value ones, due to the interior discontinuity, of
size two and a miss-distance is defined at the right end of the
interval of integration whose roots are the eigenvalues to be
computed. The unknown partU(𝜆) of the miss-distance can
bewritten in terms of a functionwhich is an entire function of
exponential type.Therefore, we propose to approximate such
term by means of a truncated cardinal series with sampling
values approximated by solving numerically corresponding
suitable initial value problems. Finally, in Section 4 we
introduced two instructive examples, where both numerical
results and the associated figures have proved the credibility
of the method.

0.0

0.5

1.0

−0.5

−1.4 −1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7

a−

a+

Ω(𝜆)

Figure 7: The enclosure interval dominating 𝜆
−1

for ℎ = 0.2, 𝑁 =

25, and 𝜀 = 10
−2.

0.0

0.5

1.0

−0.5

−1.4 −1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7

a−

a+

Ω(𝜆)

Figure 8: The enclosure interval dominating 𝜆
−1

for ℎ = 0.2, 𝑁 =

25, and 𝜀 = 10
−5.
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