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We present a numerical method for a class of boundary value problems on the unit interval which feature a type of power-
law nonlinearity. In order to numerically solve this type of nonlinear boundary value problems, we construct a kind of spectral
collocation method. The spatial approximation is based on shifted Jacobi polynomials 𝐽(𝛼,𝛽)𝑛 (𝑟) with 𝛼, 𝛽 ∈ (−1,∞), 𝑟 ∈ (0, 1) and
𝑛 the polynomial degree. The shifted Jacobi-Gauss points are used as collocation nodes for the spectral method. After deriving the
method for a rather general class of equations, we apply it to several specific examples. One natural example is a nonlinear boundary
value problem related to the Yamabe problem which arises in mathematical physics and geometry. A number of specific numerical
experiments demonstrate the accuracy and the efficiency of the spectral method.We discuss the extension of themethod to account
for more complicated forms of nonlinearity.

1. Introduction

Spectralmethods (see, for instance, [1–6]) are one of the prin-
cipal methods of discretization for the numerical solution of
differential equations. The three most widely used spectral
versions are the Galerkin, collocation, and tau methods. Col-
location methods [7–12] have become increasingly popular
for solving differential equations, also they are very useful in
providing highly accurate solutions to nonlinear differential
equations. In the present paper, we intend to extend the
application of Jacobi polynomials from Galerkin method for
solving two-point linear problems (see [13, 14]) to collocation
method to solve nonlinear second-order initial value prob-
lems. To the best of our knowledge, there are not so many
results on Jacobi-Gauss collocation method for differential
equations of second-order arising in mathematical physics.
This partially motivated our interest in such a method.

A well-known advantage of a spectral method is that
it achieves high accuracy with relatively fewer spatial grid
points when compared with a finite-difference method. On
the other hand, spectral methods typically give rise to full

matrices, partially negating the gain in efficiency due to
the fewer number of grid points. In general, the use of
Jacobi polynomials (𝑃(𝛼,𝛽)

𝑘
with 𝛼, 𝛽 ∈ (−1,∞) and 𝑛 is

the polynomial degree) has the advantage of obtaining the
solutions of differential equations in terms of the Jacobi
indexes 𝛼 and 𝛽 (see, e.g., [15, 16]).

Each of these particular pairs of 𝛼 and 𝛽 has been used
separately for solving approximately differential equations
(see [17–20]). Hence, to generalize and instead of developing
approximation results for each particular pair of indexes, it
would be very useful to carry out a systematic study on Jacobi
polynomials with general indexes which can then be directly
applied to other applications [21].

In the present paper, we will consider the nonlinear
ordinary boundary value problem

] +
1

𝑟
] − ] + 𝜆]𝑛 = 0, (1)

] (0) = 0, ] (1) = 1. (2)
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Here𝜆 is a nonzero parameter, while 𝑛 is the power-law index.
The larger the deviation of 𝑛 from either 1 or 0, the stronger
the nonlinearity. Physically, it makes sense to consider 𝑛 > 0.
Note that the final boundary condition is sufficiently general.
Indeed, if we are given ](𝑎) = 𝑏, we may always rescale
the dependent and independent variables to get ](1) = 1

provided that 𝑎 ̸= 0 and 𝑏 ̸= 0.
One example of such a boundary value problemwould be

for the Yamabe equation on a sphere. The Yamabe equation
is a nonlinear differential equation arising in geometry and
related areas of mathematical physics [22–24]. Under the
assumption of radial solutions, the Yamabe problem can
be put into correspondence with (1)-(2) for appropriate 𝑛
and 𝜆. Previously, some approximate analytical results were
obtained by Van Gorder [25].

Note also that the boundary value problem somewhat
resembles the Lane-Emden problem of the first kind [26–
29], since there is a power-law nonlinearity. However, the
Lane-Emden problem of the first kind is different in two
ways. First, the linear term −] is not present in the Lane-
Emden problem. This term alters the linearized eigenvalue
problem and hence would change the base functions used in
any approximation scheme. Secondly, the present problem is
a boundary value problem,while the Lane-Emdenproblemof
the first kind is an initial value problemwith initial conditions
](0) = 1, ](0) = 0. So, the present problem is rather different
from those previously considered in the literature and hence
merits study. Another difference is that, in the Lane-Emden
problem of the first kind, the power-law index is often an
integer. Here, the value of 𝑛 is any positive rational number.
As it turns out, 𝑛 is oftennot an integer, in the case of problems
such as the Yamabe problem.

The fundamental goal of this paper is to develop a suitable
way to approximate power-law nonlinear ODEs (1) with
boundary conditions (2) on the interval (0, 1) numerically
using the Jacobi polynomials. We propose a spectral shifted
Jacobi-Gauss collocation (SJC) method to find an approx-
imate numerical solution ]𝑁(𝑟). The ODE (1) is collocated
only at (𝑁 − 1) points. For suitable collocation points we use
the 𝑁 − 1 nodes of the shifted Jacobi-Gauss interpolation
on (0, 1). These equations together with initial condition
generate (𝑁 + 1) algebraic equations which can be solved
using Newton’s iterative method. Finally, the accuracy of the
proposed methods is demonstrated by test problems, and
numerical results are presented inwhich the exponential con-
vergence behavior of spectral approximations is exhibited.
The numerical experiments demonstrate that the method is
both efficient and accurate.

This paper is organized as follows. In Section 2 we give
an overview of shifted Jacobi polynomials and their relevant
properties needed hereafter. Then, in Section 3, we construct
the collocation method for (1) using the shifted Jacobi
polynomials. We derive the numerical method for general
values of the model parameters 𝜆 and 𝑛. In Section 4, we
present some numerical results exhibiting the accuracy and
efficiency of our numerical algorithms. We consider a wide
variety of parameter regimes, in order to demonstrate the
robustness of the numerical scheme. Such results are related
to radial solutions of the Yamabe problem. In particular, in

the Yamabe problem the power-law index 𝑛 is a function of
the spatial dimension, and as the spatial dimension increases,
the power-law index remains bounded like 1 < 𝑛 ≤ 5. Hence,
we are able to use the present results to infer properties of
solutions to the Yamabe problem.

2. Preliminaries

Let 𝛼 > −1, 𝛽 > −1, and 𝑃
(𝛼,𝛽)

𝑘
(𝑟) be the standard Jacobi

polynomial of degree 𝑘. Then we have that

𝑃
(𝛼,𝛽)

𝑘
(−𝑟) = (−1)

𝑘
𝑃
(𝛼,𝛽)

𝑘
(𝑟) ,

𝑃
(𝛼,𝛽)

𝑘
(−1) =

(−1)
𝑘
Γ (𝑘 + 𝛽 + 1)

𝑘!Γ (𝛽 + 1)
,

𝑃
(𝛼,𝛽)

𝑘
(1) =

Γ (𝑘 + 𝛼 + 1)

𝑘!Γ (𝛼 + 1)
.

(3)

Furthermore, note that

𝐷
𝑚
𝑃
(𝛼,𝛽)

𝑘
(𝑟) = 2

−𝑚 Γ (𝑚 + 𝑘 + 𝛼 + 𝛽 + 1)

Γ (𝑘 + 𝛼 + 𝛽 + 1)
𝑃
(𝛼+𝑚,𝛽+𝑚)

𝑘−𝑚
(𝑟) .

(4)

Let 𝑤(𝛼,𝛽)(𝑟) = (1 − 𝑟)
𝛼
(1 + 𝑟)

𝛽. We define the weighted
space 𝐿

2

𝑤(𝛼,𝛽)
[−1, 1] as usual, equipped with the following

inner product and norm:

(𝑢, V)𝑤(𝛼,𝛽) = ∫
1

−1

𝑢 (𝑟) V (𝑟) 𝑤(𝛼,𝛽) (𝑟) 𝑑𝑥,

‖V‖𝑤(𝛼,𝛽) = (V, V)
1/2

𝑤(𝛼,𝛽)
.

(5)

The set of Jacobi polynomials forms a complete 𝐿2
𝑤𝛼,𝛽

[−1, 1]-
orthogonal system, and


𝑃
(𝛼,𝛽)

𝑘



2

𝑤(𝛼,𝛽)
= ℎ
(𝛼,𝛽)

𝑘

=
2
𝛼+𝛽+1

Γ (𝑘 + 𝛼 + 1) Γ (𝑘 + 𝛽 + 1)

(2𝑘 + 𝛼 + 𝛽 + 1) Γ (𝑘 + 1) Γ (𝑘 + 𝛼 + 𝛽 + 1)
.

(6)

If we define the shifted Jacobi polynomial of degree 𝑘 by
𝐽
(𝛼,𝛽)

𝑘
(𝑟) = 𝑃

(𝛼,𝛽)

𝑘
(2𝑟 − 1), and in virtue of (3) and (4), then

it can be easily shown that

𝐷
𝑞
𝐽
(𝛼,𝛽)

𝑘
(0) =

(−1)
𝑘−𝑞

Γ (𝑘 + 𝛽 + 1) (𝑘 + 𝛼 + 𝛽 + 1)
𝑞

Γ (𝑘 − 𝑞 + 1) Γ (𝑞 + 𝛽 + 1)
, (7)

𝐷
𝑞
𝐽
(𝛼,𝛽)

𝑘
(1) =

Γ (𝑘 + 𝛼 + 1) (𝑘 + 𝛼 + 𝛽 + 1)
𝑞

Γ (𝑘 − 𝑞 + 1) Γ (𝑞 + 𝛼 + 1)
, (8)

𝐷
𝑚
𝐽
(𝛼,𝛽)

𝑘
(𝑟) =

Γ (𝑚 + 𝑘 + 𝛼 + 𝛽 + 1)

Γ (𝑘 + 𝛼 + 𝛽 + 1)
𝐽
(𝛼+𝑚,𝛽+𝑚)

𝑘−𝑚
(𝑟) . (9)
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Next, let 𝜒(𝛼,𝛽)(𝑟) = (1 − 𝑟)
𝛼
𝑟
𝛽. We define the weighted

space 𝐿2
𝜒(𝛼,𝛽)

[0, 1] in the usual way, with the following inner
product and norm:

(𝑢, V)𝜒(𝛼,𝛽) = ∫
1

0

𝑢 (𝑟) V (𝑟) 𝜒(𝛼,𝛽) (𝑟) 𝑑𝑥,

‖V‖𝜒(𝛼,𝛽) = (V, V)
1/2

𝜒(𝛼,𝛽)
.

(10)

The set of shifted Jacobi polynomials forms a complete
𝐿
2

𝜒(𝛼,𝛽)
[0, 1]-orthogonal system. Moreover, and due to (6), we

have

𝐽
(𝛼,𝛽)

𝑘



2

𝜒(𝛼,𝛽)
= (

1

2
)

𝛼+𝛽+1

ℎ
(𝛼,𝛽)

𝑘
= 𝜂
(𝛼,𝛽)

𝑘
. (11)

For 𝛼 = 𝛽 one recovers the shifted ultraspherical polynomials
(symmetric Jacobi polynomials) and for 𝛼 = 𝛽 = ∓1/2, 𝛼 =

𝛽 = 0we recover the shiftedChebyshev of the first and second
kinds and the shifted Legendre polynomials, respectively.
For the nonsymmetric shifted Jacobi polynomials, the two
important special cases 𝛼 = −𝛽 = ±1/2 (shifted Chebyshev
polynomials of the third and fourth kinds) are also recovered.

We denote by 𝑟
(𝛼,𝛽)

𝑁,𝑗
, 0 ⩽ 𝑗 ⩽ 𝑁 the nodes of the

standard Jacobi-Gauss interpolation on the interval [−1, 1].
Their corresponding Christoffel numbers are 𝜛(𝛼,𝛽)

𝑁,𝑗
, 0 ⩽ 𝑗 ⩽

𝑁. The nodes of the shifted Jacobi-Gauss interpolation on
the interval [0, 1] are the zeros of 𝐽(𝛼,𝛽)

𝑁+1
(𝑟), which we denote

by 𝜃
(𝛼,𝛽)

𝑁,𝑗
, 0 ⩽ 𝑗 ⩽ 𝑁. Clearly 𝜃

(𝛼,𝛽)

𝑁,𝑗
= (1/2)(𝑟

(𝛼,𝛽)

𝑁,𝑗
+ 1)

and their corresponding Christoffel numbers are 𝜗(𝛼,𝛽)
𝑁,𝑗

=

(1/2)
𝛼+𝛽+1

𝜛
(𝛼,𝛽)

𝑁,𝑗
, 0 ⩽ 𝑗 ⩽ 𝑁. Let 𝑆𝑁[0, 1] be the set of

polynomials of degree at most 𝑁. Thanks to the property of
the standard Jacobi-Gauss quadrature, it follows that for any
𝜙 ∈ 𝑆2𝑁+1[0, 1],

∫

1

0

(1 − 𝑟)
𝛼
𝑟
𝛽
𝜙 (𝑥) 𝑑𝑥

= (
1

2
)

𝛼+𝛽+1

∫

1

−1

(1 − 𝑟)
𝛼
(1 + 𝑟)

𝛽
𝜙(

1

2
(𝑟 + 1)) 𝑑𝑟

= (
1

2
)

𝛼+𝛽+1 𝑁

∑

𝑗=0

𝜛
(𝛼,𝛽)

𝑁,𝑗
𝜙(

1

2
(𝑟
(𝛼,𝛽)

𝑁,𝑗
+ 1))

=

𝑁

∑

𝑗=0

𝜗
(𝛼,𝛽)

𝑁,𝑗
𝜙 (𝜃
(𝛼,𝛽)

𝑁,𝑗
) .

(12)

3. Shifted Jacobi-Gauss Collocation Method

In this section, we consider a Jacobi-Gauss collocation
method approach to numerically solve the nonlinear bound-
ary value problem

] (𝑟) +
1

𝑟
] (𝑟) − ] (𝑟) + 𝜆]𝑛 (𝑟) = 0 (13)

subject to

] (0) = 0, ] (1) = 1. (14)

The choice of collocation points is important for the con-
vergence and efficiency of the collocation method. It should
be noted that for a second-order differential equation with
the singularity at 𝑟 = 0 in the interval (0, 1), one is
unable to apply the collocation method with Jacobi-Gauss-
Radau points because the fixed node 𝑟 = 0 is necessary
to use as a point from the collocation nodes. In fact, the
collocation method with Jacobi-Gauss nodes are used to
treat singular second-order differential equation; that is, we
collocate the singular nonlinear ODE only at the (𝑁 − 1)

Jacobi-Gauss points that are the (𝑁 − 1) zeros of the shifted
Jacobi polynomial on (0, 1). These equations together with
two initial conditions generate (𝑁 + 1) nonlinear algebraic
equations which can be solved.

Let us first introduce some basic notation. We set

𝑆𝑁 (0, 1) = span {𝐽(𝛼,𝛽)0 (𝑟) , 𝐽
(𝛼,𝛽)

1 (𝑟) , . . . , 𝐽
(𝛼,𝛽)

𝑁 (𝑟)} (15)

andwe define the discrete inner product and norm as follows:

(𝑢, V)𝜒(𝛼,𝛽) ,𝑁 =
𝑁

∑

𝑗=0

𝑢 (𝜃
(𝛼,𝛽)

𝑁,𝑗
) V (𝜃(𝛼,𝛽)
𝑁,𝑗

) 𝜗
(𝛼,𝛽)

𝑁,𝑗
,

‖𝑢‖𝜒(𝛼,𝛽) ,𝑁 = √(𝑢, 𝑢)𝜒(𝛼,𝛽) ,𝑁.

(16)

Here 𝜃(𝛼,𝛽)
𝑁,𝑗

and 𝜗
(𝛼,𝛽)

𝑁,𝑗
are the nodes and the corresponding

weights of the shifted Jacobi-Gauss quadrature formula on the
interval (0, 1), respectively. Obviously,

(𝑢, V)𝜒(𝛼,𝛽) ,𝑁 = (𝑢, V)𝜒(𝛼,𝛽) , ∀𝑢, V ∈ 𝑆2𝑁−1. (17)

Thus, for any 𝑢 ∈ 𝑆𝑁(0, 1), the norms ‖𝑢‖𝜒(𝛼,𝛽) ,𝑁 and ‖𝑢‖𝜒(𝛼,𝛽)
coincide.

Associating with this quadrature rule, we denote by 𝐼𝐽
(𝛼,𝛽)

𝑁

the shifted Jacobi-Gauss interpolation,

𝐼
𝐽
(𝛼,𝛽)

𝑁 𝑢 (𝜃
(𝛼,𝛽)

𝑁,𝑗
) = 𝑢 (𝜃

(𝛼,𝛽)

𝑁,𝑗
) , 0 ≤ 𝑘 ≤ 𝑁. (18)

The shifted Jacobi-Gauss collocation method for solving
(13) and (14) is to seek ]𝑁(𝑥) ∈ 𝑆𝑁(0, 1), such that

] (𝜃(𝛼,𝛽)
𝑁,𝑘

) +
1

𝜃
(𝛼,𝛽)

𝑁,𝑘

] (𝜃(𝛼,𝛽)
𝑁,𝑘

) − ] (𝜃(𝛼,𝛽)
𝑁,𝑘

) + 𝜆]𝑛 (𝜃(𝛼,𝛽)
𝑁,𝑘

) = 0,

𝑘 = 0, 1, . . . , 𝑁 − 2.

]𝑁 (0) = 0, ]𝑁 (1) = 1.
(19)

We now derive an algorithm for solving (13) and (14). To do
this, let

]𝑁 (𝑟) =
𝑁

∑

𝑗=0

𝑎𝑗𝐽
(𝛼,𝛽)

𝑗 (𝑟) , 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑁)
𝑇
. (20)
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We first approximate ](𝑟), ](𝑟), and ](𝑟), as (20). By
substituting these approximation in (13), we get

𝑁

∑

𝑗=0

𝑎𝑗𝐷
2
𝐽
(𝛼,𝛽)

𝑗 (𝑟) +
1

𝑟

𝑁

∑

𝑗=0

𝑎𝑗𝐷𝐽
(𝛼,𝛽)

𝑗 (𝑟)

−

𝑁

∑

𝑗=0

𝑎𝑗𝐽
(𝛼,𝛽)

𝑗 (𝑟) + 𝜆(

𝑁

∑

𝑗=0

𝑎𝑗𝐽
(𝛼,𝛽)

𝑗
(𝑟))

𝑛

= 0.

(21)

Then, by virtue of (9), we deduce that
𝑁

∑

𝑗=0

𝑎𝑗(𝑗 + 𝛼 + 𝛽 + 1)2𝐽
(𝛼+2,𝛽+2)

𝑗−2 (𝑟)

+
1

𝑟

𝑁

∑

𝑗=0

𝑎𝑗 (𝑗 + 𝛼 + 𝛽 + 1) 𝐽
(𝛼+1,𝛽+1)

𝑗−1 (𝑟)

−

𝑁

∑

𝑗=0

𝑎𝑗𝐽
(𝛼,𝛽)

𝑗 (𝑟) + 𝜆(

𝑁

∑

𝑗=0

𝑎𝑗𝐽
(𝛼,𝛽)

𝑗
(𝑟))

𝑛

= 0.

(22)

Also, by substituting (20) in (14) we obtain
𝑁

∑

𝑗=0

𝑎𝑗𝐷𝐽
(𝛼,𝛽)

𝑗 (0) = 0,

𝑁

∑

𝑗=0

𝑎𝑗𝐽
(𝛼,𝛽)

𝑗 (1) = 1. (23)

To find the solution ]𝑁(𝑟), we first collocate (22) at the (𝑁−1)

Jacobi rational roots, yielding
𝑁

∑

𝑗=0

𝑎𝑗(𝑗 + 𝛼 + 𝛽 + 1)2𝐽
(𝛼+2,𝛽+2)

𝑗−2 (𝑟)

+
1

𝑟

𝑁

∑

𝑗=0

𝑎𝑗 (𝑗 + 𝛼 + 𝛽 + 1) 𝐽
(𝛼+1,𝛽+1)

𝑗−1 (𝑟)

−

𝑁

∑

𝑗=0

𝑎𝑗𝐽
(𝛼,𝛽)

𝑗 (𝑟) + 𝜆(

𝑁

∑

𝑗=0

𝑎𝑗𝐽
(𝛼,𝛽)

𝑗
(𝑟))

𝑛

= 0.

(24)

Equation (23), after using (7) and (8), can be written as
𝑁

∑

𝑗=1

(−1)
𝑗−1 (𝑗 + 𝛼 + 𝛽 + 1) Γ (𝑗 + 𝛽 + 1)

(𝑗 − 1)!Γ (𝛽 + 2)
𝑎𝑗 = 0,

𝑁

∑

𝑗=0

Γ (𝑗 + 𝛼 + 1)

Γ (𝑗 − 1) Γ (𝛼 + 1)
𝑎𝑗 = 0.

(25)

Finally, from (24) and (25), we get (𝑁 + 1) nonlinear
algebraic equations which can be solved for the unknown
coefficients 𝑎𝑗 by using any standard iteration technique, like
Newton’s iterationmethod. Consequently, ]𝑁(𝑟) given in (20)
can be evaluated.

With this, we have derived the relevant spectral method
for the boundary value problems (1)-(2). In what follows,
we will apply the method to obtain approximate numerical
solutions to some specific values of 𝜆 and 𝑛. In doing so, we
will be able to demonstrate the accuracy and efficiency of the
method.

4. Numerical Experiments and Examples

The Yamabe equation is a nonlinear differential equation
arising in geometry and related areas ofmathematical physics
[22–24]. Previously, some approximate analytical results were
obtained by Van Gorder [25]. We will consider the Yamabe
equation on the unit ball B𝑚 in R𝑚, where 𝑚 = 3, 4, 5, . . .

is the dimension of the space. Previously, some approximate
analytical results were obtained byVanGorder [25].However,
the analytical method employed there becomes complicated
after a number of iterations, hindering computational effi-
ciency. The Yamabe equation is a strongly nonlinear partial
differential equation for any choice of 𝑚 greater than two.
Note that the nonlinearity strongly depends on the problem
dimension. To simplify the situation, we assume a radially
symmetric solution

𝑢 (𝑥) = ] (𝑟) . (26)

For simplicity of notation, let us also pick the constant

𝑛 = 1 +
4

(𝑚 − 2)
(27)

so that for𝑚 ≥ 3 we have 𝑛 ∈ (1, 5]. Then, under appropriate
scaling of the dependent and independent variables, the
Yamabe is put into the form

] +
1

𝑟
] − ] + 𝜆]𝑛 = 0, (28)

] (0) = 0, ] (1) = 1. (29)

Here 𝜆 is a parameter. We should remark that (28) is similar
in form to the Lane-Emden equation of the first kind which
has been considered in the literature [26–29]. Note that (28)
has an extra term, and that the form of the conditions is
different (the relevant Lane-Emden problem is an initial value
problem, not a boundary value problem). So, this problem
will be a bit harder to solve than the Lane-Emden initial value
problem. Both 𝜆 and 𝑛 are parameters. We can take 𝜆 to be a
real number, whereas 𝑛 depends on 𝑚: if 𝑚 = 3, 𝑛 = 5; if
𝑚 = 4, 𝑛 = 3; if 𝑚 = 5, 𝑛 = 7/3; and so on. As 𝑚 tends to
infinity, 𝑛 tends to 1, so the problem is linear in this limit and
the problem can be solved exactly.

In this section we show the accuracy and rapid conver-
gence of the proposed spectral method for this boundary
value problem. Table 1 shows the approximations of ]𝑁(𝑟)
for indices 𝑛 = 5, 3 and 𝜆 = 1/2, 4/3 respectively, with
𝛼 = 𝛽 = −1/2 (first kind shifted Chebyshev collocation
method), 𝛼 = 𝛽 = 0 (shifted Legendre collocation method),
and 𝛼 = 𝛽 = 1/2 (second kind shifted Chebyshev collocation
method) at 𝑁 = 24. Moreover, we list the values of the
approximate solution at 𝑁 = 24 for the two special choices
𝑛 = 7/3, 2, and 𝜆 = 1/3, −1/3 respectively in Table 2.

Tables 3, 4, 5, and 6 show absolute residual errors of
]𝑁(𝑟) for indices 𝑛 = 5, 3, 7/3, 2, and 𝜆 = 1/2, 4/3, 1/3,
−1/3, respectively, with various choices of 𝛼 and 𝛽 at 𝑁 =

16 and 𝑁 = 24. In these tables, we compare the results
obtained by adopting different choices of the two shifted
Jacobi parameters 𝛼 and 𝛽, and we conclude that the present
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Table 1: Approximate solutions for𝑁 = 24.

𝑟
𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2 𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2

(𝑛 = 5, 𝜆 = 1/2) (𝑛 = 3, 𝜆 = 4/3)

0.0 0.847890 0.847890 0.847890 1.26779 1.26779 1.26779
0.1 0.849462 0.849462 0.849462 1.26418 1.26418 1.26418
0.2 0.854173 0.854173 0.854173 1.125350 1.125350 1.125350
0.3 0.862013 0.862013 0.862013 1.23616 1.23616 1.23616
0.4 0.872959 0.872959 0.872959 1.21283 1.21283 1.21283
0.5 0.886976 0.886976 0.886976 1.18437 1.18437 1.18437
0.6 0.904009 0.904009 0.904009 1.15174 1.15174 1.15174
0.7 0.923974 0.923974 0.923974 1.11599 1.11599 1.11599
0.8 0.946751 0.946751 0.946751 1.07815 1.07815 1.07815
0.9 0.972170 0.972170 0.972170 1.03918 1.03918 1.03918
1.0 1.000000 1.000000 1.000000 1.00000 1.00000 1.00000

Table 2: Approximate solutions for𝑁 = 24.

𝑟
𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2 𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2

(𝑛 = 7/3, 𝜆 = 1/3) (𝑛 = 2, 𝜆 = −1/3)

0.0 0.841907 0.841907 0.841907 0.744476 0.744476 0.744476
0.1 0.843455 0.843455 0.843455 0.746801 0.746801 0.746801
0.2 0.848101 0.848101 0.848101 0.753803 0.753803 0.753803
0.3 0.855860 0.855860 0.855860 0.765560 0.765560 0.765560
0.4 0.866753 0.866753 0.866753 0.782206 0.782206 0.782206
0.5 0.880809 0.880809 0.880809 0.803932 0.803932 0.803932
0.6 0.898065 0.898065 0.898065 0.830988 0.830988 0.830988
0.7 0.918563 0.918563 0.918563 0.863692 0.863692 0.863692
0.8 0.942351 0.942351 0.942351 0.902433 0.902433 0.902433
0.9 0.969479 0.969479 0.969479 0.947681 0.947681 0.947681
1.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Table 3: Absolute residual error functions for 𝑛 = 5, 𝜆 = 1/2.

𝑟
𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2 𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2

(𝑁 = 16) (𝑁 = 24)

0.0 1.16 ⋅ 10
−14

6.29 ⋅ 10
−15

2.69 ⋅ 10
−14

7.45 ⋅ 10
−15

8.97 ⋅ 10
−15

1.95 ⋅ 10
−15

0.1 3.66 ⋅ 10
−15

4.66 ⋅ 10
−15

3.88 ⋅ 10
−15

1.11 ⋅ 10
−16

4.44 ⋅ 10
−16

0

0.2 4.88 ⋅ 10
−15

1.88 ⋅ 10
−15

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

0

0.3 9.54 ⋅ 10
−15

6.21 ⋅ 10
−15

4.10 ⋅ 10
−15

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

0.4 1.39 ⋅ 10
−14

9.65 ⋅ 10
−15

6.43 ⋅ 10
−15

0 2.22 ⋅ 10
−16

0

0.5 1.97 ⋅ 10
−14

1.33 ⋅ 10
−14

9.43 ⋅ 10
−15

1.11 ⋅ 10
−16

0 0

0.6 2.93 ⋅ 10
−14

2.00 ⋅ 10
−14

1.40 ⋅ 10
−14

1.11 ⋅ 10
−16

2.22 ⋅ 10
−16

0

0.7 4.38 ⋅ 10
−14

2.88 ⋅ 10
−14

1.82 ⋅ 10
−14

0 3.33 ⋅ 10
−16

2.22 ⋅ 10
−16

0.8 5.16 ⋅ 10
−14

2.29 ⋅ 10
−14

2.66 ⋅ 10
−15

1.11 ⋅ 10
−16

2.22 ⋅ 10
−16

3.33 ⋅ 10
−16

0.9 1.21 ⋅ 10
−13

1.59 ⋅ 10
−13

1.61 ⋅ 10
−13

0 4.44 ⋅ 10
−16

2.22 ⋅ 10
−16

1.0 8.80 ⋅ 10
−12

1.40 ⋅ 10
−11

2.05 ⋅ 10
−11

8.43 ⋅ 10
−15

3.03 ⋅ 10
−14

7.43 ⋅ 10
−15

method is very convenient for all choices of 𝛼 and 𝛽 and
produces highly accurate solutions to the radial form of the
Yamabe equation. Note that since no exact solution exists
to (28), residual errors are the best way to deduce the error
properties of solutions.

In the case of 𝛼 = 𝛽 = 1, the approximate solution by the
presented method is shown in Figure 1, 𝜆 = 0.5, 0.33, 0.25,

0.20, 0.16, 𝑛 = 3/2, and 𝜃 = 𝜗 = 1 at𝑁 = 8. These plots show
that the obtained solutions increase radially from a minimal
value which occurs at 𝑟 = 0 to a maximal value of 1 which
occurs on the boundary.

Logarithmic graphs of absolute coefficients of shifted
Jacobi polynomials of (13) are shown in Figures 2 and 3
and show that the method has exponential convergence rate.
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Table 4: Absolute residual error functions for 𝑛 = 3, 𝜆 = 4/3.

𝑟
𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2 𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2

(𝑁 = 16) (𝑁 = 24)

0.0 2.48 ⋅ 10
−12

9.03 ⋅ 10
−12

2.18 ⋅ 10
−11

1.21 ⋅ 10
−14

5.34 ⋅ 10
−15

9.36 ⋅ 10
−15

0.1 1.85 ⋅ 10
−12

2.44 ⋅ 10
−12

2.47 ⋅ 10
−12

2.22 ⋅ 10
−16

1.55 ⋅ 10
−15

1.33 ⋅ 10
−15

0.2 2.15 ⋅ 10
−12

9.67 ⋅ 10
−13

1.20 ⋅ 10
−12

1.77 ⋅ 10
−15

2.44 ⋅ 10
−15

2.66 ⋅ 10
−15

0.3 3.73 ⋅ 10
−12

2.54 ⋅ 10
−12

1.66 ⋅ 10
−12

4.44 ⋅ 10
−16

6.66 ⋅ 10
−16

1.55 ⋅ 10
−15

0.4 4.62 ⋅ 10
−12

3.28 ⋅ 10
−12

2.34 ⋅ 10
−12

1.33 ⋅ 10
−15

2.22 ⋅ 10
−16

8.88 ⋅ 10
−16

0.5 5.61 ⋅ 10
−12

4.00 ⋅ 10
−12

2.90 ⋅ 10
−12

4.44 ⋅ 10
−16

2.22 ⋅ 10
−16

1.77 ⋅ 10
−15

0.6 7.00 ⋅ 10
−12

4.99 ⋅ 10
−12

3.57 ⋅ 10
−12

4.44 ⋅ 10
−16

1.33 ⋅ 10
−15

1.55 ⋅ 10
−15

0.7 8.92 ⋅ 10
−12

6.09 ⋅ 10
−12

4.01 ⋅ 10
−12

4.44 ⋅ 10
−16

0 0

0.8 8.96 ⋅ 10
−12

4.06 ⋅ 10
−12

5.12 ⋅ 10
−13

8.88 ⋅ 10
−16

4.44 ⋅ 10
−16

6.66 ⋅ 10
−16

0.9 1.78 ⋅ 10
−11

2.40 ⋅ 10
−11

2.50 ⋅ 10
−11

0 0 8.88 ⋅ 10
−16

1.0 1.10 ⋅ 10
−9

1.80 ⋅ 10
−9

2.69 ⋅ 10
−9

8.54 ⋅ 10
−15

8.72 ⋅ 10
−14

6.07 ⋅ 10
−14

Table 5: Absolute residual error functions for 𝑛 = 7/3, 𝜆 = 1/3.

𝑟
𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2 𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2

(𝑁 = 16) (𝑁 = 24)

0.0 3.11 ⋅ 10
−15

8.27 ⋅ 10
−15

4.01 ⋅ 10
−15

1.94 ⋅ 10
−14

4.79 ⋅ 10
−15

1.09 ⋅ 10
−14

0.1 1.11 ⋅ 10
−16

2.22 ⋅ 10
−16

1.11 ⋅ 10
−16

4.44 ⋅ 10
−16

1.11 ⋅ 10
−16

0

0.2 1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

2.22 ⋅ 10
−16

0

0.3 1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

2.22 ⋅ 10
−16

0 1.11 ⋅ 10
−16

0.4 2.22 ⋅ 10
−16

1.11 ⋅ 10
−16

0 0 2.22 ⋅ 10
−16

2.22 ⋅ 10
−16

0.5 1.11 ⋅ 10
−16

2.22 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

2.22 ⋅ 10
−16

0

0.6 0 1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

0 0 1.11 ⋅ 10
−16

0.7 1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

3.33 ⋅ 10
−16

1.11 ⋅ 10
−16

3.33 ⋅ 10
−16

1.11 ⋅ 10
−16

0.8 1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

2.22 ⋅ 10
−16

0.9 2.22 ⋅ 10
−16

2.22 ⋅ 10
−16

2.22 ⋅ 10
−16

0 1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

1.0 4.88 ⋅ 10
−15

2.55 ⋅ 10
−15

1.39 ⋅ 10
−14

1.36 ⋅ 10
−14

1.53 ⋅ 10
−14

2.22 ⋅ 10
−14

Table 6: Absolute residual error functions for 𝑛 = 2, 𝜆 = −1/3.

𝑟
𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2 𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 1/2

(𝑁 = 16) (𝑁 = 24)

0.0 1.66 ⋅ 10
−14

4.83 ⋅ 10
−15

6.70 ⋅ 10
−15

1.39 ⋅ 10
−14

1.49 ⋅ 10
−14

2.90 ⋅ 10
−14

0.1 7.77 ⋅ 10
−16

1.11 ⋅ 10
−16

4.99 ⋅ 10
−16

2.77 ⋅ 10
−16

5.55 ⋅ 10
−17

3.33 ⋅ 10
−16

0.2 6.10 ⋅ 10
−16

0 1.11 ⋅ 10
−16

0 5.55 ⋅ 10
−17

1.11 ⋅ 10
−16

0.3 4.44 ⋅ 10
−16

1.66 ⋅ 10
−16

0 3.88 ⋅ 10
−16

5.55 ⋅ 10
−17

0

0.4 2.22 ⋅ 10
−16

1.66 ⋅ 10
−16

0 5.55 ⋅ 10
−17

3.88 ⋅ 10
−16

5.55 ⋅ 10
−17

0.5 2.77 ⋅ 10
−16

3.33 ⋅ 10
−16

2.22 ⋅ 10
−16

0 1.66 ⋅ 10
−16

0

0.6 3.88 ⋅ 10
−16

2.77 ⋅ 10
−16

1.11 ⋅ 10
−16

0 5.55 ⋅ 10
−17

1.66 ⋅ 10
−16

0.7 4.44 ⋅ 10
−16

1.11 ⋅ 10
−16

3.33 ⋅ 10
−16

2.22 ⋅ 10
−16

1.11 ⋅ 10
−16

1.11 ⋅ 10
−16

0.8 5.55 ⋅ 10
−16

0 1.11 ⋅ 10
−16

5.55 ⋅ 10
−16

2.22 ⋅ 10
−16

2.22 ⋅ 10
−16

0.9 1.13 ⋅ 10
−15

1.11 ⋅ 10
−15

1.19 ⋅ 10
−15

3.60 ⋅ 10
−16

0 3.05 ⋅ 10
−16

1.0 6.65 ⋅ 10
−14

8.56 ⋅ 10
−14

1.39 ⋅ 10
−13

2.03 ⋅ 10
−14

3.58 ⋅ 10
−14

5.34 ⋅ 10
−14

This implies that accurate solutions can be obtained after
relatively few iterations of the spectral method (i.e., using
relatively few nodes). Therefore, the derived method is quite
efficient for use with the Yamabe equation.

Figures 4 and 5 show that the residual error functions
for 𝑛 = 3/2 and 𝜆 = 0.5, −0.5, 𝑁 = 24, 𝛼 = 𝛽 = 1. The
errors are absolute, as opposed to relative. Again, there are no

exact solutions to problems (1)-(2), we must rely on residual
errors rather than any exact errors or errors relative to an
exact solution. We see that the residual errors are extremely
small on the problem domain, owing to the the accuracy of
the method.

With this, we have demonstrated the accuracy and effi-
ciency of the proposed spectral method for radial Yamabe
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Figure 1: Plots of the solution ](𝑟) for the radial Yamabe equation
obtained by the present method for 𝜆 = 0.5, 0.33, 0.25, 0.20, 0.16,
𝑛 = 3/2, and 𝜃 = 𝜗 = 1 at𝑁 = 8.
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Figure 2: Logarithmic graph of absolute coefficients |𝑎𝑗| of shifted
Jacobi polynomials for 𝑛 = 3/2, 𝜆 = −0.5, and 𝛼 = 𝛽 = 1 at𝑁 = 24.
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Figure 3: Logarithmic graph of absolute coefficients |𝑎𝑗| of shifted
Jacobi polynomials for 𝑛 = 3/2, 𝜆 = 0.5, and 𝛼 = 𝛽 = 1 at𝑁 = 24.
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Figure 4: Graph of residual error functions for 𝑛 = 3/2, 𝜆 = −0.5,
and 𝛼 = 𝛽 = 1 at𝑁 = 24.
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Figure 5: Graph of residual error functions for 𝑛 = 3/2, 𝜆 = 0.5,
and 𝛼 = 𝛽 = 1 at𝑁 = 24.

equation (28), for a number of model parameters. Impor-
tantly, themethod remains applicable for a variety of values of
𝑛, which directly controls the extent of the nonlinearity in the
problem.Therefore, themethod appears rather robust in light
of the strong nonlinearity inherent in the Yamabe problem.

5. Conclusions

We have derived a spectral method, involving Jacobi poly-
nomials, which permits us to numerically solve a class of
nonlinear boundary value problems which feature power-
law nonlinearity. For suitable collocation points, we use
the 𝑁 − 1 nodes of the shifted Jacobi-Gauss interpolation
on (0, 1). These equations together with initial condition
generate (𝑁 + 1) algebraic equations which can be solved
using Newton’s iterative method. For the parameter regimes
considered, the coefficients of the shifted Jacobi polynomials
in the solutions of the boundary value problem are shown
to decay exponentially in magnitude. This implies that the
method has a rapid convergence rate, which in turn tells
us that accurate solutions can be obtained after relatively
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few iterations of the spectral method (i.e., using relatively
few nodes). In other words, the method is rather efficient
for solving the class of nonlinear boundary value problems
considered.

Indeed, in Section 4, we demonstrated that for all param-
eter regimes considered, the method results in rather small
residual errors after relatively few nodes are considered. As
such, we may infer that the method is accurate in approxi-
mating a true solution to boundary value problems of the type
considered here, such as that for the radial Yamabe equation.
We have considered a number of forms of nonlinearity in
our numerical experiments, corresponding to different values
of the power index 𝑛 which governed the strength of the
nonlinearity. Therefore, the spectral method is accurate and
efficient for a wide variety of nonlinearities. In the case of the
Yamabe problem, mapping the solutions back to the original
𝑚-dimensional space, we see that the method is robust for
arbitrary space dimension𝑚 ≥ 3. Recall that the parameter 𝑛
is a decreasing function of 𝑚, and the strongest nonlinearity
actually occurs for𝑚 = 3 in the Yamabe example.

Since themethod is rather robust, it is likely that it may be
applied to other type of non-linear boundary value problems
with more complicated forms of nonlinearity. For instance,
based on the results here, it seems likely that the method
derived in Section 3 can be extended to problems of the type

𝑦

(𝑟) +

1

𝑟
𝑦

(𝑟) = 𝑃 (𝑦 (𝑟)) ,

𝑦

(0) = 0, 𝑦 (1) = 1.

(30)
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