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The aim of this paper is to give the sufficient conditions on the sequence space Ces(𝜃, 𝑝) defined in Lim (1977) such that the class of
all bounded linear operators between any arbitrary Banach spaces with nth approximation numbers of the bounded linear operators
in Ces(𝜃, 𝑝) form an operator ideal.

1. Introduction

Most of the operator ideals in the class of Banach spaces or
in the class of normed spaces in linear functional analysis
are defined by different scalar sequence spaces. In [1], Pietsch
studied the operator ideals generated by the approximation
numbers and classical sequence space ℓ𝑝 (0 < 𝑝 < ∞).
In [2], Faried and bakery [3] have studied the ideal of
all bounded linear operators between any arbitrary Banach
spaces whose sequence of approximation numbers belonged
to the generalizedCesáro sequence space andOrlicz sequence
space ℓ𝑀, when 𝑀(𝑡) = 𝑡

𝑝, 0 < 𝑝 < ∞; these results
coincide with that known for the classical sequence space
ℓ𝑝. Bakery [4] has studied the operator ideals generated by
the approximation numbers and generalized de La Vallée
Poussin’s mean 𝑉(𝜆, 𝑝) defined by Şimşek et al. [5]; these
results coincide with that known in [2] for the generalized
Cesáro sequence space. By 𝐿(𝑋, 𝑌), we indicate the space of
all bounded linear operators from a normed space 𝑋 into a
normed space 𝑌. The set of nonnegative integers is denoted
by N = {0, 1, 2, . . .} and the real numbers by R. By 𝜔, we
denote the space of all real sequences. A map which assigns
to every operator 𝑇 ∈ 𝐿(𝑋, 𝑌) a unique sequence (𝑠𝑛(𝑇))

∞

𝑛=0

is called an 𝑠-function and the number 𝑠𝑛(𝑇) is called the 𝑛th
𝑠-numbers of 𝑇 if the following conditions are satisfied:

(a) ‖𝑇‖ = 𝑠0(𝑇) ≥ 𝑠1(𝑇) ≥ ⋅ ⋅ ⋅ ≥ 0, for all 𝑇 ∈ 𝐿(𝑋, 𝑌),
(b) 𝑠𝑛(𝑇1 + 𝑇2) ≤ 𝑠𝑛(𝑇1) + ‖𝑇2‖, for all 𝑇1, 𝑇2 ∈ 𝐿(𝑋, 𝑌),
(c) 𝑠𝑛(𝑅𝑆𝑇) ≤ ‖𝑅‖𝑠𝑛(𝑆)‖𝑇‖, for all 𝑇 ∈ 𝐿(𝑋0, 𝑋), 𝑆 ∈

𝐿(𝑋, 𝑌), and 𝑅 ∈ 𝐿(𝑌, 𝑌0), where 𝑋0 and 𝑌0 are
normed spaces,

(d) 𝑠𝑛(𝜆𝑇) = |𝜆|𝑠𝑛(𝑇), for all 𝑇 ∈ 𝐿(𝑋, 𝑌), 𝜆 ∈ R,
(e) rank(𝑇) ≤ 𝑛, if 𝑠𝑛(𝑇) = 0, for all 𝑇 ∈ 𝐿(𝑋, 𝑌),
(f)

𝑠𝑟 (𝐼𝑛) = {
1 for 𝑟 < 𝑛
0 for 𝑟 ≥ 𝑛,

(1)

where 𝐼𝑛 is the identity operator on the Euclidean
space R𝑛.

As examples of 𝑠-numbers, we mention that approximation
numbers 𝛼𝑛(𝑇), Gelfand numbers 𝑐𝑛(𝑇), Kolmogorov num-
bers 𝑑𝑛(𝑇), and Tichomirov numbers 𝑑∗

𝑛
(𝑇) are defined by

(I) 𝛼𝑛(𝑇) = inf{‖𝑇 − 𝐴‖ : 𝐴 ∈ 𝐿(𝑋, 𝑌) and rank(𝐴) ≤
𝑛 },
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(II) 𝑐𝑛(𝑇) = 𝑎𝑛(𝐽𝑌𝑇), where 𝐽𝑌 is a metric injection (a
metric injection is a one to one operator with closed
range and with norm equal to one) from the space 𝑌
into a higher space ℓ∞(Λ) for a suitable index set Λ,

(III) 𝑑𝑛(𝑇) = infdim𝑌≤𝑛 sup‖𝑥‖≤1 inf𝑦∈𝑌‖𝑇𝑥 − 𝑦‖,

(IV) 𝑑∗
𝑛
(𝑇) = 𝑑𝑛(𝐽𝑌𝑇).

All these numbers satisfy the following condition:

(g) 𝑠𝑛+𝑚(𝑇1+𝑇2) ≤ 𝑠𝑛(𝑇1)+𝑠𝑚(𝑇2) for all𝑇1, 𝑇2 ∈ 𝐿(𝑋, 𝑌).

The operator ideal 𝑈(𝑋, 𝑌) is a subclass of 𝐿(𝑋, 𝑌), where 𝑋
and 𝑌 are Banach spaces such that its components satisfy the
following conditions:

(i) 𝐼𝐾 ∈ 𝑈, where 𝐾 denotes the 1-dimensional Banach
space, where 𝑈 ⊂ 𝐿;

(ii) if 𝑇1, 𝑇2 ∈ 𝑈(𝑋, 𝑌), then 𝜆1𝑇1 + 𝜆2𝑇2 ∈ 𝑈(𝑋, 𝑌) for
any scalars 𝜆1, 𝜆2;

(iii) if 𝐹 ∈ 𝐿(𝑋0, 𝑋), 𝑇 ∈ 𝑈(𝑋, 𝑌), and 𝑅 ∈ 𝐿(𝑌, 𝑌0), then
𝑅𝑇𝐹 ∈ 𝑈(𝑋0, 𝑌0); see [1, 6, 7].

By a lacunary sequence (𝜃) = (𝑘𝑛), where 𝑘−1 = 0, wemean an
increasing sequence of nonnegative integers with 𝑘𝑛−𝑘𝑛−1 →
0 as 𝑛 → ∞. The intervals determined by 𝜃 are denoted by
𝐼𝑛 = [𝑘𝑛−1, 𝑘𝑛). We write ℎ𝑛 = 𝑘𝑛−𝑘𝑛−1.The space of lacunary
strongly convergent sequences 𝑁𝜃 was defined by Freedman
and denoted by

𝑁𝜃 =
{

{

{

𝑥 = (𝑥𝑘) : lim
𝑛→∞

1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝑥𝑘 − 𝑙
 = 0, for some 𝑙

}

}

}

.

(2)

It is well known that there exists very close connection
between the space of lacunary strongly convergent sequences
and the space of strongly Cesaro summable sequences. This
connection can be found in [8–10].

For a sequence 𝑝 = (𝑝𝑛) of positive real numbers with
𝑝𝑛 ≥ 1, for all 𝑛 ∈ N, the generalized Cesaro sequence space
is defined by

Ces (𝜃, 𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔 : 𝜌 (𝜆𝑥) < ∞ for some 𝜆 > 0} ,
(3)

where 𝜌(𝑥) = ∑∞
𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑥𝑘|)
𝑝
𝑛 .

The spaceCes(𝜃, 𝑝) is a Banach spacewith the norm ‖𝑥‖ =
inf{𝜆 > 0 : 𝜌(𝑥/𝜆) ≤ 1}.

If 𝑝 = (𝑝𝑛) is bounded, we can simply write Ces(𝜃, 𝑝) =
{𝑥 ∈ 𝜔 : ∑

∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑥𝑘|)
𝑝
𝑛 < ∞}. Also, some geo-

metric properties of Ces(𝜃, 𝑝) have been studied in [11–13].

Remarks. (1) If 𝜃 = 2𝑛+1 − 1, then we obtain the sequences
space

Ces (𝑝) =
{

{

{

𝑥 ∈ 𝜔 :

∞

∑
𝑛=0

(
1

2𝑛

2
𝑛+1

−2

∑
𝑘=2𝑛−1

𝑥𝑘
)

𝑝
𝑛

< ∞
}

}

}

, (4)

studied in [12, 13].

(2) If 𝜃 = 2𝑛+1−1 and𝑝𝑛 = 𝑝, for all 𝑛 ∈ N, then we obtain
the sequences space Ces𝑝 studied in [14].

The idea of the paper is the following. We proceed in
the following way: given a scalar sequence space Ces(𝜃, 𝑝),
a pair of Banach spaces 𝑋 and 𝑌, the space of bounded
operators 𝐿(𝑋, 𝑌), and the approximation 𝑠-numbers 𝛼𝑛(𝑇),
𝑇 ∈ 𝐿(𝑋, 𝑌), and 𝑛 ∈ N, we define the space 𝑈app

Ces(𝜃,𝑝)(𝑋, 𝑌).
Then, we study the following two problems:

Problem A (a linear problem). When (for which Ces(𝜃, 𝑝))
𝑈

app
Ces(𝜃,𝑝) is an operator ideal.

Problem B (topological problems). When the ideal of the finite
range operators in the class of Banach spaces is dense in
𝑈

app
Ces(𝜃,𝑝) and completeness of the components of the ideal.

Throughout this paper, the sequence (𝑝𝑛) is a bounded
sequence of positive real numbers with the following:

(a1) the sequence (𝑝𝑛) of positive real numbers is increas-
ing and bounded with lim𝑛→∞ sup𝑝𝑛 < ∞ and
lim𝑛→∞ inf 𝑝𝑛 > 1,

(a2) the sequence (ℎ𝑛) is a nondecreasing sequence of pos-
itive real numbers tending to∞, with∑∞

𝑛=0
(1/ℎ𝑛)

𝑝
𝑛 <

∞.

Also, we define 𝑒𝑖 = (0, 0, . . . , 1, 0, 0, . . .), where 1 appears
at the 𝑖th place for all 𝑖 ∈ N.

Recently different classes of paranormed sequence spaces
have been introduced and their different properties have been
investigated by Et et al. [15], Tripathy and Dutta [16, 17], and
Tripathy and Borgogain [18], and see also [19–23].

The following well-known inequality will be used
throughout the paper. For any bounded sequence of positive
numbers (𝑝𝑛), |𝑎𝑛 + 𝑏𝑛|

𝑝
𝑛 ≤ 2𝐻−1(|𝑎𝑛|

𝑝
𝑛 + |𝑏𝑛|

𝑝
𝑛),𝐻 = sup

𝑛
𝑝𝑛

and 𝑝𝑛 ≥ 1 for all 𝑛 ∈ N. See [24].

2. Preliminary and Notation

Definition 1. A class of linear sequence spaces 𝐸 is called a
special space of sequences (sss) having three properties:

(1) 𝐸 is a linear space and 𝑒𝑛 ∈ 𝐸 for each 𝑛 ∈ N;

(2) if 𝑥 ∈ 𝜔, 𝑦 ∈ 𝐸, and |𝑥𝑛| ≤ |𝑦𝑛| for all 𝑛 ∈ N, then
𝑥 ∈ 𝐸; “that is, E is solid;”

(3) if (𝑥𝑛)
∞

𝑛=0
∈ 𝐸, then (𝑥[𝑛/2])

∞

𝑛=0
=

(𝑥0, 𝑥0, 𝑥1, 𝑥1, 𝑥2, 𝑥2, . . .) ∈ 𝐸, where [𝑛/2] denotes
the integral part of 𝑛/2.

Example 2. ℓ𝑝 is a special space of sequences for 0 < 𝑝 < ∞.

Example 3. Ces𝑝 defined in [14] is a special space of sequen-
ces for 1 < 𝑝 < ∞.

Example 4. Let 𝑀 be an Orlicz function satisfying Δ 2-
condition; then ℓ𝑀 is a special space of sequences.
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Example 5. Ces(𝑝) studied in [3] is a special space of
sequences, if (𝑝𝑛) is an increasing sequence of positive real
numbers, lim𝑛→∞ sup𝑝𝑛 < ∞ and lim𝑛→∞ inf 𝑝𝑛 > 1.

Example 6. 𝑉(𝜆, 𝑝) is a special space of sequences, if the
following conditions are satisfied:

(1) the sequence (𝑝𝑛) of positive real numbers is increas-
ing and bounded with lim𝑛→∞ sup𝑝𝑛 < ∞ and
lim𝑛→∞ inf 𝑝𝑛 > 1;

(2) the sequence (𝜆𝑛) is a nondecreasing sequence of
positive real numbers tending to ∞, 𝜆0 = 1 and
𝜆𝑛+1 ≤ 𝜆𝑛 + 1 with ∑

∞

𝑛=0
(1/𝜆𝑛)

𝑝
𝑛 < ∞.

Definition 7. 𝑈app
𝐸

:= {𝑈
app
𝐸
(𝑋, 𝑌); 𝑋 and 𝑌 are Banach

spaces}, where𝑈app
𝐸
(𝑋, 𝑌) := {𝑇 ∈ 𝐿(𝑋, 𝑌) : (𝛼𝑛(𝑇))

∞

𝑛=0
∈ 𝐸}.

We state the following result without proof.

Theorem 8. 𝑈app
𝐸

is an operator ideal if 𝐸 is a special space of
sequences (sss).

We study here the operator ideals generated by the approx-
imation numbers and the sequence space Ces(𝜃, 𝑝) which are
involving Lacunary sequence.

3. Main Results

Theorem9. 𝑈app
ces(𝜃,𝑝) is an operator ideal, if conditions (a1) and

(a2) are satisfied.

Proof. (1-i) Let 𝑥, 𝑦 ∈ Ces(𝜃, 𝑝); since ∑
∞

𝑛=0
((1/

ℎ𝑛) ∑𝑘∈𝐼
𝑛

|𝑥𝑘 + 𝑦𝑘|)
𝑝
𝑛 ≤ 2𝐻−1(∑

∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑥𝑘|)
𝑝
𝑛 +

∑
∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑦𝑘|)
𝑝
𝑛), 𝐻 = sup

𝑛
𝑝𝑛, then 𝑥 + 𝑦 ∈

Ces(𝜃, 𝑝).
(1-ii) Let 𝜆 ∈ R, 𝑥 ∈ Ces(𝜃, 𝑝); then ∑

∞

𝑛=0
((1/

ℎ𝑛) ∑𝑘∈𝐼
𝑛

|𝜆𝑥𝑘|)
𝑝
𝑛 ≤ sup

𝑛
|𝜆|
𝑝
𝑛 ∑
∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑥𝑘|)
𝑝
𝑛 <

∞; we get 𝜆𝑥 ∈ Ces(𝜃, 𝑝), from (1-i) and (1-ii), and Ces(𝜃, 𝑝)
is a linear space.

To prove that 𝑒𝑚 ∈ Ces(𝜃, 𝑝) for each 𝑚 ∈ N, since
∑
∞

𝑛=0
(1/ℎ𝑛)

𝑝
𝑛 < ∞. So, we get

𝜌 (𝑒𝑚) =

∞

∑
𝑛=𝑚

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝑒𝑚 (𝑘)
)

𝑝
𝑛

=

∞

∑
𝑛=𝑚

(
1

ℎ𝑛
)

𝑝
𝑛

< ∞. (5)

Hence, 𝑒𝑚 ∈ Ces(𝜃, 𝑝).
(2) Let |𝑥𝑛| ≤ |𝑦𝑛| for each 𝑛 ∈ N; then

∑
∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑥𝑘|)
𝑝
𝑛 ≤ ∑

∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑦𝑘|)
𝑝
𝑛 , since

𝑦 ∈ Ces(𝜃, 𝑝). Thus, 𝑥 ∈ Ces(𝜃, 𝑝).
(3) Let (𝑥𝑛) ∈ Ces(𝜃, 𝑝); then we have

∞

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝑥[𝑘/2]
)

𝑝
𝑛

=

∞

∑
𝑛=0

(
1

ℎ2𝑛
∑
𝑘∈𝐼
2𝑛

𝑥[𝑘/2]
)

𝑝
2𝑛

+

∞

∑
𝑛=0

(
1

ℎ2𝑛+1
∑
𝑘∈𝐼
2𝑛+1

𝑥[𝑘/2]
)

𝑝
2𝑛+1

≤

∞

∑
𝑛=0

(
1

ℎ2𝑛
((∑
𝑘∈𝐼
𝑛

2
𝑥𝑘
) +

𝑥𝑛
))

𝑝
𝑛

+

∞

∑
𝑛=0

(
1

ℎ2𝑛+1
(∑
𝑘∈𝐼
𝑛

2
𝑥𝑘
))

𝑝
𝑛

≤ 2
𝐻−1

(

∞

∑
𝑛=0

(
1

ℎ𝑛
(2∑
𝑘∈𝐼
𝑛

𝑥𝑘
))

𝑝
𝑛

+

∞

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝑥𝑘
)

𝑝
𝑛

)

+ 2
𝐻
∞

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝑥𝑘
)

𝑝
𝑛

≤ 2
𝐻−1

(2
𝐻
+ 1)

∞

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝑥𝑘
)

𝑝
𝑛

+ 2
𝐻
∞

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝑥𝑘
)

𝑝
𝑛

≤ (2
2𝐻−1

+ 2
𝐻−1

+ 2
𝐻
)

∞

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝑥𝑘
)

𝑝
𝑛

< ∞.

(6)

So, (𝑥[𝑛/2])
∞

𝑛=0
∈ Ces(𝜃, 𝑝).

Hence, from Theorem 8, it follows that 𝑈app
Ces(𝜃,𝑝) is an

operator ideal.

Corollary 10. 𝑈app
ces(𝑝) is an operator ideal if (𝑝𝑛) is an increas-

ing sequence of positive real numbers, lim𝑛→∞ sup𝑝𝑛 < ∞

and lim𝑛→∞ inf 𝑝𝑛 > 1.

Corollary 11. 𝑈app
ces
𝑝

is an operator ideal if 1 < 𝑝 < ∞.

Theorem 12. The linear space 𝐹(𝑋, 𝑌) is dense in 𝑈app
ces(𝜃,𝑝)(𝑋,

𝑌) if conditions (a1) and (a2) are satisfied.

Proof. First, we show that every finite mapping 𝑇 ∈ 𝐹(𝑋, 𝑌)
belongs to 𝑈app

Ces(𝜃,𝑝)(𝑋, 𝑌). Since 𝑒𝑚 ∈ Ces(𝜃, 𝑝) for each 𝑚 ∈

N andCes(𝜃, 𝑝) is a linear space, then for every finitemapping
𝑇 ∈ 𝐹(𝑋, 𝑌), that is, the sequence (𝛼𝑛(𝑇))

∞

𝑛=0
contains only

finitely many numbers different from zero. Now, we prove
that 𝑈app

Ces(𝜃,𝑝)(𝑋, 𝑌) ⊆ 𝐹(𝑋, 𝑌). On taking 𝑇 ∈ 𝑈app
Ces(𝜃,𝑝)(𝑋, 𝑌),

we obtain (𝛼𝑛(𝑇))
∞

𝑛=0
∈ Ces(𝜃, 𝑝), and since 𝜌((𝛼𝑛(𝑇))

∞

𝑛=0
) <

∞, let 𝜀 ∈ (0, 1); then there exists a natural number 𝑠 > 0

such that 𝜌((𝛼𝑛(𝑇))
∞

𝑛=𝑠
) < 𝜀/2𝐻+2𝛿𝑐 for some 𝑐 ≥ 1, where

𝛿 = max{1, ∑∞
𝑛=𝑠
(1/ℎ𝑛)

𝑝
𝑛}. Since 𝛼𝑛(𝑇) is decreasing for each

𝑛 ∈ N, we get

2𝑠

∑
𝑛=𝑠+1

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝛼2𝑠 (𝑇))

𝑝
𝑛

≤

2𝑠

∑
𝑛=𝑠+1

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝛼𝑛 (𝑇))

𝑝
𝑛

≤

∞

∑
𝑛=𝑠

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝛼𝑘 (𝑇))

𝑝
𝑛

<
𝜀

2𝐻+2𝛿𝑐
;

(7)
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then there exists 𝐴 ∈ 𝐹2𝑠(𝑋, 𝑌) and rank(𝐴) ≤ 2𝑠 with

3𝑠

∑
𝑛=2𝑠+1

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

‖𝑇 − 𝐴‖)

𝑝
𝑛

≤

2𝑠

∑
𝑛=𝑠+1

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

‖𝑇 − 𝐴‖)

𝑝
𝑛

<
𝜀

2𝐻+2𝛿𝑐
,

(8)

and since (𝑝𝑛) is a bounded sequence of positive real
numbers, so on considering

sup∞
𝑛=𝑠
(∑
𝑘∈𝐼
𝑠

‖𝑇 − 𝐴‖)

𝑝
𝑛

<
𝜀

2𝐻𝛿
, (9)

also 𝛼𝑛(𝑇) = inf {‖𝑇 − 𝐴‖ : 𝐴 ∈ 𝐿(𝑋, 𝑌) and rank(𝐴) ≤ 𝑛 }.
Then, there exists a natural number 𝑁 > 0, 𝐴𝑁 with rank
(𝐴𝑁) ≤ 𝑁 and ‖𝑇 − 𝐴𝑁‖ ≤ 2𝛼𝑁(𝑇). Since 𝛼𝑛(𝑇)

𝑛→∞
→ 0,

then ‖𝑇 − 𝐴𝑁‖
𝑁→∞
→ 0, so we can take

𝑠

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

‖𝑇 − 𝐴‖)

𝑝
𝑛

<
𝜀

2𝐻+3𝛿𝑐
. (10)

Since (𝑝𝑛) is an increasing sequence, by using (7), (8), (9), and
(10), we acquire

𝑑 (𝑇, 𝐴) = 𝜌(𝛼𝑛 (𝑇 − 𝐴))
∞

𝑛=0

=

3𝑠−1

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝛼𝑘 (𝑇 − 𝐴))

𝑝
𝑛

+

∞

∑
𝑛=3𝑠

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝛼𝑘 (𝑇 − 𝐴))

𝑝
𝑛

≤

3𝑠

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

‖𝑇 − 𝐴‖)

𝑝
𝑛

+

∞

∑
𝑛=𝑠

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛+2𝑠

𝛼𝑘 (𝑇 − 𝐴))

𝑝
𝑛+2𝑠

≤ 3

𝑠

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

‖𝑇 − 𝐴‖)

𝑝
𝑛

+

∞

∑
𝑛=𝑠

(
1

ℎ𝑛
∑
𝑘∈𝐼
2𝑠−1

𝛼𝑘 (𝑇 − 𝐴) +
1

ℎ𝑛
∑

𝑘∈𝐼
𝑛+2𝑠
\𝐼
2𝑠−1

𝛼𝑘 (𝑇 − 𝐴))

𝑝
𝑛

≤ 3

𝑠

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

‖𝑇 − 𝐴‖)

𝑝
𝑛

+ 2
𝐻−1

(

∞

∑
𝑛=𝑠

(
1

ℎ𝑛
∑
𝑘∈𝐼
2𝑠−1

𝛼𝑘 (𝑇 − 𝐴))

𝑝
𝑛

+

∞

∑
𝑛=𝑠

(
1

ℎ𝑛
∑

𝑘∈𝐼
𝑛+2𝑠
\𝐼
2𝑠−1

𝛼𝑘 (𝑇 − 𝐴))

𝑝
𝑛

)

≤ 3

𝑠

∑
𝑛=0

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

‖𝑇 − 𝐴‖)

𝑝
𝑛

+ 2
𝐻−1

(

∞

∑
𝑛=𝑠

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑠

‖𝑇 − 𝐴‖)

𝑝
𝑛

+

∞

∑
𝑛=𝑠

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝛼𝑘+2𝑠(𝑇 − 𝐴))

𝑝
𝑛

)

≤ 3

𝑠

∑
𝑛=0

(
1

ℎ𝑛

𝑛

∑
𝑘=0

‖𝑇 − 𝐴‖)

𝑝
𝑛

+2
𝐻−1sup∞

𝑛=𝑠
(∑
𝑘∈𝐼
𝑠

‖𝑇 − 𝐴‖)

𝑝
𝑛
∞

∑
𝑛=𝑠

(
1

ℎ𝑛
)

𝑝
𝑛

+ 2
𝐻−1
∞

∑
𝑛=𝑠

(
1

ℎ𝑛
∑
𝑘∈𝐼
𝑛

𝛼𝑘 (𝑇))

𝑝
𝑛

< 𝜀.

(11)

This completes the proof.

Definition 13. A subclass of the special space of sequences
called premodular special space of sequences characterized
for the existence of a function 𝜌 : 𝐸 → [0,∞), closely
connected with the notion of modular but without assump-
tion of the convexity, which satisfies the following:

(i) 𝜌(𝑥) ≥ 0 for all 𝑥 ∈ 𝐸𝜌 and 𝜌(𝑥) = 0 ⇔ 𝑥 = 0, where
0 is the zero element of 𝐸;

(ii) there exists a constant 𝑁 ≥ 1 such that 𝜌(𝜆 𝑥) ≤
𝑁|𝜆| 𝜌(𝑥) for all values of 𝑥 ∈ 𝐸 and for any scalar
𝜆;

(iii) for some numbers𝐾 ≥ 1, we have the inequality 𝜌(𝑥+
𝑦) ≤ 𝐾(𝜌(𝑥) + 𝜌(𝑦)) for all 𝑥, 𝑦 ∈ 𝐸;

(iv) if |𝑥𝑛| ≤ |𝑦𝑛| for all 𝑛 ∈ N, then 𝜌((𝑥𝑛)) ≤ 𝜌((𝑦𝑛));

(v) for some numbers 𝐾0 ≥ 1, we have the inequality
𝜌((𝑥𝑛)) ≤ 𝜌((𝑥[𝑛/2])) ≤ 𝐾0𝜌((𝑥𝑛));

(vi) for each 𝑥 = (𝑥(𝑖))
∞

𝑖=0
∈ 𝐸, there exists 𝑠 ∈ N such

that 𝜌(𝑥(𝑖))∞
𝑖=𝑠

< ∞; this means the set of all finite
sequences is 𝜌-dense in 𝐸;

(vii) for any 𝜆 > 0, there exists a constant 𝜁 > 0 such that
𝜌(𝜆, 0, 0, 0, . . .) ≥ 𝜁𝜆𝜌(1, 0, 0, 0, . . .).

It is obvious from condition (ii) that 𝜌 is continuous at
the zero element of 𝐸. The function 𝜌 defines a metrizable
topology in 𝐸 endowed with this topology which is denoted
by 𝐸𝜌.
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Example 14. ℓ𝑝 is a premodular special space of sequences for
0 < 𝑝 < ∞ with 𝜌(𝑥) = ∑∞

𝑛=0
|𝑥𝑛|
𝑝.

Example 15. Ces𝑝 is a premodular special space of sequences
for 1 < 𝑝 < ∞ with 𝜌(𝑥) = ∑∞

𝑛=0
((1/(𝑛 + 1))∑

𝑛

𝑘=0
|𝑥𝑛|)
𝑝.

Example 16. Let 𝑀 be an Orlicz function satisfying
Δ 2-condition; then ℓ𝑀 is a pre-modular special space of
sequences with 𝜌(𝑥) = ∑∞

𝑛=0
𝑀(|𝑥𝑛|).

Example 17. If (𝑝𝑛) is an increasing sequence of positive real
numbers, lim𝑛→∞ sup𝑝𝑛 < ∞ and lim𝑛→∞ inf 𝑝𝑛 > 1, then
Ces(𝑝) is a premodular special space of sequences for 1 < 𝑝 <
∞, with 𝜌(𝑥) = ∑∞

𝑛=0
((1/(𝑛 + 1))∑

𝑛

𝑘=0
|𝑥𝑛|)
𝑝
𝑘 .

Example 18. If the following conditions are satisfied:

(1) the sequence (𝑝𝑛) of positive real numbers is increas-
ing and bounded with lim sup𝑝𝑛 < ∞ and
lim inf 𝑝𝑛 > 1;

(2) the sequence (𝜆𝑛) is a nondecreasing sequence of
positive real numbers tending to ∞, 𝜆0 = 1, and
𝜆𝑛+1 ≤ 𝜆𝑛 + 1 with ∑

∞

𝑛=0
(1/𝜆𝑛)

𝑝
𝑛 < ∞; then 𝑉(𝜆, 𝑝)

is a premodular special space of sequences.

Theorem 19. Ces(𝜃, 𝑝) with 𝜌(𝑥) =

∑
∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑥𝑛|)
𝑝
𝑛 is a premodular special space

of sequences, if conditions (a1) and (a2) are contented.

Proof. (i) Clearly, 𝜌(𝑥) ≥ 0 and 𝜌(𝑥) = 0 ⇔ 𝑥 = 0.
(ii) Since (𝑝𝑛) is bounded, then there exists a constant𝑁 ≥

1 such that 𝜌(𝜆 𝑥) ≤ 𝑁|𝜆| 𝜌(𝑥) for all values of 𝑥 ∈ 𝐸 and for
any scalar 𝜆.

(iii) For some numbers 𝐾 = max(1, 2𝐻−1) ≥ 1, we have
the inequality 𝜌(𝑥 + 𝑦) ≤ 𝐾(𝜌(𝑥) + 𝜌(𝑦)) for all 𝑥, 𝑦 ∈

Ces(𝜃, 𝑝).
(iv) Let |𝑥𝑛| ≤ |𝑦𝑛| for all 𝑛 ∈ N; then

∑
∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑥𝑛|)
𝑝
𝑛 ≤ ∑

∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑦𝑛|)
𝑝
𝑛 .

(v)There exist some numbers𝐾0 = 2
𝐻−1(2𝐻+1)+2𝐻 ≥ 1;

by using (iv), we have the inequality 𝜌((𝑥𝑛)) ≤ 𝜌((𝑥[𝑛/2])) ≤
𝐾0𝜌((𝑥𝑛)).

(vi) It is clear that the set of all finite sequences is 𝜌-dense
in Ces(𝜃, 𝑝).

(vii) For any 𝜆 > 0, there exists a constant 0 < 𝜁 < 𝜆𝑝0−1
such that 𝜌(𝜆, 0, 0, 0, . . .) ≥ 𝜁𝜆𝜌(1, 0, 0, 0, . . .).

Theorem 20. Let 𝑋 be a normed space, let 𝑌 be a Banach
space, and let conditions (a1) and (a2) be satisfied; then
𝑈

app
ces(𝜃,𝑝)(𝑋, 𝑌) is complete.

Proof. Let (𝑇𝑚) be a Cauchy sequence in 𝑈
app
Ces(𝜃,𝑝)(𝑋, 𝑌).

Since Ces(𝜃, 𝑝) with 𝜌(𝑥) = ∑
∞

𝑛=0
((1/ℎ𝑛) ∑𝑘∈𝐼

𝑛

|𝑥𝑛|)
𝑝
𝑛 is

a premodular special space of sequences, then, by using
condition (vii) and since 𝑈app

Ces(𝜃,𝑝)(𝑋, 𝑌) ⊆ 𝐿(𝑋, 𝑌), we have
𝜌((𝛼𝑛(𝑇𝑖 − 𝑇𝑗))

∞

𝑛=0
) ≥ 𝜌(𝛼0(𝑇𝑖 − 𝑇𝑗), 0, 0, 0, . . .) = 𝜌(‖𝑇𝑖 −

𝑇𝑗‖, 0, 0, 0, . . .) ≥ 𝜁‖𝑇𝑖 − 𝑇𝑗‖𝜌(1, 0, 0, 0, . . .), then (𝑇𝑚) is also
a Cauchy sequence in 𝐿(𝑋, 𝑌). Since the space 𝐿(𝑋, 𝑌) is
a Banach space, then there exists 𝑇 ∈ 𝐿(𝑋, 𝑌) such that

‖𝑇𝑚 − 𝑇‖
𝑚→∞
→ 0 and since (𝛼𝑛(𝑇𝑚))

∞

𝑛=0
∈ 𝐸 for all 𝑚 ∈ N,

𝜌 is continuous at 0 and, using (iii), we have

𝜌(𝛼𝑛 (𝑇))
∞

𝑛=0
= 𝜌(𝛼𝑛 (𝑇 − 𝑇𝑚 + 𝑇𝑚))

∞

𝑛=0

≤ 𝐾𝜌(𝛼[𝑛/2] (𝑇𝑚 − 𝑇))
∞

𝑛=0
+ 𝐾𝜌(𝛼[𝑛/2] (𝑇𝑚))

∞

𝑛=0

≤ 𝐾𝜌 ((
𝑇𝑚 − 𝑇

)
∞

𝑛=0
) + 𝐾𝜌(𝛼𝑛 (𝑇𝑚))

∞

𝑛=0
< 𝜀

(12)

for some 𝐾 ≥ 1.
Hence, (𝛼𝑛(𝑇))

∞

𝑛=0
∈ Ces(𝜃, 𝑝) as such𝑇 ∈ 𝑈app

Ces(𝜃,𝑝)(𝑋, 𝑌).

Corollary 21. Let 𝑋 be a normed space, let 𝑌 be a Banach
space, and let (𝑝𝑛) be an increasing sequence of positive real
numbers with lim𝑛→∞ sup𝑝𝑛 < ∞ and lim𝑛→∞ inf 𝑝𝑛 > 1;
then 𝑈app

ces
(𝑝)

(𝑋, 𝑌) is complete.

Corollary 22. Let 𝑋 be a normed space, let 𝑌 be a Banach
space, let and (𝑝𝑛) be an increasing sequence of positive real
numbers with 1 < 𝑝 < ∞; then 𝑈app

ces
𝑝

(𝑋, 𝑌) is complete.
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